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PAPER

Kernel-Based Regressors Equivalent to Stochastic Affine Estimators

Akira TANAKA†a), Masanari NAKAMURA†b), and Hideyuki IMAI†c), Members

SUMMARY The solution of the ordinary kernel ridge regression, based
on the squared loss function and the squared norm-based regularizer, can be
easily interpreted as a stochastic linear estimator by considering the auto-
correlation prior for an unknown true function. As is well known, a stochas-
tic affine estimator is one of the simplest extensions of the stochastic linear
estimator. However, its corresponding kernel regression problem is not re-
vealed so far. In this paper, we give a formulation of the kernel regression
problem, whose solution is reduced to a stochastic affine estimator, and also
give interpretations of the formulation.
key words: kernel regression, autocorrelation prior, linear estimators,
affine estimators, optimization criterion

1. Introduction

The kernel ridge regression (KRR) [1]–[3] is still one of use-
ful function estimators in the field of machine learning. The
ordinary KRR is defined as the minimizer of the squared
loss function for a given training data set and the squared
norm-based regularizer defined in a certain reproducing ker-
nel Hilbert space [4] to which an unknown true function is
assumed to belong. This regularizer involves two hyperpa-
rameters, that specify a model. One is a reproducing ker-
nel and the other is a regularization parameter. Selection of
a model, that achieves good generalization performance, is
one of crucial topics in this field. As shown in [5], assuming
the existence of the autocorrelation function of an unknown
true function, the optimal model of the KRR, in terms of the
expected squared error, is specified by the autocorrelation
function itself (as a kernel) and the variance of additive noise
(as a regularization parameter), which immediately leads the
equivalence of the KRR and a stochastic linear estimator [6].
Note that the KRR with this optimal model also agrees with
the solution of the Gaussian process regression (GPR) [7]–
[10] with the zero-mean assumption, which is formulated
by an another approach, that is, the conditional expectation
based on a given training data set. It is widely believed that
the superiority of the GPR against the KRR is that the GPR
can identify the variance of estimates. However, almost the
same result was also obtained by the theory of reproduc-
ing kernel Hilbert spaces only without the assumptions of
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probabilistic structures as shown in [11]. Therefore, the es-
sential difference between the KRR and the GPR with the
zero-mean assumption is their formulations only.

Needless to say, a stochastic affine estimator [6] is one
of the simplest extensions of a stochastic linear estimator. In
the framework of the GPR, the solution, corresponding to a
stochastic affine estimator, is straightforwardly obtained by
centering [10], that is, subtraction of mean, as the same with
the general framework of a stochastic estimation [6]. On the
other hand, the formulation of kernel regression problems,
corresponding to a stochastic affine estimator, is not revealed
so far. In this paper, we reveal the formulation of the kernel
regression problem whose solution is reduced to that of a
stochastic affine estimator. Since the formulation of kernel-
based regression is quite different from those of stochastic
estimators and the GPR, it is expected that our result can
provide a novel aspect for further extensions of the kernel
regression problems, while the GPR has limited room for
extension due to its principle.

2. Overview of Kernel Ridge Regression

In this section, we give an overview of the KRR [1].
Firstly, we briefly review the theory of reproducing ker-

nel Hilbert spaces [4], [12], [13].

Definition 1: [4] Let Rd be a d-dimensional real vector
space and let H be a class of functions defined on a cer-
tain domainD ⊂ Rd, forming a Hilbert space of real-valued
functions. The function K(x, x̃), (x, x̃ ∈ D) is called a re-
producing kernel ofH , if the following two conditions hold.

1. ∀x̃ ∈ D, K(·, x̃) ∈ H (1)

2. ∀x̃ ∈ D, ∀ f (·) ∈ H , f (x̃) = 〈 f (·),K(·, x̃)〉H , (2)

where 〈·, ·〉H stands for the inner product ofH .

In the following contents, we use the term ‘kernel’ in-
stead of ‘reproducing kernel’ for simplicity.

The Hilbert space H that has a kernel is called a re-
producing kernel Hilbert space (RKHS). Note that ker-
nels are positive definite and symmetric [4]. If a kernel
K(x, x̃) exists, it is unique [4]. Conversely, every posi-
tive definite function K(x, x̃) has the unique corresponding
RKHS [4]. From Eqs. (1) and (2), it immediately follows
that 〈K(·, x),K(·, x̃)〉HK = K(x, x̃) for any x, x̃ ∈ D, which
plays a crucial role in kernel-based regression problems.

Let T := {(xi, yi) | i ∈ {1, . . . , n}, xi ∈ D, yi ∈ R}
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be a given training data set with n samples, where xi and yi

denote an input vector and the corresponding output value,
satisfying

yi = f (xi) + εi, (3)

where f (·) denotes the unknown true function to be es-
timated and εi denotes an i.i.d. zero-mean additive noise
whose variance is (unknown) σ2 > 0. The ordinary KRR
is formulated as the following problem [1]–[3].

Problem 1: Find a function f̂ (·) that minimizes

J1( f̂ (·)) :=
n∑

i=1

(yi − f̂ (xi))
2 + γ‖ f̂ (·)‖2HK

, (4)

where || · ||HK denotes the induced norm of the RKHS HK

corresponding to an adopted kernel K, and γ denotes a pos-
itive regularization parameter.

The following theorem, called the nonparametric rep-
resenter theorem, is a well known result on the represen-
tation of a solution of a certain class of kernel regression
problems.

Theorem 1: [14] Let c(·) : (D×R2)n → R ∪ {∞} be an ar-
bitrary cost function, and let g(·) be a strictly monotonically
increasing function defined on [0,∞). Then, any minimizer
f̂ (·) ∈ HK of the regularized risk functional

c((x1, y1, f̂ (x1)), . . . , (xn, yn, f̂ (xn))) + g(‖ f̂ (·)‖HK ) (5)

can be represented by

f̂ (·) :=
n∑

i=1

αiK(·, xi) = (g(K)
X (·))′α, (6)

where g(K)
X (·) := [K(·, x1), . . . ,K(·, xn)]′ ∈ Rn and α :=

[α1, . . . , αn]′ ∈ Rn with ′ standing for the transposition op-
erator, and X := {x1, . . . , xn} being the set of training input
vectors.

Since J1( f̂ (·)) in Problem 1 agrees to Eq. (5), the so-
lution of Problem 1 can be represented by Eq. (6). It is
well known [1]–[3] that the closed-form solution of the min-
imizer of Eq. (4) with the function model Eq. (6) is given by

f̂ (K,γ)(·) = (g(K)
X (·))′(G(K)

XX + γIn)−1y, (7)

where G(K)
XX := (K(xi, x j)) ∈ Rn×n denotes the Gram matrix

of the kernel K with X, In denotes the identity matrix of
degree n, and y := [y1, . . . , yn]′ ∈ Rn.

Note that when G(K)
XX is non-singular, Eq. (7) is the

unique solution of Problem 1. On the other hand, when G(K)
XX

is singular, Problem 1 may have many solutions including
Eq. (7). Also note that the output vector corresponding to an
arbitrary set of test input vectors Z := {z1, . . . , zm}, (zi ∈ D)
is given by

f̂
(K,γ)
Z := [ f̂ (K,γ)(z1), . . . , f̂ (K,γ)(zm)]′

= G(K)
ZX (G(K)

XX + γIn)−1y (8)

from Eq. (7), where G(K)
ZX := (K(zi, x j)) ∈ Rm×n.

3. Kernel Ridge Regression with Autocorrelation Prior
and Its relation to Stochastic Linear Estimator

In this section, we review the KRR with the autocorrelation
prior introduced in our previous work [5], and discuss its
relation to stochastic linear estimators.

We assume that the unknown true function f (·) is a re-
alization of a random process whose autocorrelation func-
tion is defined as

R(x, x̃) := E f [ f (x) f (x̃)], (x, x̃ ∈ D), (9)

where E f denotes the expectation operator over the random
process. Let Z := {z1, . . . , zm} be an arbitrary finite subset of
D and let f Z := [ f (z1), . . . , f (zm)]′. Since

RZZ := (R(zi, z j)) = (E[ f (zi) f (z j)]) = E[ f Z f ′Z] (10)

is trivially a non-negative definite (n.n.d.) matrix, it is con-
cluded that the autocorrelation function R(x, x̃), (x, x̃ ∈ D)
is also a kernel [15], [16]. Hereafter, we call R(x, x̃) the au-
tocorrelation kernel. Since RZZ is identical to the Gram ma-
trix of the autocorrelation kernel R with an arbitrary finite
subset Z ⊂ D, we use the symbol G(R)

ZZ instead of RZZ in the
following contents.

We assume that f (xi) and ε j are uncorrelated. Let
ε := [ε1, . . . , εn]′ and f X := [ f (x1), . . . , f (xn)]′, then the
correlation matrix of the training output vector y = f X + ε
is reduced to

E f ,ε [yy
′] = E f ,ε [( f X + ε)( f X + ε)

′]
= E f [ f X f ′X] + Eε [εε

′]

= G(R)
XX + σ

2In. (11)

We evaluate the generalization error of the KRR with a
model (K, γ) for an arbitrary set of test input vectors Z ⊂ D
by

L(K, γ; Z) := ‖ f̂ (K,γ)
Z − f Z‖2. (12)

The following theorem is one of main results in our previous
work [5].

Theorem 2: [5] Let K be an arbitrary kernel defined on
D×D and let γ be an arbitrary positive constant, then

E f ,εL(K, γ; Z) ≥ E f ,εL(R, σ2; Z) (13)

holds for any Z ⊂ D.

According to Theorem 2, it is concluded that the model
(R, σ2) is optimal for the KRR in terms of the expected gen-
eralization error, which agrees to the optimal model (R, σ2)
in the GPR, specified by the conditional expectation based
on the training data set.

Next, let us consider the linear estimation model

f̂
(L)
Z = By, (14)
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where B ∈ Rm×n, and also consider the following problem
for this estimation model.

Problem 2: Find the matrix B ∈ Rm×n that minimizes

J2(B) := E f ,ε ||By − f Z ||2. (15)

From Eq. (11) and

E f [ f Z f ′Z] = G(R)
ZZ ,

E f ,ε [y f ′Z] = E f [ f X f ′Z] = G(R)
XZ ,

where G(R)
ZZ := (R(zi, z j)) ∈ Rm×m, G(R)

XZ := (R(xi, z j)) ∈
Rn×m,

J2(B) := E f ,ε ||By − f Z ||2
= tr[B(G(R)

XX + σ
2In)B′ − 2BG(R)

XZ +G(R)
ZZ ]

is obtained and its first order differential is reduced to

dJ2(B) = 2 tr[dB(G(R)
XX + σ

2In)B′ − dBG(R)
XZ]

= 2 tr[dB((G(R)
XX + σ

2In)B′ −G(R)
XZ)].

Since J2(B) is a non-negative quadratic function with re-
spect to B, the stationary point of J2(B) is its minimizer.
Thus, the solution of Problem 2 is immediately obtained by

B̂ = G(R)
ZX(G(R)

XX + σ
2In)−1 (16)

and the estimate of f Z by this optimal matrix B̂ is written by

f̂
(L)
Z = G(R)

ZX(G(R)
XX + σ

2In)−1y, (17)

where G(R)
ZX := (G(R)

XZ)′ = (R(zi, x j)) ∈ Rm×n, which is iden-
tical to Eq. (8) with the optimal model (R, σ2). Accord-
ingly, it is concluded that the KRR with the optimal model
(R, σ2) is identical to the stochastic linear estimator defined
by Problem 2. Note that we do not assume E f [ f X] = 0n

and E f [ f Z] = 0m, where 0n ∈ Rn denotes the n-dimensional
zero vector, which implies that the Gram matrices are not
always reduced to covariance matrices. When E f [ f X] = 0n

and E f [ f Z] = 0m hold, the above discussion, concerned with
a stochastic linear estimator, is the same with that given in
[6].

4. Stochastic Affine Estimator and Its Properties

In this section, we discuss a stochastic affine estimator,
which is one of the simplest extensions of a stochastic linear
estimator. Note that almost all of results of this section is
given in [6]. However, we adopt a different way to obtain
the same results in order for theoretical analyses concerned
with kernel regression problems given in the next section.

Let us consider the following affine estimation model:

f̂
(A)
Z = B

[
y
1

]
, (18)

where B ∈ Rm×(n+1). As the same with the linear case, we

consider the following problem.

Problem 3: Find the matrix B ∈ Rm×(n+1) that minimizes

J3(B) := E f ,ε

∥∥∥∥∥∥B

[
y
1

]
− f Z

∥∥∥∥∥∥
2

. (19)

Let μX := E f [ f X], μZ := E f [ f Z], and M := G(R)
XX+σ

2In,
then

E f ,ε

[[
y
1

] [
y′ 1

]]
=

[
M μX
μ′X 1

]
=: MA

and

E f ,ε

[[
y
1

]
f ′Z

]
=

[
G(R)

XZ
μ′Z

]
=: Q

hold. Therefore

J3(B) := E f ,ε

∥∥∥∥∥∥B

[
y
1

]
− f Z

∥∥∥∥∥∥
2

= tr
[
BMAB′ − 2BQ +G(R)

ZZ

]
is obtained and its first order differential is reduced to

dJ3(B) = 2 tr
[
dBMAB′ − dBQ

]
= 2 tr

[
dB

(
MAB′ − Q)

)]
.

Theorem 3: The matrix MA is non-singular.

Proof The covariance matrix ΣX of f X is represented by

ΣX := E f [( f X − μX)( f X − μX)′]
= E f [ f X f ′X] − μXμ

′
X

= G(R)
XX − μXμ

′
X . (20)

Therefore,

M = ΣX + σ
2In + μXμ

′
X

and

MA = T1 + T2

are obtained with

T1 :=

[
ΣX + σ

2In 0n

0′n 0

]
, T2 :=

[
μX
1

] [
μ′X 1

]
.

Let [u′ v]′ ∈ Rn+1 be an arbitrary vector in the null space of
MA, written as N(MA), then

[
u′ v

]
T1

[
u
v

]
= 0, (21)

[
u′ v

]
T2

[
u
v

]
= 0 (22)

must hold since T1 and T2 are n.n.d. Therefore, Eq. (21)
immediately yields u = 0n since ΣX + σ

2In is non-singular,
and then Eq. (22) yields v = 0, which implies N(MA) =
{0n+1}. �
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Since J3(B) is a non-negative quadratic function with
respect to B, the stationary point of J3(B) is the minimizer
of J3(B). Thus, the solution of Problem 3 is immediately
obtained by

B̂ = Q′M−1
A . (23)

By substituting Eq. (23) into Eq. (18), the estimate of f Z by
the solution of Problem 3 is reduced to

f̂
(A)
Z = Q′M−1

A

[
y
1

]

=
[

G(R)
ZX μZ

]

×
[

G(R)
XX + σ

2In μX
μ′X 1

]−1 [
y
1

]
. (24)

5. Kernel Regressors Equivalent to Stochastic Affine
Estimators

In this section, we discuss the kernel regression problem,
whose solution is reduced to the stochastic affine estimator
f̂

(A)
Z in Eq. (24).

The function with the model (K, γ) that gives Eq. (24)
by substituting the points in Z can be represented by

f̂ (K,γ)(·) =
[

(g(K)
X (·))′ μ(·)

]

×
[

G(K)
XX + γIn μX
μ′X 1

]−1 [
y
1

]
, (25)

where μ(·) is a certain function, that yields μX :=
[μ(x1) . . . , μ(xn)]′, corresponding to the mean vector in the
stochastic affine estimator. Thus, we consider the following
function model:

f̂ (·) := (g(K)
X (·))′α + βμ(·), (26)

where α ∈ Rn and β ∈ R.
Let Kμ(x, x̃) := μ(x)μ(x̃), (x, x̃ ∈ D), then Kμ(x, x̃)

is the kernel whose corresponding RKHS is consisting of
aμ(·), (a ∈ R) as shown in [13], which trivially implies
μ(·) ∈ HKμ

. Note that since

μ(x) = 〈μ(·),Kμ(·, x)〉HKμ

= 〈μ(·), μ(·)μ(x)〉HKμ

= μ(x)〈μ(·), μ(·)〉HKμ

= μ(x)‖μ(·)‖2HKμ

holds for any x ∈ D, we have ‖μ(·)‖2HKμ
= 1.

Theorem 4: [4] If Ki is the reproducing kernel of the class
Fi with the norm || · ||i, then K = K1 + K2 is the reproducing
kernel of the class F of all functions f (·) = f1(·)+ f2(·) with
fi(·) ∈ Fi, and with the norm defined by

|| f (·)||2 = min
[
|| f1(·)||21 + || f2(·)||22

]
, (27)

the minimum taken for all the decompositions f (·) = f1(·)+
f2(·) with fi(·) ∈ Fi.

Hereafter, we assume that the kernel, used in the fol-
lowing contents, is of the form:

K(x, x̃) := Kc(x, x̃) + Kμ(x, x̃), (28)

where Kc is a certain kernel, whose Gram matrix with X cor-
responds to a covariance matrix ΣX in the stochastic affine
estimator as in Eq. (20). We call Kc the covariance part
of K and also call Kμ the mean part of K. It should be
noted that μ(·) ∈ HK holds due to Theorem 4 and the fact
that μ(·) ∈ HKμ

. We assume μ(·) � HKc
†, which implies

HKc ∩ HKμ
= {0}, and then ‖μ(·)‖2HK

= 1 is obtained, since
the decomposition in Theorem 4 is unique. We also assume
that μ(·) � L(K)

X := span{K(·, xi) | i ∈ {1, . . . , n}}, since when
μ(·) ∈ L(K)

X holds, Eq. (26) is reduced to Eq. (6). Note that
the Gram matrix of K with X can be represented as

G(K)
XX = G(Kc)

XX +G
(Kμ)
XX = G(Kc)

XX + μXμ
′
X .

Here, we define some subsets of HK . Let Lμ := span{μ(·)}
and let L⊥μ be its orthogonal complement, then, we define
the linear manifold

Mμ := {μ⊥(·) + μ(·) | μ⊥(·) ∈ L⊥μ } ⊂ HK .

Under these preparations, we define the following problem.

Problem 4: Find the function f̂ (·) ∈ Mμ that minimizes

J4( f̂ (·)) :=
n∑

i=1

(yi − f̂ (xi))
2 + γ‖ f̂ (·)‖2HK

(29)

with a positive constant γ.

It should be noted that the constraint

f̂ (·) ∈ Mμ (30)

can be represented as

μ(·) = Pμ f̂ (·), (31)

where Pμ denotes the orthogonal projector onto Lμ, since
f̂ (·) ∈ Mμ can be represented as

f̂ (·) = f⊥(·) + μ(·)
with f⊥(·) ∈ L⊥μ and

Pμ f̂ (·) = Pμ f⊥(·) + Pμμ(·) = 0 + Pμμ(·) = μ(·)
is immediately followed.

The first issue to be resolved is whether the solution of
Problem 4 can be represented by Eq. (26) or not. In [14],
the representer theorem concerned with the function model
Eq. (26), which is called the semiparametric representer the-
orem, is given as follows.

Theorem 5: [14] In addition to the assumptions of The-
orem 1, we assume that a set of nP real-valued function

†This is the only arbitrary assumption that the framework of
the stochastic affine estimators has no counterpart.
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{ψp(·)}, (p ∈ {1, . . . , nP}) defined on D with the prop-
erty that the matrix (ψp(xi)) ∈ RnP×n has rank nP is
given. Then, any f̂ (·) := f (·) + h(·) with f (·) ∈ HK and
h(·) ∈ span{ψ1(·), . . . , ψnP (·)}, minimizing the regularized
risk functional

c((x1, y1, f̂ (x1)), . . . , (xn, yn, f̂ (xn))) + g(‖ f (·)‖HK ) (32)

can be represented by

f̂ (·) :=
n∑

i=1

αiK(·, xi) +
nP∑

p=1

βpψp(·) (33)

with unique coefficients βp ∈ R for all p ∈ {1, . . . , nP}.
The function model Eq. (26) agrees to Eq. (33) with

nP = 1. However, the optimization criterion and the con-
straint in Problem 4 does not agree to Eq. (32), which im-
plies that Theorem 5 can not be applied to problem 4. In
order to positively resolve this issue, we give the following
theorem.

Theorem 6: Any function f̂ (·) ∈ Mμ that minimizes
Eq. (29) with a positive γ can be represented by Eq. (26).

Proof Let v(·) ∈ HK be an arbitrary function orthogonal to
Lμ + L(K)

X . Without loss of generality, any function f̂ (·) ∈
HK can be represented by

f̂ (·) = (g(K)
X (·))′α + βμ(·) + v(·).

Since v(·) ∈
(
Lμ +L(K)

X

)⊥
, we have 〈μ(·), v(·)〉HK = 0 and

〈v(·),K(·, xi)〉HK = 0 for any i ∈ {1, . . . , n}. The former leads

Pμ f̂ (·) = Pμ((g(K)
X (·))′α + βμ(·)),

which implies that the constraint Eq. (30) is independent of
v(·). Similarly, the latter leads

f̂ (xi) = 〈 f̂ (·),K(·, xi)〉HK

= 〈(g(K)
X (·))′α + βμ(·) + v(·),K(·, xi)〉HK

= 〈(g(K)
X (·))′α + βμ(·),K(·, xi)〉HK ,

which implies that the first term of Eq. (29) is also indepen-
dent of v(·). The second term of Eq. (29) satisfies

γ‖ f̂ (·)‖2HK
= γ〈 f̂ (·), f̂ (·)〉HK

= γ〈(g(K)
X (·))′α + βμ(·) + v(·),

(g(K)
X (·))′α + βμ(·) + v(·)〉HK

= γ‖(g(K)
X (·))′α + βμ(·)‖2HK

+ γ‖v(·)‖2HK

≥ γ‖(g(K)
X (·))′α + βμ(·)‖2HK

since γ > 0, and equality is attained if and only if v(·) = 0.
Accordingly, in order for f̂ (·) to be a minimizer of Eq. (29),
v(·) = 0 must hold, which concludes the proof. �

According to Theorem 6, it is enough to consider the
function model Eq. (26) as a candidate of the solution of
Problem 4.

Since f̂ (·) in Problem 4 is specified by α and β only,
we use the notation J4(α, β) as the criterion of Problem 4
instead of J4( f̂ (·)). Let Si(α, β), (i ∈ {1, 2}) be the i-th term
of Eq. (29). It is easy to show that

S1(α, β) =

∥∥∥∥∥∥y −
[

G(K)
XX μX

] [ α
β

]∥∥∥∥∥∥
2

.

Also, we have

S2(α, β) = γ‖ f̂ (·)‖2HK

= γ‖(g(K)
X (·))′α + βμ(·)‖2HK

= γ(α′G(K)
XXα + 2βα′μX + β

2)

= γ
[
α′ β

] [ G(K)
XX μX
μ′X 1

] [
α
β

]

for f̂ (·) specified by the function model Eq. (26).
As mentioned before, the linear manifold constraint

Eq. (30) is identical to Eq. (31), which can be also repre-
sented as

μ(·) = Pμ f̂ (·)
= 〈 f̂ (·), μ(·)〉HKμ(·)
= 〈(g(K)

X (·))′α + βμ(·), μ(·)〉HKμ(·)
=

(
μ′Xα + β

)
μ(·). (34)

Since ‖μ(·)‖2HK
= 1 � 0 holds, Eq. (34) is identical to

1 = μ′Xα + β, (35)

which can be also represented as

1 =
[
μ′X 1

] [ α
β

]
(36)

and [
μX
1

]
=

[
μX
1

] [
μ′X 1

] [ α
β

]
, (37)

since [μ′X 1]′ is an (n + 1) × 1 full column rank matrix.
The following theorem is the main result of this paper.

Theorem 7: Eq. (25) is a solution of Problem 4.

Proof Let

L (α, β, λ) =
2∑

i=1

Si(α, β) − 2λ(μ′Xα + β − 1) (38)

be the Lagrangian function induced from Problem 4 with a
Lagrange multiplier λ. Since

L (α, β, λ)

= ‖y‖2 +
[
α′ β

] [ G(K)
XX
μ′X

] [
G(K)

XX μX

] [ α
β

]

−2
[
α′ β

] [ G(K)
XX
μ′X

]
y
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+γ
[
α′ β

] [ G(K)
XX μX
μ′X 1

] [
α
β

]

−2λ

([
α′ β

] [ μX
1

]
− 1

)

holds, its first order differential with respect to [α′ β]′ is
reduced to

dL (α, β, λ)

= 2d
[
α′ β

] [ G(K)
XX
μ′X

] [
G(K)

XX μX

] [ α
β

]

−2d
[
α′ β

] [ G(K)
XX
μ′X

]
y

+2γd
[
α′ β

] [ G(K)
XX μX
μ′X 1

] [
α
β

]

−2λd
[
α′ β

] [ μX
1

]

= 2d
[
α′ β

] [ G(K)
XX
μ′X

] [
G(K)

XX μX

] [ α
β

]

+2γd
[
α′ β

] [ G(K)
XX μX
μ′X 1

] [
α
β

]

−2d
[
α′ β

] [ G(K)
XX μX
μ′X 1

] [
y
λ

]
. (39)

Since J4(α, β) is a non-negative quadratic function with
respect to [α ′β]′, Eq. (38) is also a lower-bounded quadratic
function with respect to [α′ β]′ under the constraint Eq. (30).
Thus, stationary points of Eq. (38) is its minimizer. There-
fore, ([

G(K)
XX
μ′X

] [
G(K)

XX μX

]
+ γ

[
G(K)

XX μX
μ′X 1

]) [
α
β

]

−
[

G(K)
XX μX
μ′X 1

] [
y
λ

]
= 0n+1 (40)

must hold, under the constraint Eq. (30). Note that Eq. (30)
can be represented by[

μX
1

] [
μ′X 1

] [ α
β

]
−

[
μX
1

]
= 0n+1 (41)

from Eq. (37). Since Eqs. (40) and (41) must hold simulta-
neously, the sum of their left sides must be zero, which is
represented by⎛⎜⎜⎜⎜⎜⎝

[
G(K)

XX μX
μ′X 1

]2

+ γ

[
G(K)

XX μX
μ′X 1

]⎞⎟⎟⎟⎟⎟⎠
[
α
β

]

−
[

G(K)
XX μX
μ′X 1

] [
y

λ + 1

]
= 0n+1, (42)

that can be also represented as[
G(K)

XX μX
μ′X 1

] [
G(K)

XX + γIn μX
μ′X 1 + γ

] [
α
β

]

−
[

G(K)
XX μX
μ′X 1

] [
y

λ + 1

]
= 0n+1. (43)

Therefore, the solution of the linear equation[
G(K)

XX + γIn μX
μ′X 1 + γ

] [
α
β

]
−

[
y

λ + 1

]
= 0n+1 (44)

is a stationary point of Eq. (38). Since the last row of
Eq. (44) is reduced to

μ′Xα + (1 + γ)β − (λ + 1)

= 1 + γβ − (λ + 1) = γβ − λ = 0

due to the constraint Eq. (35), λ = γβ is immediately fol-
lowed. Accordingly, the second term of the left side of
Eq. (44) can be represented by[

y
γβ + 1

]
=

[
y
1

]
+

[
On 0n

0′n γ

] [
α
β

]
, (45)

where On stands for the n × n zero matrix, and substituting
it to Eq. (44) yields[

G(K)
XX + γIn μX
μ′X 1

] [
α
β

]
−

[
y
1

]
= 0n+1. (46)

It is easy to show that the matrix

MB :=

[
G(K)

XX + γIn μX
μ′X 1

]

is non-singular by Theorem 3. Thus,

[
α
β

]
=

[
G(K)

XX + γIn μX
μ′X 1

]−1 [
y
1

]
(47)

surely exists and it is a minimizer of Eq. (38) under the con-
straint Eq. (30) and then Eq. (25) is a solution of Problem 4.

�

According to Theorem 7, it is concluded that the model
(R, σ2) is also optimal for Problem 4 with a given function
μ(·) in terms of the expected squared error under the auto-
correlation prior, as the same with the ordinary KRR. Note
that when the matrix

MC :=

[
G(K)

XX μX
μ′X 1

]

is non-singular, Eq. (47) gives the unique solution of Prob-
lem 4. On the other hand, when MC is singular, problem 4
may have many solutions including the learning result based
on Eq. (47) as the same with the ordinary KRR.

Here, we give some remarks on the optimization cri-
terion of Problem 4. As the same with the ordinary KRR,
S1(α, β) in J4(α, β) represents the fidelity of the estimated
function to the given training data set. However, the mini-
mizer of S1(α, β) has remaining degree of freedom caused
by the singularity of the coefficient matrix in the normal
equation obtained from the first order differential of S1(α, β).
The solution Eq. (47) is obtained by vanishing the degree of
freedom by the linear manifold constraint Eq. (30), instead
of the minimum norm constraint, which is usually adopted
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in solving an underdetermined linear system. It seems that
S2(α, β) in J4(α, β) plays the same role of the regulariza-
tion term in Problem 1. However, it should be noted that
the effect of the regularization parameter is restricted to the
Gram matrix concerned with the term (g(K)

X (·))′α in the func-
tion model Eq. (26) due to the linear manifold constraint.
Therefore, it is concluded that the linear manifold constraint
f̂ (·) ∈ Mμ is crucial in obtaining the kernel-based regressor
Eq. (25)

It is expected that replacing S2(α, β) in J4(α, β) to
another alternatives yields various kernel regressors repre-
sented as affine estimators together with the linear manifold
constraint, and our formulation may be useful to construct a
kernel-based regression problem with multiple given func-
tions instead of a single μ(·), while these extensions can not
be obtained in the framework of the GPR due to its principle.

6. Conclusion

In this paper, we discussed the kernel-based regression
problems by considering the relation to stochastic estima-
tors, and obtained the formulation, which is equivalent to
stochastic affine estimators, and gave the interpretation of it.
Moreover, we gave a novel representer theorem concerned
with the formulation. It is expected that our result give a
novel aspect for further extensions of kernel-based regres-
sion problems.
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