
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022
597

PAPER

Fast Neighborhood Rendezvous∗

Ryota EGUCHI†a), Naoki KITAMURA†, Nonmembers, and Taisuke IZUMI††, Member

SUMMARY In the rendezvous problem, two computing entities (called
agents) located at different vertices in a graph have to meet at the same ver-
tex. In this paper, we consider the synchronous neighborhood rendezvous
problem, where the agents are initially located at two adjacent vertices.
While this problem can be trivially solved in O(Δ) rounds (Δ is the max-
imum degree of the graph), it is highly challenging to reveal whether that
problem can be solved in o(Δ) rounds, even assuming the rich computa-
tional capability of agents. The only known result is that the time complex-
ity of O(

√
n) rounds is achievable if the graph is complete and agents are

probabilistic, asymmetric, and can use whiteboards placed at vertices. Our
main contribution is to clarify the situation (with respect to computational
models and graph classes) admitting such a sublinear-time rendezvous al-
gorithm. More precisely, we present two algorithms achieving fast ren-
dezvous additionally assuming bounded minimum degree, unique vertex
identifier, accessibility to neighborhood IDs, and randomization. The first
algorithm runs within Õ(

√
nΔ/δ + n/δ) rounds for graphs of the minimum

degree larger than
√

n, where n is the number of vertices in the graph, and
δ is the minimum degree of the graph. The second algorithm assumes that

the largest vertex ID is O(n), and achieves Õ
(

n√
δ

)
-round time complex-

ity without using whiteboards. These algorithms attain o(Δ)-round com-
plexity in the case of δ = ω(

√
n log n) and δ = ω(n2/3 log4/3 n) respec-

tively. We also prove that four unconventional assumptions of our algo-
rithm, bounded minimum degree, accessibility to neighborhood IDs, initial
distance one, and randomization are all inherently necessary for attaining
fast rendezvous. That is, one can obtain the Ω(n)-round lower bound if
either one of them is removed.
key words: rendezvous, randomized algorithm, sublinear-time algorithm,
whiteboards

1. Introduction

1.1 Background

The rendezvous problem is well-studied in distributed com-
puting theory. A typical setting of the problem requires
two agents located at any vertices in a graph G = (V, E)
to meet and halt. This is recognized as a fundamental prob-
lem for designing distributed algorithms of mobile agents.
The hardness of symmetry breaking is often seen as an es-
sential difficulty of the rendezvous problem. For example,
we consider a ring network of four vertices, and the situa-

Manuscript received May 7, 2021.
Manuscript revised October 15, 2021.
Manuscript publicized December 17, 2021.
†The authors are with the Nagoya Institute of Technology,

Nagoya-shi, 466–8555 Japan.
††The author is with the Osaka University, Suita-shi, 565–0871

Japan.
∗A preliminary subset of this work appeared in the proceedings

of ICDCS 2020 [1]
a) E-mail: 30514002@stn.nitech.ac.jp

DOI: 10.1587/transinf.2021EDP7104

tion that the two agents located at two vertices that are not
adjacent to each other. Then, the agents running the same
algorithm symmetrically move and thus their relative dis-
tance two is kept forever. That is, any deterministic algo-
rithm does not achieve rendezvous in this situation. To make
the rendezvous problem solvable, the system model must
be equipped with some mechanism enabling two agents to
move asymmetrically. Much of the previous work focuses
on what models or assumptions provide such a capabil-
ity [2]–[4].

Unlike the viewpoint mentioned above, we assume a
model that easily breaks symmetry, i.e., allowing random-
ized and/or asymmetric algorithms, and focuses on the time
complexity of the rendezvous problem. When we allow two
agents to run different algorithms, the rendezvous problem
can be solved using graph exploration. Specifically, one of
the agents halts at the initial location and the other one tra-
verses all the vertices. Hence the time complexity of graph
exploration is a trivial upper bound for the rendezvous prob-
lem. In contrast, the half of the initial distance between two
agents is a trivial lower bound for the problem. Since both
of the bounds can be Θ(n) in a specific class of n-vertex
instances (e.g., a ring network of n vertices) the exploration-
based approach is existentially optimal, but not universally
optimal. When the initial distance is small in terms of n, the
approach based on graph exploration does not necessarily
exhibit optimal algorithms. However, due to the unavail-
ability of the location information of other agents, achiev-
ing rendezvous without exploring all vertices is a highly
non-trivial challenge, even if we assume stronger capabil-
ity of agents such as randomization, asymmetry, and non-
obliviousness.

1.2 Contribution

In this paper, we consider what instances and what computa-
tional power of models (oracles) admit efficient algorithms
that do not use exhaustive search strategy, such as graph ex-
ploration. As we stated, the key characterization of the in-
stances is distance of initial location of both agents. We
consider the initial distance is small in terms of n, to avoid
Ω(n) lower bound. In this setting, the meaning of “without
exhaustive search” will be clear, namely presenting algo-
rithms that achieve rendezvous in o(n) rounds.

In this paper, we consider an extreme variant of the
rendezvous problem, called the neighborhood rendezvous
problem, where two agents are initially located at two ad-

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers

598
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

jacent vertices (i.e., initial distance one). This problem can
be also seen as a generalized version of the rendezvous prob-
lem in complete graphs [5] because in that case any two
agents always have distance one. Since the neighborhood
rendezvous problem can be trivially solved in O(Δ) rounds
(Δ is the maximum degree of the graph), the technical chal-
lenge lies in the design of algorithms achieving rendezvous
within o(Δ) rounds. As well as the algorithm shown in
[5], we assume the rich capability of agents (i.e., random-
ized, asymmetric, and non-oblivious), unique vertex iden-
tifiers, and the availability of whiteboards placed at each
vertex. In addition, we assume that agents at a vertex v
can know the IDs of all v’s neighbors (which is analogous
to the KT1 model in message passing systems [6]). Specifi-
cally, we present two randomized algorithms. The first algo-

rithm achieves rendezvous within O
(

n
δ

log2 n +
√

nΔ
δ

log n
)

rounds with high probability for graphs whose minimum de-
gree is larger than

√
n. Thus, this algorithm achieves fast

rendezvous (i.e., sublinear of Δ) in graphs with minimum
degree δ = ω(

√
n log n). The second algorithm trades the

use of whiteboards into the assumption of tight naming of
vertices, that is, the assumption that the largest vertex ID

is O(n). It achieves rendezvous within O
(

n√
δ

log2 n
)

rounds

with high probability†, and thus fast rendezvous is attained
in the case of δ = ω(n2/3 log4/3 n). While these algorithms
are designed for the specific case of initial distance one, it is
easy to extend them to address general initial distance. That
is, we can obtain the rendezvous algorithms with adaptive
running time, which attains a sublinear time for some nice
setting (i.e., d = 1 and an appropriate lower bounds for δ),
and even guarantees the rendezvous for any setting.

On the negative side, we also present the impossibil-
ity of sublinear-time rendezvous when we relax the assump-
tions. There lie four unconventional assumptions for our al-
gorithm, which are bounded minimum degrees, the accessi-
bility to neighborhood IDs, initial distance one, and random-
ization. Interestingly, the time lower bound of Ω(n) rounds
for graphs of Δ = Θ(n) is deduced even if we remove only
one of them; this implies that our algorithm runs under a
minimal assumption.

1.3 Related Work

The solvability and complexity of the rendezvous problem
is affected by many factors, such as synchrony, randomness
of algorithms, graph classes, symmetry of agents, and so
on. For that reason it is difficult to compare our results
with past literature directly. Nevertheless, several results
aim to achieve sublinear-time rendezvous explicitly or im-
plicitly. Collins et al. [7] demonstrate that two agents with
a common map (i.e., whole information of G), which are
initially placed with distance d, can achieve rendezvous de-
terministically within O(d log2 n) rounds, they also show a

†Throughout this paper, we say that an event E holds with high
probability if Pr[E] ≥ 1 − 1/nO(1) holds

nearly tight Ω(d log n/ log log n)-round lower bound. Das
et al. [8] assume that two agents can detect their distance,
and present a deterministic rendezvous algorithm within
O(Δ(d + log l)) rounds, where l is the minimum value of the
IDs of agents. It is also proven that any algorithm requires
Ω(Δ(d + log l/ logΔ)) rounds in this model. The result by
Anderson et al. [5] is the closest to our result in the sense that
it assumes no oracle such as maps and distance detection
stated above. It considers the model of anonymous vertices
with whiteboards, and presents a randomized algorithm that
achieves rendezvous for complete graphs in O(

√
n) expected

rounds. As we mentioned, the neighborhood rendezvous
problem can be seen as a relaxation of rendezvous in com-
plete graphs, and thus we can regard our result as the one
extending the graph classes allowing fast rendezvous (us-
ing a stronger assumption of vertex identifiers). There are
also several studies [9]–[11] for achieving fast rendezvous
using side information coming from oracles (so-called ad-
vice). In this model, agents cannot see the whole map of G,
but instead can know the (partial) information on their initial
locations.

Due to the interest on hardness of symmetry breaking,
the solvability of the rendezvous problem for ring networks
has received much consideration in several different mod-
els [2]–[4]. In this context, the analysis of complexity has
not received much attention. The study of rendezvous in
trees has focused on time and space complexities. The pa-
per by Baba et al. [12] presents a linear-time (equivalently,
O(n) time) algorithm under the assumption that agents have
O(n) bits of memory, and the authors also show its opti-
mality with respect to space in the class of linear-time al-
gorithms. Czyzowicz et al. [13] generalized this result, and
presented an algorithm achieving rendezvous in Θ(n+ n2/k)
rounds for agents having k bits of memory. Fraigniaud et
al. [14] presents the rendezvous algorithm in trees with the
optimal memory complexity (Θ(log n) bits). The feasibility
of rendezvous in general graphs are also considered in sev-
eral papers [15]–[18]. In paper [17], the memory require-
ment for the rendezvous of uniform agents is considered,
which presents thatΘ(log n) bits are necessary and sufficient
for two agents in any anonymous graph. Recently, Miller et
al. [19] consider the trade-offs between time and cost (the
number of edges traversed by agents).

The rendezvous problem allowing randomization is of-
ten considered as a part of the theory of random walks. The
time taken for two tokens to meet at a common vertex is
called the meeting time [20], [21]. The rendezvous problem
in the analyses of Markov chain theory is also considered in
the context of operations research [5], [22]–[26].

A comprehensive overview of the rendezvous prob-
lem can be found in the books by Alpern and Gal [27] and
Alpern et al. [28], and several surveys [29]–[31].

EGUCHI et al.: FAST NEIGHBORHOOD RENDEZVOUS
599

2. Preliminaries

2.1 Model and Notations

In this paper, we consider the rendezvous problem of two
agents in any undirected graph G = (V, E) of n vertices.
Each vertex in G has a distinct integer identifier in [0, n′ −
1], where n′ satisfies n′ ≥ n and n′ = nO(1). The value of
n′ is available to each agent. We denote the identifiers of
n vertices by v0, v1, . . . , vn−1. The minimum and maximum
degrees of G are respectively denoted by δG and ΔG. For any
vertex v, NG(v) represents the set of vertices adjacent to v,
i.e., NG(v) = {v′ | (v, v′) ∈ E}. We define N+G(v) = NG(v)∪{v},
and also define NG(X) =

⋃
v∈X NG(v) and N+G(X) = NG(X) ∪

X for any vertex set X ⊆ V . We often omit subscript G if it
is clear from the context.

In the system, two computing entities, called agents,
are placed at two vertices in G, which are modeled as prob-
abilistic random access machines. The two agents have dis-
tinct names denoted by a and b respectively, and can ex-
hibit asymmetric behavior in executions, that is, they can run
two different algorithms. Agents are equipped with memory
space as their internal states. While we do not assess any as-
sumption on time/space complexity for internal computation
of agents, our proposed algorithms terminate within poly-
nomial time, and use O(n log n)-bit memory. We denote by
M ⊆ {0, 1}∗ the set of possible internal states of two agents.
When two agents visit the same vertex, they are aware of the
presence of each other. On neighborhood knowledge, we
define the local port numbering of each vertex vi, which is a
bijective function P̂vi : [0, |N(vi)| − 1] → N(vi). We also de-
fine the accessible local port number Pvi : [0, |N(vi)| − 1]→
N. Agents can see only Pvi and have no access to P̂vi . The
model supporting the access to neighborhood IDs is defined
as the assumption that P̂vi and Pvi are the same function for
any vi ∈ V . On the lower-bound side, we also consider the
case where each agent has no access to its neighborhood
IDs. It is defined as the model such that Pvi for any vi is the
identity mapping from [0, |N(vi)| − 1] to [0, |N(vi)| − 1] (i.e.,
it does not provide any information of P̂vi).

Each vertex is equipped with a memory space called
whiteboards, and an agent at vertex v can access/write to the
whiteboard of v in its internal computation. Formally, we
define W ⊆ {0, 1}∗ to be the set of possible contents writ-
ten in each whiteboard. A state of all the whiteboards in
G is represented by an n-dimensional vector Wn indexed by
elements in V . While we have no assumption on the size
of each whiteboard, O(log n) bits per vertex suffice for our
algorithms.

Executions of two agents follow synchronous and dis-
crete time steps t = 0, 1, 2, . . . called rounds. In every round,
an agent at vertex v either stays at the present location or
moves to one of its neighbors. An algorithm A determines
which action to take based on the information stored in its
internal memory, IDs in N+(v) through the access to Pv, and
the contents of the whiteboard at v. We assume that a move-

ment to a neighbor necessarily completes within the current
round. In other words, we do not consider the situation
where agents are located on edges at the beginning of each
round. At each round, agents can modify the whiteboards of
their current vertices†. Formally, an algorithm is a function
A : {a, b} × M × V × 2N ×W × {0, 1}∗ → M × N ×W. The
inputs respectively correspond to the ID of the agent, its in-
ternal memory, the IDs of its current location and neighbors
(with respect to accessible port numbering functions), the
content of the whiteboard at the current location, and ran-
dom bits. The outputs correspond to the internal state of the
agent after the computation, the destination in the following
movement (with respect to accessible local port numbers),
and the content of the whiteboard left at the current vertex.
Note that deterministic algorithms (only used in Sect. 5.4)
are defined as the ones such that its behavior is independent
of random bits. A configuration C at round t is a tuple in C ∈
(V ×M)2 ×Wn. An execution is an infinite sequence of con-
figurations C0,C1,C2, Precisely, letting vzi be the loca-
tion of agent z ∈ {a, b} at round i, mz

i be the internal memory
of agent z at round i, and w j

i be the content of the whiteboard
of vertex v j at round i, a configuration Ci is described as Ci =

(vai ,m
a
i , v

b
i ,m

b
i , w

0
i , . . . , w

n−1
i). For any i ∈ N, every execution

must satisfy the following conditions: For any j ∈ V \{vai , vbi }
w

j
i = w

j
i+1 holds. For each i, there exists Ba

i , B
b
i ∈ {0, 1}∗

such that A(a,ma
i , v

a
i , Pvai , wvai , B

a
i) = (ma

i+1, P̂
−1
vai

(vai+1), wi
vai

)

and A(b,mb
i , v

b
i , Pvai , w

vbi
i , B

b
i) = (mb

i+1, P̂
−1
vbi

(vbi+1), w
vbi
i) hold,

where P−1
vai

and P−1
vbi

are the inverse mappings of Pvai and Pvbi
respectively.

2.2 Rendezvous Problem

In the rendezvous problem, two agents initially located at
two different vertices are required to visit the same vertex
simultaneously and halt. Formally, the rendezvous problem
is as follows.

Definition 1: We say that an algorithm completes ren-
dezvous at round t if the two agents are located at the same
vertex at the beginning of that round††.

This paper considers the rendezvous problem with the
constraint on initial locations of agents and graph parame-
ters.

Definition 2 (Specific Rendezvous): For graph G = (V, E),
let I ⊆ V × V be a possible set of initial locations (va0, v

b
0)

†Strictly, we need to define formally the behavior of agents
when they are located at the same vertex and attempt to modify the
(common) whiteboard. In the rendezvous problem of two agents,
however, such a case can be seen as the completion of the algorithm
without loss of generality. Thus, we do not care about simultaneous
and parallel write operation for the same whiteboard.
††In the synchronous system, we can assume that once two

agents meet at a vertex then they halt without loss of generality.
That is, agents that complete rendezvous at round t also complete
rendezvous at any round t′ > t.

600
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

of two agents. We say that an algorithm A solves the ren-
dezvous problem for an instance (G, I) with probability p
within t rounds, if for any (va0, v

b
0) ∈ I, the execution of A

in G completes rendezvous at round t with probability p.
Moreover, letting I = {(G0, I0), (G1, I1), . . . } be a (possi-
bly infinite) class of instances, we say that an algorithm A
solves the rendezvous problem for class I with probabil-
ity p within f (n) rounds for some non-decreasing function
f : N → N if for every instance ((V, E), I) ∈ I, algorithm
A solves the rendezvous problem with probability p within
f (|V |) rounds.

In this paper we are interested in the case where
the distance between two initial locations of agents is up-
per bounded by d. For any graph G we define IG

d =

{(v, v′) | distG(v, v′) ≤ d}, where distG(v, v′) represents the
(hop-)distance of vertices v and v′ in G. In addition, we
also define the class G(Δ̂(n), δ̂(n)) for functions δ̂ : N →
N, Δ̂ : N → N as the set of graphs G = (V, E) such
that δG ≥ δ̂(|V |) and ΔG ≤ Δ̂(|V |) hold. The (Δ̂, δ̂, d)-
rendezvous problem is defined as that for the instance class
Id = {(G, IG

d) | G ∈ G(Δ̂(n), δ̂(n))}. In particular, we focus
on the instance class I1 in Sects. 3 and 4. In Sect. 5 we show
the lower bounds on the problem for I2.

3. Rendezvous Algorithm

3.1 Algorithm Overview

In this section, we present an overview of our rendezvous
algorithm. For ease of presentation, we assume that each
agent has the precise values of δ and log n, but it is not es-
sential. Those values can be replaced with their constant-
factor approximate values without increasing the asymptotic
running time. A constant factor approximation of log n can
be estimated from the upper bound n′ of vertex IDs. The
approximation of δ can be obtained by standard doubling
estimation, explained in Sect. 4.

First, we introduce several definitions and terminolo-
gies used in the following argument.

Definition 3 (α-heaviness, α-lightness): For any T ⊆ V ,
v ∈ V , and α ∈ R+, v is called α-heavy for T if |T ∩
N+(v)| ≥ α holds†. Similarly we say that v is α-light for
T if |T ∩ N+(v)| < α holds.

The following proposition is a trivial fact deduced from
the definition above.

Proposition 1: Let v ∈ V be an α-heavy vertex for T ⊆ V .
For any T ′ such that T ′ ⊇ T holds, v is also α-heavy for T ′.

Given a vertex set T ⊆ V and α ∈ R+, we define
Hα(T), Lα(T) ⊆ V as the sets of vertices that are respectively
α-heavy and α-light for T .

Definition 4 ((z, α, β)-dense condition): Given z ∈ {a, b},
T ⊆ V , and α, β ∈ R+, T is called (z, α, β)-dense if the fol-
lowing three conditions hold:

†
R
+ is the set of all positive real values.

Algorithm 1 Main-Rendezvous : Rendezvous with T a

w(v) : whiteboard at vertex v. Initially w(v) =⊥ for all v ∈ V
qa, qb : local variables of agents a and b
Operations of Agent a

1: construct T a satisfying (a, δ/8, 2)-dense condition
2: repeat
3: choose v in T a uniformly at random, and move to v
4: qa ← w(v)
5: return to va0
6: until qa �⊥
7: visit qa and halt

Operations of agent b
1: repeat
2: move to v ∈ N+(vb0) chosen uniformly at random
3: w(v)← vb0
4: return to vb0
5: until achieve rendezvous

• vz0 ∈ T ,
• for any w ∈ T , distG(vz0, w) ≤ β, and
• N+(vz0) ⊆ Hα(T).

The main idea of our rendezvous algorithm is that agent
a constructs an (a, δ/8, 2)-dense vertex set T a. Since vb0 ∈
N+(va0) ⊆ Hδ/8(T a), vb0 is an (δ/8)-heavy vertex for T a. Then
a sublinear number of random vertex samplings from T a by
agent a and those from N(vb0) by b ensure that a vertex is
commonly sampled with high probability. In this sampling
process, agent b leaves the ID of vb0 at the whiteboards of
all the sampled vertices. When agent a visits the common
sample, it knows the initial location of vb0. Then agent a
moves to vb0 and meets b.

In the following argument, we divide our algorithm
into two sub-algorithms. The first one, called Main-
Rendezvous, achieves rendezvous provided that agent a
knows an (a, δ/8, 2)-dense set T a ⊆ N+(N+(va0)). The
second sub-algorithm is for agent a to construct such an
(a, δ/8, 2)-dense set T a, which is called Construct. The
combination of these two sub-algorithms yields the algo-
rithm we claim.

3.2 Rendezvous with T a

We present the algorithm Main-Rendezvous, which solves
the rendezvous problem using the initial knowledge of an
(a, δ/8, 2)-dense set T a ⊆ N+(N+(va0)) by agent a. Here the
“knowledge” implies that (1) a has the list of all vertices in
T a in its memory, and (2) also has the shortest paths to all
vertices in T a from a’s initial location††. The pseudocode of
Main-Rendezvous is presented in Algorithm 1. First, agent
a samples a vertex v in T a uniformly at random, and vis-
its there. At vertex v, a checks if b has written the ID vb0
††Since the length of these shortest paths are at most two by the

definition of (a, δ/8, 2)-dense sets, the space for storing this infor-
mation is asymptotically same as the space for the list of vertices.

EGUCHI et al.: FAST NEIGHBORHOOD RENDEZVOUS
601

in the whiteboard of v. If so, then a moves to vb0 and halts.
The agent b iteratively visits a vertex u in N+(vb0) chosen
uniformly at random, and writes down the ID of vb0 into the
whiteboard of u. If it meets a at vertex vb0, then the algo-
rithm terminates. We present the following lemma for the
correctness of Main-Rendezvous.

Lemma 1: Let G = (V, E) be any graph such that δG ≥ √n
holds. Suppose that agent a constructs an (a, δ/8, 2)-dense
set T a in ta rounds. Then, Algorithm Main-Rendezvous

completes rendezvous within ta+O
(√

nΔ
δ

log n
)

rounds with

high probability.

Proof : We say that a vertex v ∈ N+(vb0) ∩ T a is informed
at round t if w(v) = vb0 at t, and define Zt ⊆ N+(vb0) ∩ T a as
the set of all informed vertices at t. Let h = �(1/16)

√
nδ/Δ�

for short. We first show that |Zt | ≥ h holds for t ≥ ta +
8
√

nΔ/δ log n. Let ti be the first time that Zti ≥ i holds, and
Xi be Xi = ti−ti−1 (1 ≤ i ≤ h). By the assumption of δ >

√
n,

we have the following inequality.

h =

⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1
16

√
nδ
Δ

⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≤ 1
16

√
n <

1
16
δ

< |N+(vb0) ∩ T a|.
For any 1 ≤ i ≤ h, the variable Xi follows the geometric
distribution with success probability pi = (|N+(vb0) ∩ T a| −
i + 1)/|N+(vb0)|. Then we have

E[Xi] =
|N+(vb0)|

|N+(vb0) ∩ Ta| − i + 1

≤ |N+(vb0)|
|N+(vb0) ∩ T a| − h + 1

.

This deduces the following bound.

E [th] = ta + E

⎡⎢⎢⎢⎢⎢⎢⎣
�h�∑
i=2

Xi

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ ta +
h∑

i=2

|N+(vb0)|
|N+(vb0) ∩ T a| − h

≤ ta + h
(Δ + 1)
δ/16

≤ ta +

⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1
16

√
nδ
Δ

⎥⎥⎥⎥⎥⎥⎥⎥⎦ 16(Δ + 1)
δ

≤ ta + 2

√
nΔ
δ
.

By Markov’s inequality, the probability of |Zt | < h for t =
ta + 4

√
nΔ/δ is at most 1/2. Thus the probability of |Zt | < h

for t = ta + 8
√

nΔ/δ log n is at most 1/n2.
Assume that |Zt | ≥ h holds for t = ta + 8

√
nΔ/δ log n.

At t or later, the probability that agent a visits an informed
vertex is at least h/|T a|. Bounding the tail bound using
Markov’s inequality, we can conclude that agent a visits at

least one informed vertex by the time ta + O
(√

nΔ
δ

log n
)

with probability 1 − 1/n2 or more. That is, two agents meet

within ta + O
(√

nΔ
δ

log n
)

rounds with probability at least

1 − O(1/n2). Hence, the lemma is proven. �

3.3 Construction of T a

In what follows, we simply say that a vertex is heavy or light
if it is δ/8-heavy or δ/2-light respectively. By Lemma 1,
it suffices that agent a constructs a (a, δ/8, 2)-dense set T a

to achieve rendezvous. The algorithm Construct takes the
role of constructing T a, which utilizes a subroutine called
Sample. The pseudocode of Sample and Construct are
presented in Algorithms 2 and 3 respectively. In algorithm
Construct, agent a manages a set S a ⊆ N+(va0), and itera-
tively adds a vertex to S a. In the following argument, we
refer to the process of adding the i-th vertex to S a as the
i-th iteration. Eventually, the algorithm outputs N+(S a) as
the constructed set T a when it satisfies the termination con-
dition (which is explained later). Let S a

i be the set stored
in S a at the beginning of the i-th iteration, and xi be the ver-
tex added in the i-th iteration. The principle of choosing xi is
very simple: Agent a selects a vertex xi such that the volume
of N+(xi) \N+(S a

i) is large. Specifically, it searches a vertex
w ∈ N+(va0) that is light for N+(S a

i). If such a vertex exists,
it is added to S a

i as xi. Otherwise, any vertex in N+(va0) is
heavy for N+(S a

i), i.e., N+(va0) ⊆ Hδ/8(N+(S a
i)). This im-

plies that N+(S a
i) satisfies (a, δ/8, 2)-dense condition, and

the algorithm can return it as T a. Adding a light vertex to
S a

i increases the cardinality of N+(S a) by at least Θ(δ), and
thus the algorithm Construct obviously terminates within
O(n/δ) iterations (because if N+(S a) = V holds, any vertex
becomes heavy for N+(S a)).

For expanding S a
i by adding a light vertex, the algo-

rithm has to check the heaviness of each vertex in N+(va0)
(for N+(S a

i)). The algorithm Sample takes this role. More
precisely, the run of Sample(Γ, α) probabilistically checks
whether or not each vertex in N+(va0) is α-heavy for Γ
within O(|Γ|/α) rounds. The algorithm outputs the vertex
set consisting of the vertices concluded as α-heavy for Γ. A
straightforward approach of identifying xi in the construc-
tion of T a is to run Sample(N+(S a

i), δ/8) in every iteration.
However, then the total running time of Construct becomes
O((n/δ)2) rounds. To save time, our algorithm finds a light
vertex xi using the following two-step strategy:

• (Step 1) Optimistic decision: In the i-th iteration,
agent a runs Sample(Γ, δ/8) for Γ = N+(S a

i)\N+(S a
i−1).

If it detects that a vertex u ∈ N+(va0) is heavy for Γ,
Proposition 1 guarantees that u is heavy for N+(S a

i) ⊇
Γ. On the other hand, vertex u can be heavy for Γ even
if the algorithm says that u is light. Then adding a ver-
tex u as xi prevents the algorithm from working cor-
rectly as intended.

• (Step 2) Strict decision: To resolve the matter of step
1, agent a checks if the candidates of xi are actually
light for N+(S a

i). More precisely, the agent samples
Θ(log n) vertices uniformly at random from the set out-
put by the run of Sample(Γ, δ/8), and then it checks the

602
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

heaviness of each sample v by actually visiting there
and computing |N+(S a

i) ∩ N+(v)|. If the agent finds a
light vertex from theΘ(log n) samples, that vertex is se-
lected as xi. Otherwise, it finds that a constant fraction
of whole candidates for xi in the optimistic decision is
heavy for N+(S a

i) with high probability. Then the agent
runs Sample(N+(S a

i), δ/8) for strict checking. If a ver-
tex u is found light for N+(S a

i), the agent selects u as
xi. Otherwise, the algorithm terminates.

In the following argument, we refer to the runs of Sam-
ple in step 1 and 2 as optimistic/strict runs of Sample(Γ, α)
respectively. Since the running time of each optimistic run
depends on the size of difference set N+(S a

i) \ N+(S a
i−1), the

total sum of the running time incurred by optimistic runs
is O((n log n)/δ). While each strict run of Sample needs
at most O((n log n)/δ) rounds, we can show that strict runs
are executed at most O(log n) times. It comes from the two
facts that 1) one strict run corrects the identification of a con-
stant fraction of heavy vertices in N+(S a

i) which are wrongly
identified as light ones, and 2) a vertex identified as a heavy
one is never identified as light. Consequently the total run-
ning time of Construct is bounded by O(n log2 n/δ) steps.
We explain the details of Sample(Γ, α) and Construct in the
following paragraphs.

3.3.1 Sample(Γ, α)

For the decision of lightness/heaviness of each vertex in
N+(va0) for Γ, this algorithm conducts random samplings and
visits. The agent uses an array C ⊆ Z|N+(va0)|, which counts
for each u ∈ N+(va0) the number of visited vertices having u
as a neighbor. The initial value of C[u] for each u ∈ N+(va0)
is C[u] = 0. Let l be a threshold value l = �150 ln n�. In
the run of Sample(Γ, α), the agent repeatedly visits a ver-
tex v in Γ chosen uniformly at random (with duplication)
96�|Γ|(ln n)/α� times. At the visited vertex v, it increments
C[u] for each vertex u in N+(va0) ∩ N+(v) (for this process,
the agent carries the information of N+(va0)). After process-
ing all samples, the agent concludes that u is heavy for Γ if
C[u] ≥ l holds, or light otherwise. The algorithm outputs
the vertex set H′ consisting of the vertices concluded as a
heavy one.

3.3.2 Construct

In this algorithm agent a has the following sets as its internal
variables: S a

i , Ri, Hi, and NSa
i . The subscript i corresponds

to the number of iterations in the algorithm. The set Ri is a
set of candidates for xi. The set Hi stores the vertices that
turned out to be (δ/8)-heavy for N+(S a

i) at the i-th iteration.
The variable NSa

i keeps track of the set N+(S a
i). The initial

value of these sets are S a
1 = {va0}, R1 = N+(va0), H1 = ∅,

and NSa
i = N+(va0) respectively. The agent a iterates the

following operations until Ri = ∅. First, the agent executes
the optimistic run of Sample(N+(S a

i) \ N+(S a
i−1), δ/8), and

for the returned set H′ it updates Hi and Ri with Hi+1 ← Hi∪

Algorithm 2 Sample(Γ, α)
l: threshold value l = �150 ln n�

1: for i = 1 to 96
⌈ |Γ| ln n
α

⌉
do

2: choose a vertex v in Γ uniformly at random
3: visit v
4: for all u ∈ N+(v) ∩ N+(va0) do
5: C[u] + +
6: for all u ∈ N+(vz0) do
7: if C[u] ≥ l then
8: H′ ← H′ ∪ {u}
9: return H′

Algorithm 3 Construct
1: while Ri � ∅ do
2: H′ ← Sample(N+(S a

i) \ N+(S a
i−1), δ/8);

3: Hi+1 ← Hi ∪ H′;
4: Ri+1 ← N+(va0) \ Hi+1;
5: if Ri+1 � ∅ then
6: for j = 1 to �4 log n� do
7: choose u j ∈ Ri+1 uniformly at random;
8: visit u j;
9: compute |N+(S a

i) ∩ N+(u j)| using NSa
i ;

10: if u j is δ/2-light for N+(S a
i) then

11: xi ← u j

12: S a
i+1 ← S a

i ∪ {xi};
13: Ri+1 ← Ri+1 \ {xi};
14: break;
15: if Each u j is δ/2-heavy for N+(S a

i) then
16: H′ ← Sample(N+(S a

i), δ/8);
17: Hi+1 ← Hi+1 ∪ H′;
18: Ri+1 ← N(va0) \ Hi+1;
19: if Ri+1 � ∅ then
20: choose any vertex xi ∈ Ri+1;
21: S a

i+1 ← S a
i ∪ {xi};

22: NSa
i ← NSa

i ∪ N+(xi);
23: Ri+1 ← Ri+1 \ {xi};
24: i← i + 1
25: return N+(S a

i)

H′ and Ri ← N+(va0) \ Hi+1. Based on the updated set Ri+1,
the agent randomly chooses �4 log n� vertices from Ri+1 and
visits each sampled vertex. If a visited vertex is actually
light for N+(S a

i) (this is checked by using the information of
NSa

i), then the agent adds it to S a
i as xi. Otherwise, (i.e., all

of the vertices are heavy for N+(va0)), then the agent executes
the strict run of Sample(N+(S a

i), δ/8) and updates the set
Hi+1 and Ri+1 in the same way as the optimistic run. After
that, the agent selects any vertex in Ri+1 and adds it to S a

i .

3.4 Correctness Proof of Algorithm Sample(Γ, α)

Lemma 2 below shows that the algorithm Sample(Γ, α)
probabilistically checks if a vertex u ∈ N+(va0) is approxi-
mately heavy or light for Γ.

EGUCHI et al.: FAST NEIGHBORHOOD RENDEZVOUS
603

Lemma 2: Let α > 0 and Γ ⊆ N+(va0) satisfy |Γ| ≥ α. The
following statements hold for any u ∈ N+(va0) and the output
set H′ of Sample(Γ, α) with probability at least 1 − 1/n8:

1. If u ∈ H′ then u is α-heavy for Γ.
2. if u ∈ N+(va0) \ H′ then u is 4α-light for Γ.

Proof : We prove that 1) if u ∈ N+(va0) is α-light for Γ,
then after the execution of the algorithm, C[u] < l holds
with high probability., and 2) if the vertex u is 4α-heavy
then C[u] ≥ l with high probability. This trivially implies
the lemma. Consider the proof of the first statement. Sup-
pose that u is α-light for Γ. Then we have |N+(u) ∩ Γ| < α.
Let X1 be the random variable corresponding to the value
stored in C[u] after the execution of Sample(Γ, α). Since
X1 follows the binomial distribution B(m, p) with parame-
ter p = |N+(u) ∩ Γ|/|Γ| < α/|Γ| and m = 96�(|Γ| ln n)/α�,
E[X1] ≤ 96�(|Γ| ln n)/α� · α/|Γ| ≤ (96 ln n) + 1 holds. Let
μ1 = (96 ln n) + 1 for short. Using Chernoff bound, we have

Pr[X1 ≥ l] ≤ Pr[X1 ≥ (1 + 1/2)μ1]

≤ e−μ1/(3·22) ≤ 1/n8.

We next consider the second statement. Suppose that
u is 4α-heavy for Γ. Then we have |N+(u) ∩ Γ| ≥ 4α.
Similarly, with the first proof, we define the random vari-
able X2 corresponding the value of C[u] after the execu-
tion of the algorithm. Since it follows the binomial distri-
bution B(m, p) with the same parameter as the first proof,
we have E[X] ≥ 96�(|Γ| ln n)/α� · (4α/|Γ|) ≥ 96((|Γ| ln n)/α) ·
(4α/|Γ|) ≥ 384 ln n. Letting μ2 = 384 ln n, Chernoff bound
provides the following inequality.

Pr[X2 ≤ l] ≤ Pr[X2 ≤ (1 − 1/2)μ2]

≤ e−μ2/(3·22) ≤ 1/n8.

Thus, the lemma is proven. �

The next corollary immediately implies the correctness
of algorithm Sample(Γ, α), which is obtained by Lemma 1
and the standard union-bound argument.

Corollary 1: Consider any call of Sample(Γ, α). If |Γ| ≥
α, then H′ ⊆ Hα(Γ) and N+(va0) \ H′ ⊆ L4α(Γ) hold with
probability at least 1 − 1/n7.

Note that the running time of the algorithm Sample(Γ, α) is
O(Γ ln n

α
).

3.5 Correctness Proof of Algorithm Construct

Now we turn to the analysis of the algorithm Construct. Our
first goal of this analysis is to show that the algorithm Con-
struct constructs a desired (a, δ/8, 2)-dense set T a in O(n/δ)
iterations. As we stated at the description of the algorithm
(in Sect. 3.3), the key observation for this goal is that in each
iteration the algorithm adds a light vertex xi to S i. We show
this observation in Lemma 4. Before proving Lemma 4, we
state auxiliary lemma, which proves any strict run of the al-
gorithm divides N+(va0) into a set Ri of light vertices and a

set Hi of heavy vertices with high probability. This lemma
shows that the algorithm selects light vertex xi in each strict
run of the algorithm.

Lemma 3: If the strict run occurs at the i-th iteration,
Ri ⊆ Lδ/2(N+(S a

i−1)) and Hi ⊆ Hδ/8(N+(S a
i−1)) hold with

probability at least 1 − O(1/n7).

Proof : Since S a
i is nonempty and its cardinality is mono-

tonically increasing, we have |S a
i | ≥ 1, and thus Γ =

N+(S a
i) ≥ δ holds at the beginning of the strict run at the

i-th iteration. This implies |Γ| ≥ α = δ/8. By Corollary 1,
Ri ⊆ Lδ/2(N+(S a

i−1)) and Hi ⊆ Hδ/8(N+(S a
i−1)) holds with

probability at least 1 − 1/n7. �

Lemma 4: For any i, xi is δ/2-light for N+(S a
i) with prob-

ability at least 1 − O(1/n7).

Proof : We first consider the case that xi is added without
strict runs. In this case, agent a directly visits xi and checks
its heaviness. Hence, the lemma obviously holds. We next
consider the case that xi is added after the strict run. By
Lemma 3, Ri+1 ⊆ Lδ/2(N+(S a

i)) holds with probability at
least 1 − 1/n7. Thus any vertex v ∈ Ri+1 is δ/2-light for
N+(S a

i). Hence, the lemma holds. �

Now we show that in each iteration Hi+1 ⊆
Hδ/8(N+(S a

i)) holds.

Lemma 5: For any i ∈ [1, n − 1], let Yi be the indica-
tor random variable taking Yi = 1 if and only if Hi+1 ⊆
Hδ/8(N+(S a

i)) holds. Then we have Pr
[⋂n

i=1 Yi = 1
]
≥ 1 −

O(1/n6).

Proof : Since S a
i is nonempty and its cardinality is mono-

tonically increasing, we have |S a
i | ≥ 1, and thus Γ =

N+(S a
i) ≥ δ holds at the beginning of the strict run in the i-th

iteration. It implies |Γ| ≥ α = δ/8. By Lemma 4, |N+(S a
i−1)∩

N+(xi)| < δ/2 holds, and then we have |N+(S a
i−1) \ N+(xi)| ≥

δ/2 > α. Hence any call of Sample satisfies the assumption
of Corollary 1 with probability at least 1−3/n7. Since Sam-
ple is called at most O(n) times, a standard union-bound ar-
gument provides the lemma. �

By using Lemma 5, we prove that the algorithm even-
tually finds a (a, δ/8, 2)-dense set T a in Lemma 6. We also
prove the upper bound for the number of iterations of the
algorithm.

Lemma 6: Algorithm Construct outputs a (a, δ/8, 2)-
dense set T a within O(n/δ) iterations with probability at
least 1 − O(1/n5).

Proof : Let T a = N+(S a
j). That is, the algorithm terminates

at the j-th iteration. First we show that T a is (a, δ/8, 2)-
dense. Since S a

i ⊆ N+(va0) holds, the first and second condi-
tions of (a, δ/8, 2)-dense condition are obviously satisfied.
Consider the third condition. By definition, two sets Ri

and Hi are always a partition of N+(va0). Thus we obtain
Hj = N+(va0) because Rj = ∅ holds. Lemma 5 implies that
N+(va0) = Hj ⊆ Hδ/8(N+(S a

j)) holds. That is, T a = N+(S a
j)

satisfies the third condition.

604
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

We next show that the event Ri = ∅ occurs within
O(n/δ) iterations. By Lemma 4, |N+(xi) \ N+(S a

i−1)| ≥ δ/2
holds for any xi. Then we have |N+(S a

j)| ≥ jδ/2. Due
to the trivial upper bound of |N+(S a

j)| ≤ n, we obtain
j ≤ 2n/δ = O(n/δ). The success probability of the lemma is
derived from taking the union bound for at most O(n) appli-
cations of Lemmas 4 and 5. �

We analyse the time complexity of the algorithm Con-
struct.

Lemma 7: The total running time of Construct is
O(n log2 n/δ) time with probability at least 1 − O(1/n3).

Proof : We first bound the total running time incurred by
the part of optimistic decision. Assume that T a is con-
structed at the j-th iteration. For each 1 ≤ i ≤ j − 1,
the optimistic run of Sample(N+(xi) \ N+(S a

i), δ/8) takes
96�|(N+(xi) \ N+(S a

i)| ln n/δ� rounds. Hence, the total run-
ning time is bounded by

r∑
i=1

96

⌈ |N+(xi) \ N+(S a
i)| ln n

δ

⌉
≤ O

⎛⎜⎜⎜⎜⎝N+(S a
j) log n

δ

⎞⎟⎟⎟⎟⎠
= O

(
n log n
δ

)
.

We next consider the time complexity caused by the
part of strict decision. We show that Sample is executed as
a strict run at most O(log n) times. It is sufficient to prove
that at least a constant fraction of Ri is moved to Hi+1 with
high probability if the strict run occurs at the i-th iteration.
In each i-th iteration, let gi be the number of (δ/8)-heavy
vertices for N+(S a

i). We show that gi/|Ri| ≥ 1/2 holds if
the agent samples no light vertex from Ri in the strict run of
Sample. Consider the case of gi/|Ri| < 1/2. Then the prob-
ability that the agent samples a δ/8-heavy vertex is at most
1/2. Thus, the probability that all of the sampled vertices
are δ/8-heavy is at most (1/2)�4 log n� ≤ 1/n4. Conversely, if
all of the sampled vertices are δ/8-heavy, gi/|Ri| ≥ 1/2 holds
with probability at least 1−1/n4. By Lemma 3, the strict run
of Sample in the i-th iteration moves all the δ/8-heavy ver-
tices in Ri to Hi+1 with high probability. Then at least a half
of the elements in Ri are deleted. Since the cardinality of
Ri never increases, the number of calls to Sample as a strict
run is at most O(log n) times with high probability. Each
strict run takes O((|N+(S a

i)| log n)/δ) rounds, and thus the to-
tal running time of Construct is bounded by O((n log2 n)/δ).
The success probability of the lemma is obtained by taking
union bounds on O(log n) applications of Lemma 3. �

Finally, we obtain the main lemma of Construct.

Lemma 8: Algorithm Construct outputs T a satisfying
(a, δ/8, 2)-dense condition in O(n log2 n/δ) rounds with
probability at least 1 − O(1/n3).

The combination of this lemma and Lemma 1 deduces
the correctness of our rendezvous algorithm.

Theorem 1: Let G = (V, E) be any graph such that δG ≥

√
n holds. There is an algorithm that completes rendezvous

within O
(

n
δ

log2 n +
√

nΔ
δ

log n
)

rounds with high probabil-

ity.

4. Discussion

4.1 Removing the Assumption of Min-Degree Knowledge

In the algorithm presented in Sect. 3.3, we suppose that
agents know a constant factor approximation of δ. This
assumption can be easily removed by a simple doubling-
estimation mechanism. Precisely, in the construction of T a

(which is the only part of the algorithm using δ), agent a
initially sets δ′ to the half of the degree of va0. If the agent
visits a vertex whose degree is less than δ′, then it restarts
the procedure of Construct after halving δ′. Note that we
do not have to restart agent b for synchronization because
its behavior (in Main-rendezvous) is inherently oblivious
(i.e., iteratively marking neighbors). Eventually the proce-
dure terminates without restarting when δ′ < δG is satisfied.
Since the running time of Construct is O((n log2 n)/δ′), the
doubling update of δ′ does not incur any extra asymptotic
cost. That is, if the estimation of δ′ starts from a range
[2 j, 2 j+1], the total running time is bound as follows:∑

�log δ�≤ j′≤ j

O(n log2 n/2 j′)

= O(n log2 n/δ) ·
(
1 +

1
2
+ · · · + 1

2 j−�log δ�

)

= O

(
n log2 n
δ

)
.

Corollary 2: The modified algorithm stated above outputs
T a (equivalently, N+(S a

i)) satisfying (a, δ′/8, 2)-dense set in
O(n log2 n/δ′) rounds with probability at least 1 − O(1/n3).

4.2 Algorithm without Using Whiteboards

In this subsection, we present a rendezvous algorithm
Rendezvous-without-Whiteboard that does not use white-
boards, under the assumption that nodes are tightly named
(that is, n′ = O(n)). We present the pseudo-code of the al-
gorithm in Algorithm 4. This algorithm assumes that agents
know the value of n′ and the minimum degree δ, but the
minimum-degree assumption can be removed by the tech-
nique in Sect. 4.1. In this algorithm, agent a first constructs
a set T a ⊆ N+(N+(va0)) in the same way as the original
one (recall that Construct does not use whiteboards). In
order to synchronize the iterative probings of vertices by
both agents, they start Rendezvous-without-Whiteboard at
round t′ = c1n′ log2 n/δ for sufficiently large constant c1

such that the construction of T a finishes by round t′.
We define several notations. We denote the ID space

{1, . . . , n′} by SID. For any integer β, we define the β-
partition {I1 . . . , I�n/β�} of SID as Ii = [(i − 1)β + 1, iβ]} for

EGUCHI et al.: FAST NEIGHBORHOOD RENDEZVOUS
605

all i. The goal of the algorithm is that for an appropriate
β, the agents a and b respectively construct Φa ⊆ T a and
Φb ⊆ N+(vb0) satisfying the following properties with high
probability:

• (intersection) |Φa ∩ Φb| ≥ 1.
• (sparseness) There exists some constant c2 such that
|Φa ∩ Ii| ≤ c2 log n and |Φb ∩ Ii| ≤ c2 log n hold for any
i ∈ [1, �n/β�].

We first present the construction of Φa and Φb satisfying the
properties above. For each v ∈ T a, agent a adds v into Φa

with probability 4 ln n/
√
δ. Similarly, for each v ∈ N+(vb0),

agent b adds v into Φb with probability 4 ln n/
√
δ. Then

we can guarantee with high probability that Φa and Φb sat-
isfy the intersection property, and also satisfy the sparseness
property for β = � √δ� and c2 = 18.

We explain how rendezvous is achieved by using two
sets Φa and Φb. The agents a and b iterate the following op-
erations for all i = 1, 2, . . . , �n/√δ� (referred as i-th phase
of agents a and b). The i-th phase consists of �4c2 ln n�2
rounds, and starts at round t′ + (i− 1)�4c2 ln n�2 + 1. In the i-
th phase, agent a visits each vertex v j ∈ Φa ∩ Ii in ascending
order of its ID, and waits �4c2 ln n� rounds at each visited
vertex. After visiting all the vertices in Φa ∩ Ii, the agent
waits at the initial position until round t′ + i�4c2 ln n�2 to
synchronize the next phase. The behavior of agent b is sim-
ilar to that of a. It visits each vk ∈ Φb ∩ Ii in ascending order
of its ID. The agent b waits at each visited vertex for two
rounds. Agent b repeats this process �4c2 ln n� times. Then
it waits on the initial position until t′ + i · �4c2 ln n�2 rounds.
We can show that agents a and b attain rendezvous in Il such
that Φa ∩ Φb ∩ Il � ∅ holds. The total time complexity is
O((n/β) · log2 n) = O((n log2 n)/

√
δ) rounds.

Theorem 2: Algorithm Rendezvous-without-Whiteboard

achieves rendezvous in O
(
t′ + n√

δ
log2 n

)
rounds with prob-

ability at least 1 − O(1/n2).

Proof : First, we show that Φa and Φb satisfy the inter-
section property. By the independence of the probabilistic
choices of agents a and b, any node in T a ∩ N+(vb0) is con-
tained in both Φa and Φb with probability (4 ln n/

√
δ)2 =

(4 ln n)2/δ. Hence the probability p that |Φa ∩ Φb| = 0

is upper bounded by p ≤
(
1 − (4 ln n)2

δ

)δ/8 ≤ e−2 ln2 n ≤ 1
n2 .

That is, the intersection property is satisfied with high prob-
ability. Next, we show that Φa and Φb satisfy the sparse-
ness property. For any i ∈ [1, �n/√δ�], let Ya

i be the num-
ber of vertices in N+(va0) ∩ Ii. Then we have E[Ya

i] ≤
�√δ� · 4 ln n/

√
δ ≤ 9 ln n. Applying the Chernoff bound,

the probability Pr[Ya
i ≥ 18 log n] is upper bounded by

Pr[Ya
i ≥ 18 ln n] ≤ Pr[Ya

i ≥ (1 + 1)9 ln n] ≤ e−3 ln n ≤ 1
n3 .

By taking union bound over all i ∈ [1, �n/√δ�], a, and b,
the probability that Φa and Φb do not satisfy the sparseness
property is at most 3/n2.

Finally, we show that ifΦa andΦb satisfy the two prop-
erties, then rendezvous is achieved within O((n log2 n)/

√
δ)

Algorithm 4 Rendezvous-without-Whiteboards
Operations of Agent A

1: Construct
2: wait until t = c1

(
n′ log2 n
δ

)
3: for all u ∈ T a do
4: Φa ← Φa ∪ {u} with probability 4 log n√

δ

5: for i = 1 to �n/√δ� do
6: for all u ∈ Φa ∩ Ii do
7: visit u
8: wait on u until �4c2 log n� time (including the

round moving to u)
9: return to va0

10: wait on va0 until time c1

(
n′ log2 n
δ

)
+ i�4c2 log n�2

Operations of Agent B
1: for all u ∈ N+(vb0) do
2: Φb ← Φb ∪ {u} with probability 4 log n√

δ

3: wait until t = c1

(
n′ log2 n
δ

)
4: for i = 1 to �n/√δ� do
5: for j = 1 to �4c2 log n� do
6: for all u ∈ Φb ∩ Ii do
7: visit u
8: wait two time units on vb0
9: return to vb0

10: wait on vb0 until t = c1

(
n′ log2 n
δ

)
+ i�4c2 log n�2

rounds. We consider the l-th part such that |Il∩Φa∩Φb| ≥ 1
holds. Let r be any vertex in |Il ∩ Φa ∩ Φb|, and s be the
order of r in Φa ∩ Il following IDs. By the definition of
the algorithm, both a and b starts phase l at round t′ + (l −
1)�4c2 ln n�2 + 1. In addition, the time when agent a stays at
r is from round t′ + (i − 1)�4c2 ln n�2 + (s − 1)�4c2 ln n� − 2
to t′ + (i− 1)�4c2 ln n�2 + s�4c2 ln n� − 2. During that period,
agent b visits all the nodes in Φb ∩ Il. That is, rendezvous is
achieved. �

4.3 Achieving Rendezvous for d ≥ 2

Since both Main-Rendezvous and Rendezvous-without-
Whiteboard presented above work correctly under the as-
sumption of d = 1, there is no guarantee to achieve ren-
dezvous when d > 1. Fortunately, we can make these algo-
rithms work for general d ≥ 1 by combining the algorithms
with the following termination detection scheme and a graph
exploration algorithm. Roughly speaking, when one of the
agents (more precisely, agent b in our algorithms) detects the
fail of the algorithm of d = 1, it conducts the standard DFS
algorithm taking O(n) rounds, for finding the initial location
of another agent (i.e., agent a). Since agent a periodically
moves back its initial location. The rendezvous is achieved
by making b stay at the initial location of a. The whole al-
gorithm achieves the sublinear-time rendezvous for d = 1,

606
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

and also achieves the rendezvous in O(n log2 n) rounds for
general d > 1 with high probability. Note that these al-
gorithms are nearly optimal up to poly-logarithmic factor
because we prove Ω(n)-round lower bound for the case of
d = 2 in Sect. 5.

The termination detection of the algorithms are as fol-
lows. Recall that in the algorithm, the agent b repeatedly
visits neighbors of initial position until rendezvous. We
add operations that the agent memorizes these visited neigh-
bors in the whiteboard of the initial location, and the agent
checks if it visits all neighbors. When the agent finds that
it visits all neighbors (and does not achieved rendezvous),
then it concludes that d > 1, and proceeds to the graph
exploration. The time spent in this detection process is
O(|N(v)| log n) = O(n log n) rounds with high probability,
which is obtained by the standard coupon collector argu-
ment.

For exploring the graph by agent b, we apply the
Depth-First Search (DFS) algorithm, which roughly de-
scribed as follows: The exploring agent at current vertex
v searches an unvisited neighbor in N(v), and if it is found,
the agent moves to the vertex (i.e., forward); otherwise, the
agent returns to the (neighboring) vertex from which the
agent visits v first (i.e., backtrack). Obviously, the number
of forward and backtrack movements are respectively upper
bounded by n. Hence the crucial point of time complexity is
that spent for checking if an unvisited vertex exists in N(v) or
not. In our setting, each agent has enough memory to mem-
orize the whole visited vertices, and it also has the capabil-
ity of knowing neighborhood IDs. Therefore the exploring
agent can search an unvisited vertex locally by storing all
visited vertices in its memory. Thus the time complexity of
the DFS algorithm is O(n) rounds in our setting. The pre-
cise implementation of the DFS algorithm in the setting of
mobile agent systems is given in [32].

5. Impossibility for Sub-Linear Time Rendezvous

In this section, we show four impossibility results for
sublinear-time rendezvous, which respectively concern the
four unconventional assumptions of our algorithm, namely,
bounded minimum degrees, accessibility to neighborhood
IDs, initial distance one, and randomization. In each proof,
we show the impossibility results in the models relaxing the
corresponding assumption. We define some terminologies
used in the proofs. Given a graph G and an algorithmA, let
X̂(G, a, v, f (n)) be the random variable representing the set
of vertices visited by agent a initially at vertex v in G in the
first consecutive f (n) rounds. While this is an illegal run be-
cause b is not in the graph, but can identify the (probabilis-
tic) set of vertices a visits. Also, we define X(G, a, v, f (n))
to be the vertex set defined as X(G, a, v, f (n)) = {x ∈
V(G) | Pr[x ∈ X̂(G, a, v, f (n))] ≤ 1/4}.

5.1 Lower Bound in the Case of Bounded Minimum De-
grees

First, we show that there is a graph instance with minimum
degree δ = o(

√
n) and Δ = ω(

√
n) such that any algorithm

needs Ω(Δ) rounds for neighborhood rendezvous. Precisely,
theΩ(n/δ)-round lower bound is obtained in the graphs with
δ = o(

√
n) and Δ = Ω(

√
n).

Theorem 3: Letting δ = o(
√

n) and Δ = ω(
√

n), the
(Δ, δ, 1)-rendezvous problem has a class of instances where
any rendezvous algorithm takesΩ(Δ) rounds with a constant
probability. In particular, the (n/2, 1, 1)-rendezvous prob-
lem has a class of instances where any rendezvous algorithm
takes Ω(n) rounds with a constant probability.

Proof : We first consider the case of Δ = n/2 and δ = 1 for
simplicity of argument. Suppose for contradiction that an al-
gorithm A achieves rendezvous within f (n) = o(n) rounds
with high probability for the (n/2, 1, 1)-rendezvous prob-
lem. Assume that n is a multiple of 4 for simplicity, and let
[1, n] be the domain of vertex IDs. First, we consider a star
graph S 1(j) of n/2+1 vertices, where the ID of the center is
j ∈ [n/2+1, n], and IDs of all leaves are from [1, n/2]. In this
graph we put agent a at the center vertex j, and runA during
f (n) rounds. It is easy to verify |X(S 1(j), a, j, f (n))| > n/4
because f (n) is sublinear of n. Next, we consider a star
graph S 2(k) of n/2+1 vertices that consists of the center ver-
tex with ID k ∈ [1, n/2] and leaf sets with IDs [n/2+1, n]. It
also satisfies |X(S 2(k), b, k, f (n))| > n/4. Now we consider a
directed bipartite graph G′ = ([1, n/2], [n/2 + 1, n], E). The
edge set E is defined as E = {(h, i) | h ∈ X(S 1(i), a, i, f (n))∨
h ∈ X(S 2(i), b, i, f (n))}. Since we have |X(S 1(i), a, i, f (n))| >
n/4 and |X(S 2(i), b, i, f (n))| > n/4 for all i, the total number
of directed edges is more than (n/2 · n/4) · 2 = n2/4. This
means that there exists at least one pair (j, k) such that both
(j, k) and (k, j) are contained in E. We consider the graph
that consists of two star graphs of n/2 + 1 vertices sharing
an edge (Fig. 1 (a)). The IDs of the two center vertices are j
and k, and the IDs of j’s leaves are from [n/2 + 1, n] \ {k},
and those of k’s leaves are from [1, n/2]\ { j}. The edge (j, k)
connects the two centers. In this graph, when we execute
the algorithm A locating the two agents at j and k respec-
tively, it is guaranteed that each agent does not pass through
edge (j, k) in the first consecutive f (n) rounds with proba-
bility at least 1/4. That is, the algorithm does not achieve
rendezvous within f (n) rounds with probability at least 1/2.
This is a contradiction.

The general case can be proven in the same way as the
argument above. The only difference is to change the degree
of the center vertex to Δ and replace all the leaves of star
graphs with a clique of size s = n−2

2Δ = Ω(n/Δ) = Ω(δ) where
exactly one vertex is adjacent to the center (Fig. 1 (b)). That
graph obviously satisfies the constraint of min/max degrees,
and the proof above also applies to it. �

EGUCHI et al.: FAST NEIGHBORHOOD RENDEZVOUS
607

Fig. 1 Proof of Theorem 3

5.2 Lower Bound in the Case of the No Accessibility to
IDs of Neighborhood Vertices

Next, we show that any algorithm solving the (Θ(n),Θ(n), 1)-
rendezvous problem requires Ω(n) rounds in the worst case
if agents have no access to IDs of neighborhood vertices.

Theorem 4: Let n be even, n ≥ 6, δ = n/2 − 1 and
Δ = n/2 − 1, and assume that any agent has no access to
neighborhood IDs. Then there exists an instance of (Δ, δ, 1)-
rendezvous problem where any rendezvous algorithm takes
Ω(Δ) rounds with a constant probability.

Proof : Suppose for contradiction that an algorithm A
achieves rendezvous within f (n) = o(n) rounds with high
probability for the (n/2 − 1, n/2 − 1, 1)-rendezvous prob-
lem. We first consider two cliques C1 and C2 of n/2 ver-
tices where each vertex has an arbitrary ID. Let agent a be
located at va0 in the clique C1, and let agent b be located
at vb0 in the clique C2. As the proof of Theorem 3, we
make agents a and b execute algorithm A in each clique.
By the assumption of f (n) = o(n), it is easy to verify
that |X(C1, a, va0, f (n))| > n/4 and |X(C2, b, vb0, f (n))| > n/4
holds. Now we select vertices x1 ∈ X(C1, a, va0, f (n)) and
x2 ∈ X(C2, b, vb0, f (n)). Let j = P̂−1

va0
(x1), k = P̂−1

vb0
(x2),

j̄ = P̂−1
x1

(va0), and k̄ = P̂−1
x2

(vb0). We construct a graph G
by removing edges (va0, x1) and (vb0, x2) from C1 and C2 re-
spectively, and adding the edges (va0, v

b
0) and (x1, x2). The

local port number of those edges are defined as P̂−1
va0

(vb0) = j,

P̂−1
vb0

(va0) = k, P̂−1
x1

(x2) = j̄, and P̂−1
x2

(x1) = k̄. The construc-

tion is illustrated in Fig. 2. Consider the f (n)-round run of
A in G where two agents a and b start from va0 and vb0 re-
spectively. Since va0 and vb0 are connected by an edge, this is
an instance of the (n/2 − 1, n/2 − 1, 1)-rendezvous problem.

Fig. 2 Proof of Theorem 4

Since x1 ∈ X(C1, a, va0, f (n)), agent a visits x1 or vb0 with
probability at most 1/4. Similarly, b also visits x2 or va0 with
probability at most 1/4. This implies that with probability at
least 1/2 no agent moves along edge (va0, v

b
0) or (x1, x2), that

is, rendezvous is not achieved at round n/2 with a constant
probability. This is a contradiction. �

5.3 Lower Bound in the Case of the Distance Two of Ini-
tial Locations

Next, we show that the lower bound for the (Θ(n),Θ(n), 2)-
rendezvous problem.

Theorem 5: Let n be odd, Δ = n − 1 and δ = (n − 1)/2.
(Δ, δ, 2)-rendezvous problem has a graph instance where any
algorithm takes Ω(Δ) rounds with a constant probability.

Proof : Suppose for contradiction that an algorithm A
achieves rendezvous within f (n) = o(n) rounds with high
probability for the (n − 1, (n − 1)/2, 2)-rendezvous prob-
lem. We first consider (n + 1)/2 cliques C1,C2, . . . ,C(n+1)/2

of (n + 1)/2 vertices, where the i-th vertex set is V(Ci).
The IDs of the vertices of each clique Ci are assigned
from

[
n+1

2 (i − 1) + 1, n+1
2 i

]
respectively for all i ∈ [1, n+1

2].
Suppose that agent a executes algorithm A in each clique
Ci with an arbitrary initial location ci ∈ V(Ci). By
the assumption of f (n) = o(n), it is easy to verify that
|X(Ci, a, ci, f (n))| > (n + 1)/4. Let V ′ a vertex set that ob-
tained by picking up one vertex wi ∈ |X(Ci, a, ci, f (n))| for
all i ∈ [1, n+1

2], and we construct a clique C′ consisting of
(n + 1)/2 vertices whose IDs come from V ′. Suppose that
agent b executes algorithm A in C′ with an arbitrary initial
location c′ ∈ V(C′). It also satisfies |X(C′, b, c′, f (n))| >
(n + 1)/4 because f (n) is sublinear of n. We pick up any
vertex x ∈ X(C′, b, c′, f (n)). Letting Ck be the clique con-
taining the vertex x, we construct the graph G consisting of
two cliques C′ and Ck sharing x (Fig. 3). Consider the f (n)-
round run ofA in G where a and b respectively start from ck

and c′. This is an instance of (n−1, (n−1)/2, 2)-rendezvous
problem. Since x ∈ X(Ck, a, ck, f (n)) ∩ X(C′, b, c′, f (n))
holds, a and b do not visit x with probability at least 1/4.
That is, they cannot attain the rendezvous within f (n) rounds
at least with probability 1/2. This is a contradiction. �

608
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

Fig. 3 Proof of Theorem 5

5.4 Lower Bound for Deterministic Algorithms

We show that any deterministic algorithm solving the
(Θ(n),Θ(n), 1)-rendezvous problem requires Ω(n) rounds in
the worst case. First, we outline the proof strategy. Suppose
for contradiction that an algorithmA solves (Θ(n),Θ(n), 1)-
rendezvous problem within o(n) rounds. In the proof, we
adaptively construct the hard-core instance according to the
behavior of A: We start the construction with the two star
graphs whose centers are the initial locations of two agents,
and consider the run of A in that graph. When the agent
moves to an unvisited vertex, we adaptively fix its neigh-
borhood vertices. More precisely, the graph construction
roughly follows the process below: We select in advance
Ω(n) vertices as a pool, and if an agent moves to an unvis-
ited vertex with degree o(n), we select Ω(n) vertices from
the pool as neighbors. This construction provides two in-
dependent graphs respectively associated with two agents.
Finally, we carefully glue them in the way of guaranteeing
the initial distance one and minimum degree Ω(n), which
becomes the instance yielding Ω(n)-round lower bound.

We define some notations for explaining the details.
Let n be a multiple of 32 for simplicity. As we stated, our
proof first constructs two instances (for two agents) sep-
arately. By symmetry we only focus on the instance for
agent a. We select an arbitrary ID space IDa whose size
is n/2 + 1 for the instance of agent a, and fix an initial ver-
tex va0 ∈ IDa. Let Qa

t (A,G, va0) = {va0, va1, . . . , vat }. That is,
Qa

t (A,G, va0) is the set of vertices visited by agent a in the
execution of A starting from va0 in G up to round t. We
also define the sequence S a

t (A,G, va0) = (va0, v
a
1, . . . , v

a
t) of the

vertices in Qa
t (A,G, va0) with order. Given A, G = (V, E),

va0 and a round r ≥ 0, we can construct the execution
spanning subgraph Ĝa

r (A,G, va0) = (V̂ , Ê) such that V̂ =
N+G(Qa

r (A,G, va0)) and Ê = {(u, v) | u ∈ Qa
r (A,G, va0)∧(u, v) ∈

E}. Intuitively, Ĝa
r (A,G, va0) represents the substructure of

G seen by agent a in the execution of A starting from va0
up to round r. Now we assume any graph G′ such that
Ĝa

r (A,G, va0) = Ĝa
r (A,G′, va0) holds. It is obvious that the

behavior of a in G′ starting from va0 is completely same as
that in G up to round r+ 1, and thus we obtain the following

proposition.

Proposition 2: Assume for any G,G′, we have Ĝa
r (A,G,

va0) = Ĝa
r (A,G′, va0). Then, S a

r+1(A,G, va0) = S a
r+1(A,G′, va0)

holds.

We show the lemma below, which is a key observation
of our lower bound proof.

Lemma 9: Let A be any algorithm terminating within t ≤
n/32 rounds. Suppose that IDa and va0 is given. There exists
a graph G containing a vertex subset W ⊆ NG(va0) of size at
least 13n/32 such that (i) (Qa

t (A,G, va0) \ {va0}) ∩ N+G(W) = ∅
holds, and (ii) for each vertex w ∈ V(G) \ (N+G(W) \ {va0}),|NG(w)| = Θ(n) holds.

Proof : We adaptively construct the graph G according to
the agent a’s movement. Precisely, we incrementally fix the
sequence of graphs G0,G1, . . . ,Gt such that for each r ∈
[0, t − 1], S a

r+1(A,Gr, v
a
0) = S a

r+1(A,Gr+1, v
a
0) is guaranteed.

The vertex set of each Gi is common, which is denoted by
V , and equal to IDa (i.e., V = IDa). Let P ⊆ V \ {va0} be an
arbitrary subset of size 7n/16, and P = V \P. We also define
E0 = {(va0, u) | u ∈ IDa \ {va0}} ∪ {(u, v) | u, v ∈ P∧ u � v}. For
all r ≥ 0, the algorithmA outputs the vertex var+1 ∈ NGr (v

a
r),

as the destination of the movement at round r. Let Qr =

Qa
r (A,Gr, v

a
0) for short. There are following two cases:

• var+1 ∈ Qr ∪ P.
• var+1 � Qr ∪ P (that is, var+1 ∈ P \ Qr).

If var+1 ∈ Qr ∪ P holds, we simply fix Gr+1 = Gr (i.e.,
Er+1 = Er). Otherwise, we construct Er+1 by adding to Er

the edges from var+1 to all the vertices in P\Qr. In the follow-
ing argument, we show S a

r+1(A,Gr, v
a
0) = S a

r+1(A,Gr+1, v
a
0)

holds for any r ∈ [0, t − 1] by the induction on r. In the base
case of r = 0, we have Q0 = {va0} and S a

0(A,G0, v
a
0) = (va0).

The algorithm outputs the vertex va1 as the destination of the
movement in G0 at round r = 0. In any case of updating
rules, we can confirm that Ĝa

0(A,G0, v
a
0) = Ĝa

0(A,G1, v
a
0).

Therefore the vertex va1 in G0 coincides with the one in G1

and we have S a
1(A,G0, v

a
0) = S a

1(A,G1, v
a
0). In the case of

r > 1, assume that we are given Gr. The algorithm outputs
the vertex var+1 as the destination of the movement in Gr at
round r. If var+1 ∈ Qr ∪ P, then Gr = Gr+1 holds, we have
S r+1(A,Gr, v

a
0) = S r+1(A,Gr+1, v

a
0). Otherwise, since we

add edges between unvisited vertices (from var+1 ∈ P \ Qr to
each u ∈ P \Qr), it follows Ĝa

r (A,Gr, v
a
0) = Ĝa

r (A,Gr+1, v
a
0).

Then by proposition 2, S a
r+1(A,Gr, v

a
0) = S a

r+1(A,Gr+1, v
a
0)

hold.
We set P \ Qt = W (that is, the vertices in P not

visited by round t). Finally, we show that Gt has the de-
sired property of the lemma. Since the agent visits to
the vertices in P at most t = n/32 times, the size of W
is at least 7n/16 − n/32 = 13n/32. Since W is the set
of vertices which are unvisited by agent a in the execu-
tion of A in Gt, by the updating rules of the graphs, each
vertex in W is only connected to va0. Therefore we have
(Qa

t (A,G, va0) \ {va0}) ∩ N+G(W) = ∅. Since P is a clique

EGUCHI et al.: FAST NEIGHBORHOOD RENDEZVOUS
609

in G0 (and thus in Gt), for each vertex u ∈ P, we have
|NGt (u)| ≥ n/16 − 1 = Θ(n). For each vertex u ∈ P ∩ Qr, the
size of P \ Qr is at least n/16 − n/32 = n/32 at any round
r ∈ [0, t], and thus we have |NGt (u)| ≥ n/32 = Θ(n). �

By the proposition and the lemma, we can construct
the hard-core instance for the deterministic algorithm. In
the proof, we apply Lemma 9 several times according to the
agent IDs and initial positions va0, v

b
0. Therefore in the proof

we add subscripts of agent IDs and initial vertices to G and
W constructed by the lemma, as G(a,va0) and W(a,va0).

Theorem 6: For Δ = Θ(n) and δ = Θ(n), the (Δ, δ, 1)-
rendezvous problem has a graph instance where any deter-
ministic algorithm takes Ω(Δ) rounds with probability one.

Proof : Suppose for contradiction that a deterministic al-
gorithm A achieves rendezvous within f (n) = n/32 rounds
for the (Δ, δ, 1)-rendezvous problem of Δ = Θ(n) and δ =
Θ(n). Let [1, n] be the domain of vertex IDs.

We select [1, n/2] and j ∈ [n/2 + 1, n] as the ID space
of the execution of the agent a, denoted by IDa. We choose
va0 = j as the initial vertex of a, and construct G(a, j) by us-
ing Lemma 9. Similarly, we adaptively construct the graph
instance according to the agent b’s moves alone. We select
[n/2 + 1, n] and k ∈ [1, n/2] as the ID space, denoted by
IDb. We choose vb0 = k as the initial vertex of b, and con-
struct G(b,k) by also using Lemma 9.

Now we consider a directed bipartite graph G′ =
([1, n/2], [n/2 + 1, n], E). The edge set E is defined as
E = {(x, y) | (x = j ∧ y ∈ W(a, j)) ∨ (x = k ∧ y ∈ W(b,k)))}
for all j and k. Since we have |W(a, j)| ≥ (13/32)n > n/4 and
|W(b,k)| ≥ (13/32)n > n/4 for all j and k, the total number of
directed edges is more than (n/2·n/4)·2 = n2/4. This means
that there exists at least one pair (j, k) such that both (j, k)
and (k, j) are contained in E. Finally we construct the whole
graph instance. Prepare Ga, j and Gbk as the subgraphs of the
constructed instance. Then we add an edge between j and k.
We augment edges between any vertices in W(a, j) \ {k} and in
W(b,k) \{ j} respectively. By the condition (ii) of Lemma 9, it
is easy to verify that the minimum degree of the constructed
instance is Θ(n). In this graph, consider the execution of A
where two agents a and b are respectively located at j and k.
By the condition (i) of Lemma 9, it is guaranteed that each
agent does not pass through edge (j, k) in the first consec-
utive n/32 rounds. That is, the algorithm does not achieve
rendezvous within f (n) rounds. This is a contradiction. �

6. Conclusion

In this paper, we consider the neighborhood rendezvous
problem, and propose two randomized algorithms for
solving it. The first algorithm achieves rendezvous in

O
(

n
δ

log3 n +
√

nΔ
δ

log n
)

rounds with high probability for

graphs of minimum degree δ = ω(
√

n log n). The second

algorithm achieves rendezvous in O
(

n
δ

log2 n + n√
δ

log2 n
)

rounds with high probability. It does not use whiteboards.

We also presented four impossibility results for sub-linear
time rendezvous, where each result respectively considers
four unconventional assumptions of our algorithm, that is,
bounded minimum degrees, accessibility to neighborhood
IDs, initial distance one, and randomization. One can obtain
the Ω(n)-round lower bound if either of them is removed.
Therefore we conclude that our algorithms run under a min-
imal assumption.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Num-
bers JP19J22696, 20H04140, 20H04139, and 19K11824.

References

[1] R. Eguchi, N. Kitamura, and T. Izumi, “Fast neighborhood ren-
dezvous,” 2020 IEEE 40th International Conference on Distributed
Computing Systems (ICDCS), pp.168–178, 2020.

[2] E. Kranakis, N. Santoro, C. Sawchuk, and D. Krizanc, “Mobile
agent rendezvous in a ring,” Proceedings 23rd International Confer-
ence on Distributed Computing Systems, 2003, pp.592–599, IEEE,
2003.

[3] P. Flocchini, E. Kranakis, D. Krizanc, N. Santoro, and C. Sawchuk,
“Multiple mobile agent rendezvous in a ring,” Latin American Sym-
posium on Theoretical Informatics, pp.599–608, Springer, 2004.

[4] G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, and U.
Vaccaro, “Asynchronous deterministic rendezvous in graphs,” The-
oretical Computer Science, vol.355, no.3, pp.315–326, 2006.

[5] E.J. Anderson and R.R. Weber, “The rendezvous problem on
discrete locations,” Journal of Applied Probability, vol.27, no.4,
pp.839–851, 1990.

[6] D. Peleg, “Distributed computing: A locality-sensitive approach,”
Society for Industrial and Applied Mathematics, 2000.

[7] A. Collins, J. Czyzowicz, L. Ga̧sieniec, A. Kosowski, and R. Martin,
“Synchronous rendezvous for location-aware agents,” International
Symposium on Distributed Computing, pp.447–459, Springer, 2011.

[8] S. Das, D. Dereniowski, A. Kosowski, and P. Uznański, “Ren-
dezvous of distance-aware mobile agents in unknown graphs,” Inter-
national Colloquium on Structural Information and Communication
Complexity, pp.295–310, Springer, 2014.

[9] A. Miller and A. Pelc, “Tradeoffs between cost and information for
rendezvous and treasure hunt,” Journal of Parallel and Distributed
Computing, vol.83, pp.159–167, 2015.

[10] D. Dereniowski and A. Pelc, “Drawing maps with advice,” Journal
of Parallel and Distributed Computing, vol.72, no.2, pp.132–143,
2012.

[11] A. Miller and A. Pelc, “Fast rendezvous with advice,” Theoretical
Computer Science, vol.608, pp.190–198, 2015.

[12] D. Baba, T. Izumi, F. Ooshita, H. Kakugawa, and T. Masuzawa,
“Linear time and space gathering of anonymous mobile agents
in asynchronous trees,” Theoretical Computer Science, vol.478,
pp.118–126, 2013.

[13] J. Czyzowicz, A. Kosowski, and A. Pelc, “Time versus space
trade-offs for rendezvous in trees,” Distributed Computing, vol.27,
no.2, pp.95–109, 2014.

[14] P. Fraigniaud and A. Pelc, “Deterministic rendezvous in trees with
little memory,” International Symposium on Distributed Computing,
pp.242–256, Springer, 2008.

[15] G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, and U.
Vaccaro, “Asynchronous deterministic rendezvous in graphs,” The-
oretical Computer Science, vol.355, no.3, pp.315–326, 2006.

[16] J. Czyzowicz, A. Pelc, and A. Labourel, “How to meet asyn-
chronously (almost) everywhere,” ACM Transactions on Algorithms

http://dx.doi.org/10.1109/icdcs47774.2020.00030
http://dx.doi.org/10.1109/icdcs.2003.1203510
http://dx.doi.org/10.1007/978-3-540-24698-5_62
http://dx.doi.org/10.1016/j.tcs.2005.12.016
http://dx.doi.org/10.2307/3214827
http://dx.doi.org/10.1137/1.9780898719772
http://dx.doi.org/10.1007/978-3-642-24100-0_42
http://dx.doi.org/10.1007/978-3-319-09620-9_23
http://dx.doi.org/10.1016/j.jpdc.2015.06.004
http://dx.doi.org/10.1016/j.jpdc.2011.10.004
http://dx.doi.org/10.1016/j.tcs.2015.09.025
http://dx.doi.org/10.1016/j.tcs.2013.01.022
http://dx.doi.org/10.1007/s00446-013-0201-4
http://dx.doi.org/10.1007/978-3-540-87779-0_17
http://dx.doi.org/10.1016/j.tcs.2005.12.016
http://dx.doi.org/10.1145/2344422.2344427

610
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

(TALG), vol.8, no.4, pp.1–14, 2012.
[17] J. Czyzowicz, A. Kosowski, and A. Pelc, “How to meet when you

forget: log-space rendezvous in arbitrary graphs,” Distributed Com-
puting, vol.25, no.2, pp.165–178, 2012.

[18] S. Bouchard, Y. Dieudonné, A. Pelc, and F. Petit, “On deterministic
rendezvous at a node of agents with arbitrary velocities,” Informa-
tion Processing Letters, vol.133, pp.39–43, 2018.

[19] A. Miller and A. Pelc, “Time versus cost tradeoffs for determinis-
tic rendezvous in networks,” Distributed Computing, vol.29, no.1,
pp.51–64, 2016.

[20] P. Tetali and P. Winkler, “On a random walk problem arising in self-
stabilizing token management,” Proceedings of the Tenth Annual
ACM Symposium on Principles of Distributed Computing, PODC
’91, New York, NY, USA, pp.273–280, ACM, 1991.

[21] N.H. Bshouty, L. Higham, and J. Warpechowska-Gruca, “Meeting
times of random walks on graphs,” Information Processing Letters,
vol.69, no.5, pp.259–265, 1999.

[22] S. Alpern, “Rendezvous search on labeled networks,” Naval Re-
search Logistics (NRL), vol.49, no.3, pp.256–274, 2002.

[23] S. Abbas, M. Mosbah, and A. Zemmari, “A probabilistic model for
distributed merging of mobile agents,” 2nd international workshop
on verification and evaluation of computer and communication sys-
tems (VeCOS ’08), 2008.

[24] X. Yu and M. Yung, “Agent rendezvous: A dynamic symmetry-
breaking problem,” International Colloquium on Automata, Lan-
guages, and Programming, pp.610–621, Springer, 1996.

[25] V. Dani, T.P. Hayes, C. Moore, and A. Russell, “Codes, lower
bounds, and phase transitions in the symmetric rendezvous prob-
lem,” Random Structures & Algorithms, vol.49, no.4, pp.742–765,
2016.

[26] R. Weber, “Optimal symmetric rendezvous search on three lo-
cations,” Mathematics of Operations Research, vol.37, no.1,
pp.111–122, 2012.

[27] S. Alpern and S. Gal, The theory of search games and rendezvous,
International Series in Operations Research & Management Science,
vol.55, Springer Science & Business Media, 2006.

[28] S. Alpern, R. Fokkink, L. Gasieniec, R. Lindelauf, and V.
Subrahmanian, “Search theory,” Springer, 2013.

[29] E. Kranakis, D. Krizanc, and S. Rajsbaum, “Mobile agent ren-
dezvous: A survey,” International Colloquium on Structural Infor-
mation and Communication Complexity, pp.1–9, Springer, 2006.

[30] A. Pelc, “Deterministic rendezvous in networks: A comprehensive
survey,” Networks, vol.59, no.3, pp.331–347, 2012.

[31] S. Alpern, “Rendezvous search: A personal perspective,” Operations
Research, vol.50, no.5, pp.772–795, 2002.

[32] S. Das, “Graph Explorations with Mobile Agents,” Distributed Com-
puting by Mobile Entities, Lecture Notes in Computer Science,
pp.403–422, Springer International Publishing, Cham, 2019.

Ryota Eguchi received the B.S. and M.S.
degrees in Department of Computer Science
from Nagoya Inst. of Tech. in 2016 and 2018,
respectively. He is now Ph.D. student in Com-
puter Science from Nagoya Institute of Technol-
ogy.

Naoki Kitamura received the B.S. and M.S.
degrees in Computer Science from Nagoya In-
stitute of Technology in 2017 and 2019, respec-
tively. He is now Ph.D. student in Computer Sci-
ence from Nagoya Institute of Technology.

Taisuke Izumi received the ME and DI
degrees in computer science from Osaka Uni-
versity, Japan, in 2003 and 2006, respectively.
He worked as an assistant professor at Nagoya
Institute of Technology, Japan, during 2006-
2009, and worked as an assistant professor dur-
ing 2009-2020. He is currently an associate
professor at the Graduate School of Informa-
tion Science and Technology, Osaka University,
Japan. His research interests include algorithms
and distributed systems. He is a member of

IEICE, IPSJ, and ACM.

http://dx.doi.org/10.1145/2344422.2344427
http://dx.doi.org/10.1007/s00446-011-0141-9
http://dx.doi.org/10.1016/j.ipl.2018.01.003
http://dx.doi.org/10.1007/s00446-015-0253-8
http://dx.doi.org/10.1145/112600.112623
http://dx.doi.org/10.1016/s0020-0190(99)00017-4
http://dx.doi.org/10.1002/nav.10011
http://dx.doi.org/10.14236/ewic/vecos2008.16
http://dx.doi.org/10.1007/3-540-61440-0_163
http://dx.doi.org/10.1002/rsa.20691
http://dx.doi.org/10.1287/moor.1110.0528
http://dx.doi.org/10.1007/978-1-4614-6825-7
http://dx.doi.org/10.1007/11780823_1
http://dx.doi.org/10.1002/net.21453
http://dx.doi.org/10.1287/opre.50.5.772.363
http://dx.doi.org/10.1007/978-3-030-11072-7_16

