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PAPER

A Subquadratic-Time Distributed Algorithm for Exact Maximum
Matching

Naoki KITAMURA†a), Nonmember and Taisuke IZUMI††, Member

SUMMARY For a graph G = (V, E), finding a set of disjoint edges that
do not share any vertices is called a matching problem, and finding the
maximum matching is a fundamental problem in the theory of distributed
graph algorithms. Although local algorithms for the approximate maxi-
mum matching problem have been widely studied, exact algorithms have
not been much studied. In fact, no exact maximum matching algorithm
that is faster than the trivial upper bound of O(n2) rounds is known for
general instances. In this paper, we propose a randomized O(s3/2

max)-round
algorithm in the CONGEST model, where smax is the size of maximum
matching. This is the first exact maximum matching algorithm in o(n2)
rounds for general instances in the CONGEST model. The key technical
ingredient of our result is a distributed algorithms of finding an augmenting
path in O(smax) rounds, which is based on a novel technique of construct-
ing a sparse certificate of augmenting paths, which is a subgraph of the
input graph preserving at least one augmenting path. To establish a highly
parallel construction of sparse certificates, we also propose a new character-
ization of sparse certificates, which might also be of independent interest.
key words: distributed graph algorithm, maximum matching, congest
model

1. Introduction

1.1 Background and Our Result

A fundamental graph problem is the maximum (unweighted)
matching problem of finding the maximum cardinality sub-
set of edges not sharing endpoints. In this study, we ad-
dress the problem of computing exact maximum matchings
in a distributed setting, namely, the CONGEST model. The
CONGEST model is a standard computational model for
distributed graph algorithms, where the network is mod-
eled as an undirected graph G = (V, E) of n nodes and
m edges. Each node executes the deployed algorithm fol-
lowing round-based synchrony, and each link can transfer a
small message of O(log n) bits per round. However, the lim-
ited bandwidth in the CONGEST model precludes a triv-
ial universal solution for every graph problem, where the
leader node collects all the topological information of G and
solves the problem using a centralized algorithm. This ap-
proach takes O(n2) rounds in the worst case of m = Ω(n2).
The technical challenge in designing CONGEST algorithms
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concerns how each node computes a fragment of the solu-
tion without information on the whole input instance. The
recent development of design techniques for CONGEST al-
gorithms has yielded many efficient solutions for various
graph problems such as the minimum spanning tree [1]–[6],
distance problems including shortest-path computation [7]–
[13], and flow and cut [14]–[18]. Owing to the existence of
the O(n2)-round universal algorithm, the weakest non-trivial
challenge in the design of a CONGEST algorithms is to
achieve a subquadratic o(n2)-round upper bound. In contrast
to the universal upper bound, all the problems listed above
belong to the class of global problems exhibiting an Ω(D)-
round lower bound, where D is the diameter of the input
graph G. Thus, the tight round complexities of global prob-
lems lie between Θ(n2) and Θ(D). For many of global prob-
lems, near-tight complexity bounds, typically Θ̃(

√
n + D)

rounds or Θ̃(n) rounds, have been proved [19]–[21].
Many studies in the context of approximation algo-

rithms provide insight into the globality of the maximum
matching problem. Table 1 lists the known algorithms,
where smax is defined the cardinality of the maximum match-
ing. While O(1) approximation admits local solutions (i.e.,
o(D)-round algorithms), the complexity of the exact maxi-
mum matching problem makes it expensive. Precisely, fol-
lowing the lower bound of Ben-Basat et al. [22], there exists
an instance of diameter Ω(n) and maximum matching size
Ω(n) that exhibits an Ω(n)-round lower bound. This lower
bound was originally proved in the LOCAL model, which is
like the CONGEST model with arbitrarily large messages.
This lower bound trivially holds in the CONGEST model
as well. Therefore, the exact maximum matching problem
is placed in the class of global problems. Parametrizing the
complexity by both n and D, it is possible to obtain the non-
trivial lower bound of Ω̃(D+

√
n) rounds for the exact com-

putation of the maximum matching [23]. However, the cor-
responding upper bound is yet to be found. For the exact
maximum matching problem in general graphs, no known
algorithm achieves non-trivial o(n2) rounds. In addition,
Bacrach et al. [20] pointed out that the bound of Ω(

√
n + D)

rounds is a strong barrier because the standard framework of
two-party communication complexity is unlikely to give any
improved lower bound. These observations demonstrate the
difficulty of revealing the inherent complexity of the exact
maximum matching in the CONGEST model.

The objective of this paper is to shed light on the com-
plexity gap of the exact maximum matching problem in the
CONGEST model. We present the main theorem of this pa-
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Table 1 Lower and upper bounds of the maximum matching in the CONGEST model.

Algorithm Time Complexity Approximation Level Remark
Ben-Basat et al. [22] Ω(|smax |) exact LOCAL
Kuhn et al. [26] Ω

(
logΔ

log logΔ

)
constant ε logΔ ≤ √

log n

Ben-Basat et al. [22] Ω
(

1
ε

)
1 − ε LOCAL

Kuhn et al. [27] Ω

(√
log n

log log n

)
1 − ε LOCAL

Ben-Basat et al. [22] Õ(s2
max) exact

Ahmadi et al. [23] Õ (smax) exact bipartite
Bar-Yehuda et al. [28] O

(
logΔ

log logΔ

)
constant ε

Lotker et al. [29] O

(
22ε−2

log smax log n
ε4

)
1 − ε

Ahmadi et al. [23] O
(

log2 Δ+log∗ n
ε

)
1 − ε bipartite

Ben-Basat et al. [22] Õ
(
smax +

(
smax
ε

)2
)

1
2 − ε

Ahmadi et al. [23] O
(

logΔ
ε2
+

log2 Δ+log∗ n
ε

)
2
3 − ε

Our result O
(
s3/2

max

)
exact

per in the CONGEST model below.

Theorem 1: For any input graph G, there exists a random-
ized CONGEST algorithm to compute the maximum match-
ing that terminates within O

(
s3/2

max

)
rounds with probability

1 − 1/nΘ(1).

To the best of our knowledge, the proposed algorithm is the
first to compute the exact maximum matching algorithm in
o(n2) rounds for general input instances in the CONGEST
model.

1.2 Technical Outline

Our algorithm follows the standard technique of finding
augmenting paths. If an augmenting path is found, the cur-
rent matching is improved by flipping the labels of matching
edges and non-matching edges along the path. It is well
known that the current matching is the maximum if and
only if there exists no augmenting path in G with respect to
the current matching. Hence, the maximum matching prob-
lem is reduced to the task of finding augmenting paths smax

times. In the CONGEST model, this approach faces diffi-
culty in the situation where any augmenting path with re-
spect to the current matching is long (i.e., consisting of Θ(n)
edges). It should be emphasized that BFS-like approaches
do not work for finding augmenting paths in general graphs
because the shortest alternating walk is not necessarily sim-
ple because of the existence of odd cycles. The key in-
gredient of our approach is two new algorithms for finding
augmenting paths. They run in O(�2) rounds and O(smax)
rounds respectively, where � is the length of the shortest
augmenting path for the current matching. Roughly, our al-
gorithm switches between these two algorithms according
to the current matching size. The running-time bound is ob-
tained using the following seminal observation by Hopcroft
and Karp:

Proposition 1 (Hopcroft and Karp [24]): Given a match-
ing M ⊆ E of a graph G, there always exists an augmenting
path of length less than �2smax/k� if the current matching

size is at most the maximum matching size smax minus k.

Our augmenting path algorithms utilize Ahmadi and Kuhn’s
verification algorithm of maximum matching [25], in which
each node returns the length of the shortest odd/even al-
ternating paths from a given source (unmatched) node.
The construction of the O(�2)-round algorithm is relatively
straightforward. It is obtained by iteratively finding the pre-
decessor of each node in an augmenting path by sequential
O(�) invocations of the verification algorithm. The tech-
nical highlight of the proposed algorithm is the design of
the O(smax)-round algorithm. The O(smax)-round algorithm
constructs a sparse certificate, which is a sparse (i.e., con-
taining O(smax) edges) subgraph of G preserving the reach-
ability between two nodes by alternating paths. That is, a
sparse certificate contains an augmenting path if and only
if the original graph admits an augmenting path. By the
sparseness property, a node can collect all the information
on the sparse certificate within O(smax) rounds, trivially al-
lowing the centralized solution of finding augmenting paths.
To establish a highly parallel construction of sparse certifi-
cates, we also propose a new characterization of sparse cer-
tificates, which might also be of independent interest.

1.3 Related Works

In the LOCAL model, it is known that no o(1/ε) algo-
rithm exists for the (1 − ε)-approximate maximum match-
ing problem [22]. Together with the Ω(

√
log n/ log log n)-

round lower bound reported by Kuhn et al. [27], the lower
bound in the LOCAL model is obtained as Ω(1/ε +√

log n/ log log n) = ((log n)/ε)Ω(1). Ghaffari et al. [30]
showed a ((log n)/ε)O(1) upper bound for the (1 − ε) approx-
imate maximum matching problem. By combining these re-
sults, we infer that the time complexity of solving the (1− ε)
approximate maximum matching problem is (log n/ε)Θ(1) in
the LOCAL model. Ben-Basat et al. also proved the lower
bound of the maximum matching as Ω(smax) in the LOCAL
model [22].

Many papers in the literatures have addressed the max-
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imum matching problem in the CONGEST model (see Ta-
ble 1). Lotker et al. [29] presented the first approxima-
tion algorithm in the CONGEST model, which is a ran-
domized algorithm to compute (1 − ε)-approximate max-
imum matching in O(log n) rounds for any constant ε >
0. The running time of the algorithm depends exponen-
tially on 1/ε. Bar-Yehuda et al. [28] improved the algo-
rithm and proposed an O(logΔ/ log logΔ)-round algorithm
of computing (1−ε)-approximate matching for any constant
ε > 0, where Δ is maximum degree of the graph. Kuhn
et al. [26] have shown a lower bound of Ω(logΔ/ log logΔ)
rounds if logΔ ≤ √

log n holds. Ben-Basat et al. [22] pro-
posed a deterministic Õ(s2

max)-round CONGEST algorithm.
They also proposed a (1/2 − ε) approximate algorithm in
Õ(smax + (smax/ε)2) rounds. Ahmadi et al. [23] proposed
a deterministic (2/3 − ε) approximate maximum matching
algorithm in general graphs, which runs in O(logΔ/ε2 +
(log2 Δ+ log∗ n)/ε) rounds. They also presented an Õ(smax)-
round algorithm and O((log2 Δ+ log∗ n)/ε)-round (1− ε) ap-
proximate algorithm in bipartite graphs. However, no o(n2)-
round algorithm for solving the exact maximum matching
problem in the CONGEST model has been proposed so far.

In addition to distributed computing, many studies
have considered centralized exact maximum matching algo-
rithms. Edmonds presented the first centralized polynomial-
time algorithm for the maximum matching problem [31],
[32] by following the seminal blossom argument. Hopcroft
and Karp proposed a phase-based algorithm of finding mul-
tiple augmenting paths [24]. Their algorithm finds a max-
imal set of pairwise disjoint shortest augmenting paths in
each phase. They showed that O(

√
n) phases suffice to com-

pute the maximum matching and proposed an algorithm im-
plementing one phase in O(m) time for bipartite graphs.
Several studies have reported phase-based algorithms for
general graphs that attain O(

√
nm) time [33]–[35].

2. Preliminaries

2.1 CONGEST Model

The vertex set and edge set of a given graph G are, re-
spectively, denoted by V(G) and E(G). A distributed sys-
tem is represented by a simple undirected connected graph
G = (V(G), E(G)). Let n and m be the numbers of nodes
and edges, respectively. The diameter of a given sub-
graph H ⊆ G is denoted by D(H). Nodes and edges are
uniquely identified by integer values, which are represented
by O(log n) bits. The set of edges incident to v ∈ V(G)
is denoted by IG(v). In the CONGEST model, the compu-
tation is done in synchronous rounds. In one round, each
node v sends and receives O(log n)-bit messages through the
edges in IG(v) and executes local computation following its
internal state, local random bits, and received messages. It
is guaranteed that every message sent in a round is deliv-
ered to the destination within the same round. Each node
has no prior knowledge of the network topology, except for
its neighborhood IDs. We use the labeling of nodes and/or

edges for specifying inputs and outputs of algorithms. Each
node has information on the label(s) assigned to itself and
those assigned to its incident edges. A walk W of G is an
alternating sequence W = v0, e1, v1, e2, . . . , e�, v� of vertices
and edges such that ei = (vi−1, vi), vi ∈ V(G), and ei ∈ E(G)
holds for any 1 ≤ i ≤ �. The length of the walk W is a
number of edges in W. A walk W is often treated as a sub-
graph of G. A walk W = v0, e1, v1, e2, . . . , e�, v� is called a
(simple) path if every vertex in W is distinct. For any walk
W = v0, e1, v1, . . . , v� of G, we define W ◦ u as the walk ob-
tained by adding u, satisfying (v�, u) ∈ E(G), to the tail of
W. For any edge e = (v�, u), we also define W ◦ e = W ◦ u.
Given a walk W containing a node u, we denote by W p

u

and W s
u the prefix of W up to u and the suffix of W from

u, respectively. We also denote the inversion of the walk
W = v0, e1, v1, . . . , v� (i.e., the walk v�, e�, v�−1, e�−1, . . . , v0)
by W. The length of a walk P is represented by |P|.

2.2 Matching and Augmenting Path

For a graph G = (V, E), a matching M ⊆ E is a set of edges
that do not share endpoints. A node v is called a matched
node if M intersects IG(v), or an unmatched node otherwise.
A path P = v0, e0, v1, e1, . . . , v� is called an alternating path
if IM(ei) + IM(ei+1) = 1 holds for any 1 ≤ i ≤ � − 1†. If
the length |P| of P satisfies |P| mod 2 = θ, P is called θ-
alternating. The value θ is called the parity of P. By def-
inition, any 0-alternating (1-alternating) path from an un-
matched node f finishes with a matching (non-matching)
edge. Due to a technical issue, we regard the path of
length zero as a 0-alternating path. For any θ ∈ {0, 1} and
u, v ∈ V(G), we define rθ(u, v) as the length of the shortest θ-
alternating path between u and v. An augmenting path is an
alternating path connecting two unmatched nodes. Note that
the augmenting path must be 1-alternating path. We say that
(G,M) has an augmenting path if there exists an augmenting
path in G with respect to M. The following proposition is a
well-known fact in the maximum matching problem.

Proposition 2: Given a matching M ⊆ E(G) of graph G,
M is the maximum matching if and only if (G,M) has no
augmenting path.

2.3 Approximate Maximum Matching

Our algorithm uses an O(1)-approximate upper bound for
the maximum matching size of the input graph. To obtain
the upper bound, we run the O(smax)-round maximal match-
ing algorithm as follows. First we suppose each edge has
a unique ID and priority associated with the ID. We run a
simple parallel greedy algorithm, where each node adds an
edge to the matching if all neighboring higher priority edges
are already known not be in the maximal matching. One it-
eration of the algorithm increases the matching size at least

†The indicator function IX(x) returns one if x ∈ X and zero
otherwise.
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by one, and thus O(smax) rounds suffices to obtain a max-
imal matching. Since smax = Ω(D(G)) always holds, the
termination of maximal matching construction is detected
in O(smax) rounds by checking whether all nodes terminated
or not. Note that the termination detection is executed once
in every Θ(D(G)) rounds. Let M∗ be the computed max-
imal matching. Since any maximal matching is a (1/2)-
approximate maximum matching, one can obtain the bound
2|M∗| ≥ smax. The size smax is at least half of the diameter
D(G), and thus we can spend O(D(G)) = O(smax) rounds for
counting and propagating the number of edges in M∗. That
is, it is possible to provide each node with the value of 2|M∗|
in a preprocessing phase using only O(D(G)) = O(smax)
rounds. In the following argument, we denote ŝ = 2s∗, the
value of which is available to each node.

2.4 Maximum-Matching Verification Algorithm

Our algorithm uses the algorithm by Ahmadi et al.’s [25] for
maximum-matching verification as a building block. Al-
though the original algorithm is designed for the verifica-
tion of maximum matching, it provides each node with in-
formation on the length of alternating paths to the closest
unmatched nodes. Precisely, the following lemma holds.

Theorem 2 (Ahmadi et al. [25]): Assume that a graph G =
(V, E) and a matching M ⊆ E are given, and let W be
the set of all unmatched nodes. There exist two O(�)-
round randomized CONGEST algorithms MV(M, �, f ) and
PART(M, �) that output the following information at every
node v ∈ V(G) with a probability of at least 1 − 1/nc for an
arbitrarily large constant c > 1.

1. Given M, a nonnegative integer �, and a node f ∈ W,
MV(M, �, f ) outputs the pair (θ, rθ( f , v)) at each node v
if rθ( f , v) ≤ � holds (if the condition is satisfied for both
θ = 0 and θ = 1, v outputs two pairs). The algorithm
MV(M, �, f ) is initiated only by the node f (with the
value �), and other nodes do not require information on
the ID of f and value � at the initial stage.

2. The algorithm PART(M, �) outputs a partition V1,
V2, . . . ,VN of V(G) (as the label i for each node in Vi)
such that (a) For 1 ≤ i ≤ N − 1, the subgraph Gi in-
duced by Vi contains exactly two unmatched nodes f i

and gi as well as an augmenting path between f i and
gi of length at most � and (b) the diameter of Gi is
O(�). If G contains an augmenting path, PART(M, �)
always returns at least two sets of vertices, otherwise
PART(M, �) returns the set of vertices, that is, VN =

V(G). Note that, PART(M, �) can be applied in a sub-
graph.

While the original paper [25] presents a single algorithm re-
turning the outputs of both MV and PART, we intention-
ally separate it into two algorithms with different roles for
clarity. Note that our matching-construction algorithm uses
random bits only in the runs of these algorithms. As our
algorithm uses them only O(poly(n)) times as subroutines,

we can guarantee that our algorithm has a high probability
of success by taking a sufficiently large c. Hence, we do
not pay much attention to the failure probability of our algo-
rithm. Any stochastic statement in the following argument
also holds with probability 1 − nc for an arbitrary constant
c > 1.

3. Computing the Maximum Matching in CONGEST

As explained in the introduction, the maximum matching
problem is reducible to the problem of finding an augment-
ing path. We first present two key results below.

Lemma 1: Let M be a matching of G. Provided that
(G,M) has exactly two unmatched nodes f , g ∈ VG and
contains an augmenting path of length at most � between
f and g, there exists an O(�2)-round randomized algorithm
that outputs an augmenting path connecting f and g.

Lemma 2: Let M be a matching of G. Provided that
(G,M) has exactly two unmatched nodes f , g ∈ VG and con-
tains an augmenting path between f and g, there exists an
O(n)-round randomized algorithm that outputs an augment-
ing path that includes f .

The outputs of both algorithms are the labels to the edges
in the computed augmented path. If the edge e is included
in the augmenting path, then the vertices connecting to e
know that e is included in the augmenting path. Each node
adds the edge e to a matching M if the edge e is included
in the augmenting path and is not included in the match-
ing, and removes the edge e from a matching M if the edge
e is included in the augmenting path and the matching. To
prove the lemmas, one can utilize the output of the algorithm
PART. We first run the verification algorithm PART(M, �)
(for Lemma 1) or PART(M, ŝ) (for Lemma 2) as a prepro-
cessing step and then execute the algorithms of Lemma 1
or 2 for each Gi output by PART independently. Note that
each Gi contains only matched nodes and two unmatched
nodes; thus, |V(Gi)| ≤ 2|M| + 2 holds for any Gi. Then, the
following corollary is deduced:

Corollary 1: There exist two randomized algorithms
A(M, �) and B(M) satisfying the following conditions, re-
spectively:

• For any graph G = (V, E) and matching M ⊆ E,
A(M, �) finds a nonempty set of vertex-disjoint aug-
menting paths within O(�2) rounds if (G,M) has an
augmenting path of length at most �.

• For any graph G = (V, E) and matching M ⊆ E,
B(M) finds a nonempty set of vertex-disjoint augment-
ing paths of (G,M) within O(|M|) rounds if (G,M) has
an augmenting path.

We present an O
(
s3/2

max

)
-round algorithm for computing the

maximum matching using the algorithms A(M, �) and B(M).
The pseudocode of the whole algorithm is presented in Al-
gorithm 1. It basically follows the standard idea of central-
ized maximum matching algorithms, i.e., finding an aug-
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Algorithm 1 Constructing a maximum matching in O(n3/2) rounds.

1: for i = 1; i ≤ ŝ − √ŝ; i + + do
2: run the algorithm A(M, �) with � = �2ŝ/(ŝ − i)
 for O(�) rounds.
3: if A(M, �) finds a nonempty set of vertex-disjoint augmenting paths within O(�) rounds, then
4: improve the current matching using the set of vertex-disjoint augmenting paths.
5: for i = 1; i ≤ √ŝ; i + + do
6: run the algorithm B(M) for O(ŝ) rounds.
7: if B(M) finds a nonempty set of vertex-disjoint augmenting paths within O(ŝ) rounds, then
8: improve the current matching M using the set of vertex-disjoint augmenting paths.

menting path and improving the current matching itera-
tively. The first ŝ − √ŝ iterations use A(M, �) (lines 1–4),
and the remaining

√
ŝ iterations use B(M). In the i-th it-

eration, the algorithm A(M, �) runs with � = �2ŝ/(2ŝ − i)
.
This setting comes from Proposition 1. The improvement
of the current matching by a given augmenting path is sim-
ply a local operation and is realized by flipping the labels of
matching edges and non-matching edges on the path. The
correctness and running time of Algorithm 1 are analyzed
below.

Lemma 3: Algorithm 1 constructs a maximum matching
with high probability in O

(
s3/2

max

)
rounds.

Proof : Let s(i) be the matching size at the end of i itera-
tions of the algorithm A(M, �). We show that s(ŝ−smax+ j) ≥
j holds for any 0 ≤ j ≤ smax −

√
ŝ. It implies that the

matching size is at least smax −
√

ŝ after the application of
A(M, ·). Therefore, the maximum matching is constructed
by
√

ŝ iterations of the algorithm B(M). The proof of the
statement above follows the induction on j. (Basis) If j = 0,
the statement trivially holds. (Inductive step) As the induc-
tion hypothesis, suppose s(ŝ − smax + j′) ≥ j′ holds. If
s(ŝ − smax + j′) ≥ j′ + 1, then the statement holds. There-
fore, we consider the case in which s(ŝ − s + j′) = j′
holds. By Proposition 1, there exists an augmenting path
of length at most �2smax/(smax − j′)� ≤ 2ŝ/(smax − j′) =
2ŝ/(ŝ − (ŝ − smax + j′)) ≤ 2ŝ/(ŝ − (ŝ − smax + ( j′ + 1))) at
the end of ŝ − smax + j′ iterations of the algorithm A(M, �).
Hence, the size of the matching is increased by at least one
in the (ŝ − smax + j′ + 1)-th iteration.

Now, we show the running-time analysis of Algo-
rithm 1. Recall that ŝ = Θ(smax) holds. As A(M, �) is re-
peated ŝ − √ŝ times and B(M) is repeated

√
ŝ times, the

running time of Algorithm 1 is as follows.

O (smax) + O

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ŝ−√ŝ∑
i=1

(⌈
2ŝ

ŝ − i

⌉)2
⎞⎟⎟⎟⎟⎟⎟⎟⎠ + O

(
ŝ
√

ŝ
)

= O

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ŝ−√ŝ∑
i=1

(
ŝ

ŝ − i

)2

+ ŝ − √ŝ + ŝ
√

ŝ

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= O

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ŝ−1∑

i=
√

ŝ

(
ŝ
i

)2

+ ŝ
√

ŝ

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= O

⎛⎜⎜⎜⎜⎜⎜⎜⎝ŝ2
ŝ−1∑

i=
√

ŝ

(
1
i

)2

+ ŝ
√

ŝ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= O

(
ŝ2 1√

ŝ
+ ŝ
√

ŝ

)

= O
(
ŝ3/2

)
= O

(
s3/2

max

)
. �

The following sections are devoted to proving Lemmas 1
and 2. Since the presented algorithms are intended to run
in each Gi returned by the preprocessing run of PART(M, ·),
without loss of generality, we assume that G has exactly two
unmatched nodes f and g with an augmenting path between
them. In addition, it is assumed that one of f and g is elected
as a primary unmatched node (referred to as f hereafter).
This election process is easily implemented in O(�) rounds
because the distance between f and g is at most �. When we
argue the existence of augmenting or alternating paths in a
subgraph H = (V(H), E(H)) of G, the matching M ∩ E(H)
of graph H is considered without explicit notice. Given a
subgraph H ⊆ G, we denote the length of the shortest odd
(even) alternating path from f to v in H by r1

H( f , v) (r0
H( f , v)).

If no odd or even alternating path exists from f to v in H,
then we define r1

H( f , v) = ∞ or r0
H( f , v) = ∞. As sentinels,

we also define r0
H( f , f ) as∞ and r1

H( f , f ) as 0.

4. Construction of Augmenting Path in O(�2) Rounds

4.1 Outline

Let P = v0, e1, v1, . . . , v� be the shortest augmenting path
from f to g (i.e., f = v0 and g = v�) and Pi = Ps

vi
for short.

The key idea of the algorithm is to find the predecessor of
each node vi along P sequentially. Note that it does not suf-
fice to choose a neighbor v of vi with rθG( f , v) = i − 1 and
IM(vi, v) = θ for θ = (i − 1) mod 2 as the predecessor. This
strategy is problematic in the scenario in which there exists
two neighbors v and u such that rθG( f , v) = rθG( f , u) = i − 1
and IM(vi, u) = IM(vi, v) = θ for θ = (i−1) mod 2, where u is
the correct successor. While v is guaranteed to have the al-
ternating path Q from f to v of length i−1, it can intersect Pi.
Then, the concatenation Q◦ (vi, v)◦Pi is not simple. That is,
it is not an augmenting path. To avoid this scenario, the al-
gorithm finds the predecessor of vi in the graph G−Pi, where
G − Pi is the induced graph by V(G)\V(Pi). If some neigh-
bor v of vi satisfies rθG−Pi

( f , v) = i−1 and IM(vi, v) = 1−θ, the
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Algorithm 2 Construction of the augmenting path CAP((G,M), f , g, �).
Require: The path P0 is an augmenting path with length � from f to g.
1: P0, P1, . . . , P�: initially ∅.
2: target = g
3: for i = 1; i ≤ �; i + + do
4: if i is even then
5: target chooses the node v�−i that satisfies IM((target, v�−i)) = 1.
6: P�−i ← P�−i+1 ∪ {(target, v�−i)}.
7: target← v�−i.
8: else
9: run the algorithm MV(M, � − i, f ) with the subgraph H�−i+1 induced by V(G − P�−i+1) as the input.

10: for any v ∈ V(G − P�−i+1), the node v sends r0
H�−i+1

( f , v) to its neighborhood.

11: target chooses a node v�−i that satisfies IM((target, v�−i)) = 0 and r0
H�−i+1

( f , v�−i) = � − i.
12: P�−i ← P�−i+1 ∪ {(target, v�−i)}.
13: target← v�−i.

concatenated walk Q ◦ (vi, v) ◦ Pi is guaranteed to be simple.

4.2 Algorithm Details

Algorithm 2 details the algorithm for constructing the aug-
menting path in O(�2) rounds. The algorithm consists of
� steps. In the i-th step, it finds the predecessor of v�−i+1.
Assume that the algorithm has already found P�−i+1 at the
beginning of the i-th step. Any node in V(P�−i+1) \ {v�−i+1}
quits the algorithm (with the information of the predecessor
in Pi), and thus, the nodes still running the algorithm are
given by V(G − P�−i+1). If i is even, the edge (v�−i, v�−i+1)
must be a matching edge, and thus, the algorithm picks as
predecessor of vl−i+1 the node at the other end of the matched
edge that vl−i+1 is a part of. Otherwise, the nodes still par-
ticipating in the algorithm run MV(M, � − i + 1, f ) (that is,
they run in the graph G − P�−i+1) The algorithm picks an ar-
bitrary neighbor v of v�−i+1 satisfying r0

G−P�−i+1
( f , v) = � − i

and IM(v, v�−i+1) = 0 as the predecessor of v�−i+1.

Lemma 4: Algorithm 2 constructs an augmenting path be-
tween f and g with high probability in O(�2) rounds.

Proof : Let z0 = g and zi be the node that satisfies target =
zi at the end of the i-th iteration for 1 ≤ i ≤ �. Let Hi

be a subgraph induced by V(G − Pi). We prove the state-
ment that P�−h is a (h mod 2)-alternating path between z0

and zh. As r0
G( f , z�) ≤ r0

H1
( f , z�) = 0, z� = v holds, and

thus, we obtain P0 as an augmenting path of length � from
f to g by setting h = �. The proof follows the induction
on h. (Basis) Since z0 chooses the node z1 that satisfies
IM((target, v�−1)) = 0 and r0

H�
( f , v�−1) = �−1 in the first iter-

ation of Algorithm 2, P�−1 = {(z0, z1)} is a 1-alternating path
between z0 and z1. (Inductive Step) As the induction hy-
pothesis, suppose there exists a (h′ mod 2)-alternating path
between z0 and zh′ at the end of the h′-th iteration. Because
rh′ mod 2

H�−h′+1
( f , zh′) = � − h′ holds by the definition of zh′ , there

exists an edge (zh′ , v) that satisfies IM((zh′ , v)) = h′ mod 2,
and r(h′+1) mod 2

H�−h′
( f , v) = � − h′ − 1 holds. Therefore, zh′

can choose the node zh′+1 that satisfies IM((target, zh′+1)) =
h′ mod 2 and r0

H�−h′
( f , zh′+1) = � − h′ − 1 in the (h′ + 1)-

th iteration of Algorithm 2. Hence, P�−h′ ◦ {(zh′ , zh′+1)} is a
((h + 1) mod 2)-alternating path between z0 and zh′+1 at the

end of the (h′ + 1)-th iteration.
We show the running-time analysis of Algorithm 2.

The algorithm consists of � iterations. As each iteration is
obviously implemented in O(�) rounds, the running time of
Algorithm 2 is O(�2) rounds. �

Theorem 1 trivially follows from Lemma 4.

5. Construction of Augmenting Path in O(n) Rounds

5.1 Outline

We first introduce several auxiliary notions and definitions.
Given a subgraph H ⊆ G and θ ∈ {0, 1}, a node v ∈ VH

is called θ-reachable in H if rθH( f , v) is finite. In addition,
v is called bireachable in H if it is both 1-reachable and
0-reachable in H. A node that is neither 1-reachable nor
0-reachable in H is called unreachable in H. A node that is
θ-reachable for some θ ∈ {0, 1} in H but not bireachable in H
is called strictly θ-reachable in H. Given two spanning sub-
graphs H1 and H2 of G, we say that a node v ∈ V(H1) pre-
serves the reachability of H2 in H1 if for any θ ∈ {0, 1}, the
θ-reachability of v in H2 implies that in H1. A graph H1 is
said to preserve the reachability of H2 if any node v ∈ V(H1)
preserves the reachability of H2 in H1, which is denoted
by H1 � H2. We define rH( f , v) = minθ∈{0,1} rθH( f , v) and
γH(v) = argminθ∈{0,1}rθH( f , v). Note that r0

H( f , v) = r1
H( f , v)

does not hold, because r0
H( f , v) is even and r1

H( f , v) is odd.
When r0

H( f , v) = ∞ and r1
H( f , v) = ∞ hold, γH(v) is defined

as zero. We assume that any node v unreachable from f in
G does not join our algorithm. Therefore, without loss of
generality, we assume that none of the nodes v ∈ VG are un-
reachable in G without loss of generality. In addition, we
assume that any node v ∈ VG has information on the val-
ues of r0

G( f , v) and r1
G( f , v) at the beginning of the algorithm.

This assumption is realized by activating MV(M, n, f ) as a
preprocessing step.

The key idea of our proof is to construct a sparse cer-
tificate H, which is a spanning subgraph H ⊆ G of O(n)
edges satisfying H � G. If such a graph is obtained,
the trivial centralized approach (i.e., the approach in which
f collects the whole topological information of H) yields
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Fig. 1 Examples of the alternating base tree. Bold lines are matching edges, and thin lines are
unmatched edges.

an O(n)-round algorithm for constructing the augmenting
path. For constructing sparse certificates, we first introduce
a novel tree structure associated with G, M, and f :

Definition 1 (Alternating base tree): An alternating base
tree for G, M, and f is a rooted spanning tree T of G satis-
fying the following conditions:

• f is the root of T .
• For any v ∈ V(G), the edge from v to its parent in T is

the last edge of the shortest alternating path from f to
v in G. Formally, letting parT (v) be the parent of v ∈
V(G)\{ f } in T , rγG(v)

G ( f , v) = r1−γG(v)
G ( f , parT (v))+1 and

IM((v, parTI
(v))) = 1−γG(v) hold for any v ∈ V(G)\{ f }.

It is not difficult to check that such a spanning tree always
exists. As a node might have two or more shortest alternat-
ing paths, T is not uniquely determined (see Fig. 1 (1) and
(2) for examples). In the following argument, however, we
fix an arbitrarily chosen alternating base tree T . It should
be emphasized that the alternating base tree does not nec-
essarily contain an alternating path from f to each node v.
For example, both alternating base trees in Fig. 1 have no
alternating path from f to v9.

Fixing T , the subscript T of the notation parT (v) is
omitted in the following argument. We define ep(v) as
the edge from v to its parent and Tv as the subtree of T
rooted by v. We define the outgoing edges of Tv as the
set of edges whose one of endpoint belongs to T (v) and the
other endpoint does not belong to Tv. Any non-tree edge
e = (u, w) ∈ E(G) \ E(T ) and the unique path from u to w in
T form a simple cycle in G, which is denoted by cyc(e).

The sparse certificate is obtained by incrementally aug-
menting edges to T . For any 1 ≤ k ≤ n, we define
the level-k edge set Fk as Fk = {(u, v) | (u, v) ∈ E(G) \
M ∧ max(r0

G( f , u), r0
G( f , v)) = k} ∪ {(u, v) | (u, v) ∈ M ∧

max(r1
G( f , u), r1

G( f , v)) = k}. We also define F≤k = ∪0≤i≤kFk

and Gk = T +F≤k. Moreover, we define F0 = ∅ as a sentinel.
Let Bk be the set of all the bridges (i.e., all the edges form-
ing a cut of size one) in Gk. Note that Bk is a subset of E(T )
because T is a spanning tree of G. The following lemma is

the key technical ingredient of our construction.

Lemma 5: Let Fc
k ⊆ Fk \ E(T ) be an arbitrary subset of

non-tree edges in Fk satisfying Bk−1 \ Bk ⊆ ∪e∈Fc
k
E(cyc(e)).

Then, (T + ∪1≤i≤kFc
i ) � Gk holds.

Lemma 5 naturally yields the following incremental con-
struction of sparse certificates: each node v identifies k such
that ep(v) ∈ Bk−1 \ Bk holds, and if Tv has an outgoing edge
e belonging to Fk, v adds e to Fc

k (if Fk contains two or
more outgoing edges, one is chosen arbitrarily). Because
Gk ⊆ Gk+1 holds for any 0 ≤ k ≤ n − 1, we have Bk+1 ⊂ Bk,
which implies that Bk \ Bk+1 for all k are mutually disjoint.
Then,

∑
0≤i≤n−1 |Bk \ Bk+1| = |B0| = n − 1 holds. Since at

most one edge is augmented for each edge in Bk \ Bk+1, the
size |∪0≤i≤n−1Fc

i | is bounded by n − 1. Since cyc(e) obvi-
ously covers ep(v), the constructed edge set Fc

k satisfies the
lemma. Consequently, H = T + ∪1≤i≤nFc

i � Gn is satisfied,
and thus, H is a sparse certificate.

The idea behind our algorithm is the seminal blossom
argument by Edmonds [31]. A walk W = v0, e1, v1, e2, . . . , v�
is called an odd (even) alternating cycle if it satisfies the
following condition:

• IM(ei) + IM(ei+1) = 1 holds for any 1 ≤ i ≤ � − 1.
• v0 = v� holds.
• The length of the walk W is odd (even).

If an odd alternating cycle has no consecutive proper sub-
sequence forming an odd alternating cycle, it is called min-
imal†. Note that a minimal odd alternating cycle can still
have a consecutive subsequence forming an even alternating
cycle. The node that is first and last node of odd alternating
cycle is called stem node. An odd alternating cycle C is said
to be reachable from an unmatched node x if either the stem
node is x or there exists a node v in C admitting an even
alternating path from x to v not intersecting C. A node u
is called x-covered if there exists a minimal odd alternating

†Due to some technical reason, we allow W to be non-simple,
but this modification does not affect the correctness of the original
argument by Edmonds.
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Fig. 2 Proof of Lemma 6 for (Case 2b). Bold lines are matching edges, and thin lines are unmatched
edges. The dotted line is the edge included in G but not in Gk . Note that the edge (v j−1, v j) is actually
included in Gk , but it is drawn with a dotted line for explaining the contradiction.

cycle C reachable from x such that C contains u as a non-
stem node. It is known that the vertex v is bireachable in G
if and only if v is f -covered in G [31]. Our algorithm adds
the edges not in T incrementally with guaranteeing the in-
variant that v is f -covered in (T + ∪1≤i≤kFc

i ) if and only if v
is included in a 2-edge connected component of size at least
two in T +∪1≤i≤kFc

i . The addition of edges from Bk−1 \Bk in
our algorithm can be seen as the process of f -covering the
vertex v which is bireachable in Gk+1 but not in any 2-edge
connected component of (T + ∪1≤i≤kFc

i ), by creating new
minimal odd alternating cycles reachable from f .

Considering the distributed construction of H, a useful
property of Lemma 5 is that one does not have to wait for
the computation of Fc

k to start the computation of Fc
k+1. As

the information on rθG( f , v) for θ ∈ {0, 1} is available to v,
each node can identify the level of each incident edge. Thus,
the construction of Fc

k for all k can be executed in parallel.
The details of the distributed construction is explained in
Sect. 5.3.

5.2 Proof Details

Before proving Lemma 5, we prove an auxiliary lemma.

Lemma 6: For any θ ∈ {0, 1} and v ∈ V(G) \ { f } such that
rθG( f , v) ≤ k+1 holds, rθGk′

( f , v) = rθG( f , v) holds for all k′ ≥ k.

Proof : The proof is based on induction on k. (Basis)
k = 0: Let v be any node satisfying rθG( f , v) ≤ k + 1 for
some θ ∈ {0, 1}, and let Q be the θ-shortest path from f
to v in G. This path is contained in T because v chooses
f as its parent in T . (Inductive Step): As the induction
hypothesis, suppose rθGk−1

( f , u) = rθG( f , u) holds (and also
rθGk

( f , u) = rθG( f , u) holds because of Gk−1 ⊆ Gk) for any
u and θ satisfying rθG( f , u) ≤ k. Consider any node v such
that rθG( f , v) ≤ k + 1 holds. As the case of rθG( f , v) < k + 1
is evidently proved by the induction hypothesis, we assume
rθG( f , v) = k + 1. The proof consists of the following two
cases depending on whether the shortest alternating path
from f to v is θ-alternating path or not.
(Case 1) γG(v) = θ: By the definition of alternating base
trees, we have r1−θ

G ( f , par(v)) = rθG( f , v) − 1 = k. In addi-

tion, for any w ∈ T , rγG(w)
G ( f , w) = r1−γG(w)

G ( f , par(w)) + 1 >

rγG(par(w))
G ( f , par(w)) holds. Therefore any node w ∈ Tv satis-

fies rγG(w)
G ( f , w) ≥ k + 1. Then, any outgoing non-tree edge

of Tv has a level of at least k + 1. That is, ep(v) is a bridge

in Gk. Since r1−θ
G ( f , par(v)) = k holds, the induction hy-

pothesis yields r1−θ
Gk

( f , par(v)) = k and thus there exists a
(1 − θ)-alternating path P from f to par(v) in Gk. Due to the
fact that ep(e) is a bridge, P does not contain v. Hence the
concatenated path P ◦ ep(e) is a θ-alternating path from f to
v in Gk of length k + 1. That is, rθGk

( f , v) = rθG( f , v) holds.
(Case 2) γG(v) = 1 − θ: Let Q = v0, e1, v1, e2, . . . , ek+1, vk+1

be the shortest θ-alternating path from f to v in G ( f = v0
and v = vk+1). To prove the lemma, it suffices to show that
any edge in Q has a level of at most k or is an edge in E(T ).
Suppose for contradiction that a non-tree edge e j has the
level k′ > k. Without loss of generality, we assume that j is
the highest value for which this condition is satisfied. That
is, any edge e j′ for j′ > j has a level at most k or is an edge
in T . We define ρ as IM(e j). We further divide Case 2 into
the following three subcases depending on whether e j is the
last edge, and otherwise whether it’s a matching edge or not.
(Case 2a) j = k + 1: Since Q is the shortest θ-alternating
path of length k + 1, ρ = 1 − θ holds, and Qp

vk is a (1 − θ)-
alternating path from f to vk of length k. From the condition
γG(v) = γG(vk+1) = 1 − θ for Case 2, r1−θ

G ( f , vk) ≤ k and
r1−θ

G ( f , vk+1) < rθG( f , vk+1) = k + 1 hold. That is, the level of
e j = ek+1 is at most k, which is a contradiction.
(Case 2b) j < k + 1 and ρ = 1: Since the length of Qp

v j
is j,

we have r0
G( f , v j) ≤ j ≤ k. From the induction hypothesis,

Gk−1 contains a 0-alternating path Q′ from f to v j. In other
words, v j has a 0-alternating path Q′ such that any non-tree
edge in E(Q′) has a level of at most k. The assumption of
ρ = 1 implies that Q′ must terminate with a matching edge
incident to v j, i.e., the edge e j. This is a contradiction be-
cause we assume that e j is not contained in Gk−1.
(Case 2c) j < k + 1 and ρ = 0: We denote R = Qs

v j
as

shorthand. As the length of Qp
j is j ≤ k, from the induction

hypothesis, we have r1
Gk

( f , v j) = r1
G( f , v j) ≤ j, and thus,

Gk contains a 1-alternating path P from f to v j of shortest
length. Let vh ∈ V(R) ∩ V(P) be the first node in P, which
also belongs to R. If eh+1 is a matched edge, Pp

vh ◦ Qs
vh

is a
θ-alternating path in Gk (see Fig. 3 (a)), the length of which
is bounded by |Pp

vh ◦Qs
vh
| ≤ |P|+ (k+1−h) ≤ j+ (k+1− j) ≤

k + 1. Hence, we obtain rθGk
( f , vk+1) ≤ k + 1 = rθG( f , vk+1),

which is a contradiction. If eh+1 is an unmatched edge, eh is

a matched edge. Therefore, Pp
vh ◦ Rp

vh is a 0-alternating path
from f to v j in Gk (see Fig. 3 (b)). Since we consider the
case of ρ = 0, the edge e j is an unmatched edge. Therefore,
vh � v j holds, and thus vh is not the last node of P. This
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Fig. 3 Proof of Lemma 6 of (Case 2c). Bold lines are matching edges, and thin lines are unmatched
edges. The dotted line is the edge included in G but not in Gk .

implies |Pp
vh | ≤ j−1. We obtain |Pp

vh◦Rp
vh | ≤ j−1+(k+1−h) ≤

j − 1 + (k + 1 − j) ≤ k, and thus, r0
G( f , v j) ≤ r0

Gk
( f , v j) ≤ k.

Since Qs
v j−1

is a 0-alternating path from f to v j−1 of length
j − 1, we have r0

G( f , v j−1) ≤ j − 1 ≤ k. This implies that the
level of e j is at most k, which is a contradiction. �

Now, we present the proof of Lemma 5.

Proof : Let Fc
≤k = ∪1≤i≤kFc

i and Hk = T + Fc
≤k. We prove

the lemma inductively. For k = 0, H0 = T � G0 = T
evidently holds. Thus, it suffices to show Hk � Gk, assuming
Hk′ � Gk′ for all 0 ≤ k′ < k. For any 0 ≤ h ≤ n, we
define Uh = {(v, θ) | v ∈ V(G) ∧ rθGk

( f , v) = h}. If v is θ-
reachable in Hk for all 0 ≤ h ≤ n and (v, θ) ∈ Uh, we can
conclude that Hk � Gk. The proof of this statement follows
the (nested) induction on h. (Basis) As U0 contains only
( f , 1), the statement evidently holds. (Inductive Step) As
the induction hypothesis, suppose v is θ-reachable for any
(v, θ) ∈ ∪0≤i≤hUi, and consider any pair (v, θ) in Uh+1. Then,
we consider the following two cases.
(Case 1) ep(v) is a bridge in Gk: We have r1−θ

G ( f , par(v)) = h
from the definition of alternating base trees. Since the induc-
tion hypothesis guarantees that par(v) preserves the reach-
ability of Gk in Hk, there exists a (1 − θ)-alternating path
P from f to par(v) in Hk. In addition, P does not con-
tain ep(e), because ep(e) is a bridge in Hk ⊆ Gk. From
IM(ep(v)) = 1−θ, which directly follows from the definition
of alternating base trees, the concatenated path P ◦ep(v) be-
comes a θ-alternating path from f to v in Hk (see Fig. 4 (1)).
Then, v is θ-reachable in Hk.
(Case 2) ep(v) is not a bridge in Gk: As G0 ⊆ G1 ⊆ . . . ,⊆ Gk

holds, there exists 1 ≤ j ≤ k such that ep(v) ∈ Bj−1 \ Bj

holds. Then, Fc
j contains an outgoing edge e of Tv belonging

to F j. Let e = (u, w) and u be the side contained in Tv. We
assume that e is not a matching edge. By symmetry, the
case of e ∈ M is proved similarly. From the definition of F j,
we have max{r1

G( f , u), r1
G( f , w)} = j ≤ k. Lemma 6 implies

that both u and w have 1-alternating paths from f in G j−1;
from the induction hypothesis Hj−1 � G j−1, they have 1-
alternating paths from f also in Hj−1, which we refer to as P
and Q, respectively. Since ep(v) is a bridge of G j−1 ⊇ Hj−1,
the suffix Ps

v is a subgraph of Tv. In addition, Q does not
intersect V(Tv), because both f and w are outside Tv. Thus,
Ps
v and Q are mutually disjoint, and the concatenated path

Q′ = Q ◦ (w, u) ◦ Ps
v is simple. It is easy to check that Q′

is an alternating path from f to v. As Q, e, and Ps
v are all

contained in Hj−1 + Fc
j = Hj, Pp

v and Q′ are contained in
Hj (see Fig. 4 (2)). The alternating paths Ps

v and Q′ have
different parities because their last edges are adjacent in P.
Hence, we conclude that v is bireachable in Hj. �

5.3 Distributed Implementation

This section explains how to implement the centralized
sparse certificate algorithm, presented in Sect. 5.1, in the
CONGEST model to obtain the algorithm of Theorem 2. It
is relatively straightforward to construct the alternating base
tree T . From the preprocessing run of MV(M, n, f ), each
node v has information on the values of r1

G( f , v) and r0
G( f , v);

thus, it has information on γG(v) as well. Then, v chooses an
arbitrary neighbor u of v satisfying the second condition of
the alternating base tree as its parent (i.e., it chooses (v, u) as
an edge of T ). Algorithm 3 presents the pseudocode of the
alternative base tree construction. This algorithm is a local
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Fig. 4 Proof of Lemma 5. Bold lines are matching edges, and thin lines are unmatched edges.

Algorithm 3 Construction of the alternating base tree for vi: ABT((G,M))
Require: The graph induced by the edge set

⋃
i:vi∈V Ei is an alternating base tree.

1: Ei: initially ∅.
2: if vi � f then
3: choose edge (u, vi) that is incident on the vertex vi and satisfies rγ(vi)G ( f , vi) = r1−γ(vi)

G ( f , u) − 1 and I((u, vi)) = 1 − γ(vi) (if multiple edges satisfy these
conditions, the node arbitrarily chooses one).

4: Ei ← Ei ∪ (u, v).

Algorithm 4 Construction of Fc
k for vi: ConstF(k)

Require: The edge ei is an outgoing edge of Tvi if node vi outputs ei; otherwise, Tvi does not have an outgoing edge.
1: for i = 1; i ≤ d; i + + do
2: if vi is a leaf node then
3: if I(vi) ∩ Fk ∩ E∗(Tv) = ∅ then
4: evi ← dummy edge e such that lca(e) = ∞.
5: else
6: evi ← mine∈I(vi)∩Fk∩E∗(Tvi ) e w.r.t. ≤lca.
7: if vi � f then
8: send evi to its parent.
9: else

10: if vi receives the set of edges X from all its children then
11: evi ← mine∈X∪(I(vi)∩Fk∩E∗(Tvi )) e w.r.t. ≤lca.
12: if lca(evi ) ≤ d(vi) then
13: output ev.
14: else
15: output ⊥.

algorithm, which is implemented in zero round.
The main idea of constructing the edge set Fc =

∪1≤i≤nFc
i in the distributed manner is implemented by the

CONGEST algorithm ConstF(k), where each node v outputs
an outgoing edge of Tv of level k if it exists (or⊥ otherwise).
Let d be the height of the constructed alternating base tree T .
Given a non-tree edge e = (u, w) ∈ E(G)\E(T ), the depth of
the lowest common ancestor of u and w is denoted by lca(e).
In addition, we introduce the ordering relation ≤lca over all
non-tree edges as e1 ≤lca e2 if and only if lca(e1) ≤ lca(e2).
The algorithm ConstF works under the assumption that for
any non-tree edge e = (u, v), u and v have information on the
value of lca(e). This assumption is realized by the following
O(d)-round preprocessing.

1. Each node v computes its depth dv in T through a down-
ward message propagation from f along T . The root f

first sends to its children the value 1. The node v re-
ceiving message i decides dv = i and sends the value
i + 1 to its children.

2. Each node v broadcasts the pair of its ID and depth
(v, dv) to all the nodes in Tv. First, each node sends the
pair to its children. In the following rounds, each node
forwards the message from its parents to the children.
This task finishes within O(d) rounds.

3. The broadcast information of the previous step allows
each node v to identify the path pT (v) from v to f in
T . For all non-tree edges e = (u, v), u and v exchange
pT (v) (taking O(d) rounds) and compute the value of
lca(e).

The pseudocode of Algorithm ConstF(k) is presented
in Algorithm 4. Let E∗(Tv) be the set of non-tree edges e
such that at least one endpoint of e belongs to V(Tv). Each
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node v computes the minimum edge ev ∈ E∗(Tv) ∩ Fk with
respect to ≤lca. This task is implemented through a standard
aggregation over T . Each leaf node v sends the minimum
edge e in Fk∩E∗(Tv) together with lca(e). If Fk∩E∗(Tv) = ∅
holds, the leaf sends a dummy edge e such that lca(e) = ∞
holds. Let X be the set of edges a non-leaf node v received
from its children. Then, v chooses ev as the minimum edge
in X ∪ (I(v) ∩ Fk ∩ E∗(Tv)) with respect to ≤lca and sends
the chosen edge ev and lca(ev) to par(v). Finally, v outputs
ev if lca(ev) < dv holds or ⊥ otherwise. The correctness of
ConstF(k) follows the proposition below.

Proposition 3: Let e be the minimum edge in E∗(Tv) with
respect to ≤lca. Then, e is an outgoing edge of Tv if and only
if lca(e) < dv holds (thus, ep(v) is a bridge if lca(e) ≥ dv
holds).

The edge set Fc is constructed by running ConstF(k)
for all 1 ≤ k ≤ n. As this algorithm is implemented by one-
shot aggregation over T , one can utilize the standard pipelin-
ing technique for completing ConstF(k) for all 1 ≤ k ≤ n,
which takes O(n) rounds in total (including the preprocess-
ing step of computing lca(e)). The result of ConstF pro-
vides node v with the information of the minimum k, such
that ep(v) ∈ Bk−1 \ Bk, as well as an outgoing edge of Tv in
Fk. Following Lemma 6, each node v can decide the edge e
that should be added to Fc = ∪1≤i≤nFc

i .

6. Conclusion

We proposed a randomized O(s3/2
max)-rounds (i.e. O(n3/2)-

rounds) algorithm for computing a maximum matching in
the CONGEST model, which is the first one attaining o(n2)-
round complexity for general graphs. Our algorithm follows
the standard augmenting-path approach, and the technical
core lies two fast algorithms of finding augmenting paths
respectively running in O(�2) and O(smax) rounds.

While we believe that our result is a big step toward
the goal of revealing the tight round complexity of the ex-
act maximum matching problem, the gap between the upper
and lower bounds are still large. It should be noted that we
leave the possibility of much faster augmenting path algo-
rithms. Once an o(�2)-round or o(smax)-round algorithm of
finding an augmenting path is invented, the upper bound au-
tomatically improves. This direction is still promising.
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