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SUMMARY A new approach for multi-target tracking in an occlusion
environment is presented. In pedestrian tracking using a video camera,
pedestrains must be tracked accurately and continuously in the images.
However, in a crowded environment, the conventional tracking algorithm
has a problem in that tracks do not continue when pedestrians are hidden
behind the foreground object. In this study, we propose a robust tracking
method for occlusion that introduces a degeneration hypothesis that relaxes
the track hypothesis which has one measurement to one track constraint.
The proposed method relaxes the hypothesis that one measurement and
multiple trajectories are associated based on the endpoints of the bounding
box when the predicted trajectory is approaching, therefore the continua-
tion of the tracking is improved using the measurement in the foreground.
A numerical evaluation using MOT (Multiple Object Tracking) image data
sets is performed to demonstrate the effectiveness of the proposed algo-
rithm.

key words: camera, bounding box, target tracking, multiple hypothesis
tracking

1. Introduction

In pedestrian tracking using a video camera, early track con-
firmation and accurate track maintenance are required. On
the other hand, in a crowded environment, the conventional
tracking algorithm has a problem that tracking does not con-
tinue when the tracking target is hidden behind the fore-
ground object. There is a simple tracking technique using
SORT [1]. In SORT, high-speed processing can be realized
by filtering the position and size of the detected bounding
box using a Kalman filter. The tracking accuracy of Deep-
SORT [2], which takes into account the visual appearance of
the image, is high compared to SORT. There is also a track-
ing algorithm, MHT (Multiple Hypothesis Tracking) [3],
which expresses the correspondence between measurements
and tracks as a hypothesis. MHT-DAM [4] has been studied
as a method applying MHT to image set. In MHT-DAM,
tracking performance can be improved by track-oriented
multiple hypotheses and image appearance score. On the
other hand, RFS (Random Finite Set) tracking algorithms
have been studied [5] and Ref. [6] describes tracking algo-
rithms with merged measurements. Reference [7] is an ex-
ample of applying an RFS-based multi-objective Bayesian
filter to an image, however no explicit treatment in an oc-
clusion environment is mentioned.
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In order to cope with occlusion, studies have been
made to predict the appearance of pedestrian objects af-
ter occlusion using LSTM (Long Short Term Memory) [8],
however the learning-based method assumes a large amount
of training data sets. Reference [9] is a description of deal-
ing with occlusion for two vehicles based on the assumption
of DWT (Discrete wavelet transform) detection and car size
prediction.

In this paper, we propose a robust pedestrian tracking
method to deal with occlusion that introduces partial infor-
mation association on the bounding box and a degeneration
hypothesis that relaxes the MHT one measurement to one
track constraint. The proposed method relaxes the hypoth-
esis that one measurement and multiple trajectories are as-
sociated when the predicted trajectory of the tracking ap-
proaches, therefore it improves the continuity of multi-target
tracking even in an environment where occlusion occurs.
The rest of this paper is organized as follows. In Sect.2,
we provide an overview of background and MHT. Next, in
Sect. 3, the proposed method is explained. In Sect. 4, nu-
merical evaluation is performed to demonstrate the effec-
tiveness of the proposed algorithms. Finally, we summarize
this work in Sect. 5.

2. Background
2.1 Concept of MHT

In hypothesis-oriented multiple hypotheses tracking, mul-
tiple hypotheses are generated as the possibility of combi-
nations assuming one-to-one correspondence between mea-
surements and tracks at each sampling time. A measure-
ment is considered as a false alarm, an existing track, or a
new target in MHT. The probability of each hypothesis is
evaluated by measurement likelihood functions. The tracks
in the hypothesis with the highest hypothesis reliability at
each sampling time are displayed as a result of the track-to-
measurement association. In addition, multiple hypotheses
at the current time are constructed based on multiple hy-
potheses at the previous time. As a result, even if the asso-
ciation result is not correct at a certain sampling time, it is
possible to correct the association result after the following
sampling time.

2.2 Process Flow of MHT

Figure 1 shows the flowchart for each sampling time of
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Fig.1 Flowchart for each sampling time of MHT

MHT. The details of MHT can be found in Ref.[10],
pp-402—408, Ref. [11], and Ref. [12]. MHT divides the pro-
cessing for each cluster. A cluster is a subset of a group
of tracks that classifies a track based on whether the track
shares measurements or not. Tracks that do not share mea-
surements can be processed separately; hence dividing into
clusters can make the processing scale smaller than process-
ing all tracks. In this paper, the explanation of clusters is
omitted [10]. The outline of each processing block in Fig. 1
is described below.

(1) Prediction

For all existing tracks, calculate prediction vectors and pre-
diction error covariance matrices at the current time.

(2) Gating

For all existing tracks, software gates centered on the predic-
tion vectors are generated at the current time. The software
gate of a track is an ellipsoid that determines whether or not
there is a correlation between measurements and the track
based on the residual error covariance matrix. If a measure-
ment enters a software gate, the track that generates the gate
is associated with the measurement, and if not, it is judged
that there is no track-to-measurement association.

(3) Hypothesis construction

For all existing tracks before the current time (which we call
“parent tracks”), “child tracks” are derived by connecting
measurements at the current time The child track calculates
an updated state vector and an updated error covariance ma-
trix based on the correspondence between the parent track
and the measurement which falls in a gate generated by the
parent track. Alternatively, the child track is obtained from
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the memory track of the parent track. Next for all existing
hypotheses, a child hypothesis whose parent is an existing
hypothesis is generated. The child hypothesis is a set of
tracks satisfying the following conditions 1 to 3. Condition
1 is that the parent track belonging to the parent hypothesis
corresponds to at most one of the measurement groups that
can correspond; if the corresponding measurement is 1, it
is called an update track, and when it is 0O, it is a memory
track. Condition 2 is that when multiple parent tracks be-
longing to the parent hypothesis share a measurement, the
measurement corresponds to at most one parent track. Con-
dition 3 is that the new track is a measurement that does
not correspond to the parent track belonging to the parent
hypothesis (first detection).

Then, the likelihood of the child hypothesis is evalu-
ated by hypothesis reliability. The hypothesis reliability of
a child hypothesis is calculated as follows:

Vi
Bi=syn (1)
2111\121 Yn
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y=to [ Pa s - PR @

The meaning of each symbol is as follows. N: number of
parent hypotheses; B,(): parent hypothesis reliability; Npr:
number of false signals; Nyr: new target number (number of
measurements); P;: detection probability (parameter); Nyr:
update track number; NyT: memory track number of tracks
(parent track number); g;: likelihood (calculated with filter)
of position measurement; Spr: false alarm density (parame-
ter); Bnt: new target density (parameter).

The likelihood of the position measurement in Eq. (2)
is calculated by

1
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The meaning of each symbol is as follows. Z_;: prediction
position vector; k: sampling time number; Z;: jth measure-
ment vector; S;: residual covariance matrix.

(4) Sub optimization

In step 3, all possible child hypotheses are generated; how-
ever, there is a problem in that the number of hypotheses
explodes and the processing load increases. Therefore, the
processing load is reduced by sequentially applying the fol-
lowing semi-optimization process (N best solution search)
to this problem. In the N best solution search, top N hy-
potheses with high reliability are extracted by considering
the two-dimensional track-to-measurement association ma-
trix as the allocation matrix and solving the allocation prob-
lem using Murty’s algorithm. For details of this process, see
[3], [10]. In the MHT, the association result of the best hy-
pothesis (the hypothesis with the highest reliability) is out-
put as the tracking result.

However, there is a problem in that several erroneous
tracks can occur when false measurements are caused by
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occlusion.

3. Occlusion Countermeasure Multiple Hypothesis
Tracking Method

3.1 Principle of Occlusion Countermeasure Multiple Hy-
pothesis Tracking Method

In this section, we explain the concept and process flow of
the occlusion countermeasure multiple hypothesis tracking
method.

An example of a bounding box in an occlusion envi-
ronment and the proposed method of filtering using partial
measurements during occlusion by the foreground is shown
in Fig.2. In the proposed method, first, gate judgment is
performed for each endpoint (xmin, xmax, ymin, ymax) of
the bounding box, and after excluding the endpoints that are
not associated, the state is updated using a Kalman filter.
In the example shown in the figure, the lower side of the
bounding box is hidden by the foreground. Therefore, using
the endpoints of (xmin, xmax, ymax), the target state can be
continuously estimated by performing Kalman filtering.

In Fig. 3, by introducing the hypothesis that associate
multiple tracks with one measurement when multiple peo-
ple overlap in the proposed method, one measurement due
to detection failure can be tracked even when multiple peo-
ple overlap. A merged prediction bounding box is created
with the predicted bounding boxes of multiple tracks, and
the association is determined based on the difference from
the bounding box measurement. When multiple tracks are
close to a single measurement, a hypothesis that relaxes the
restriction of one-to-one correspondence between measure-
ments and predictions (the degeneration hypothesis) can be
used to maintain tracks.

State vector

(previous time) BB measurement

i1 | (partial occlusion)

Iter

Foreground

Fig.2  Concept of partial occlusion filter

One in two assign BB
2N

Occulusion
section

Fig.3  Association example between existing tracking and measure-
ments with degeneration hypothesis
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3.2 Process Flow of the Proposed Method

Figure 4 shows the processing flowchart of the proposed
method.

As shown in Fig. 4, the process is the contents modi-
fied by modifying step (3) “Making hypothesis with merged
measurements” to the conventional MHT and step (4) “Sub
optimization.” The details of the processing block with the
changes are briefly described.

(3) Hypothesis construction with merged measurements

The state vector is composed of the xy-pixel position and the
width and length of the bounding box and the motion model
is a constant velocity model. When calculating the likeli-
hood, gate judgment is performed for each endpoint of the
bounding box separately with « times the standard deviation
of the residuals as the threshold. For the sake of simplic-
ity, in this study, the gate of the equation is determined for
the endpoint with the largest error among the four endpoints
of the bounding box. The log-likelihood is calculated af-
ter constructing the measurement excluding one dimension
outside the gate, and the value obtained by multiplying the
normal log-likelihood by 4/3 is calculated as the score when
degeneration occurs.

(4) Sub optimization (including the degeneration hypoth-
esis)

Searching for all hypotheses, including those with degen-
eracy, has the problem of increased computational load.
Therefore, in the proposed method, degeneracy judgment
is performed based on the proximity of the track and the
measured value of the high score hypothesis after using the
N-best search algorithm based on the usual one-to-one con-

START

(1) Prediction

(2) Gating

(3) Hypothesis
construction
with merged

measurements,

(4) Sub
optimization

END

Fig.4  Flowchart of the proposed method
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Fig.5 Flowchart of the proposed method in detail

straint, the feature is that the degeneration hypothesis is de-
rived and generated.

The details of the making hypothesis with merged mea-
surements and the sub optimization method are described
later. The processing flow of the proposed method is shown
in Fig. 5.

The details of the processing flow are explained below.

First, in step 1 of the figure, a matrix in which scores
are arranged when the measurement and track are associated
is created as an association matrix. The proposed method
determines the association of the endpoints as described in
(3) of 3.2. As for the appearance feature, the appearance
score which is calculated from the log-likelihood of iden-
tifying the same person by a cosine metric such as Deep
SORT [2] is added.

Next, in step 3 of the figure, among the normal hy-
potheses extracted in step 2, a hypothesis with a measure-
ment that may degenerate is determined. Specifically, the
hypothesis that the IOU (Intersection Over Union) of the
track is associated with the measurement and the memory
track included in the hypothesis is more than a certain value
(IOU threshold) is determined as a hypothesis that may de-
generate.
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Then, in step 4 in the figure, the score of the hypothesis
with the possibility of degeneration is recalculated using the
merged measurement. If the score is higher than the score
of the original hypothesis, a hypothesis with the possibility
of degeneration is adopted. The most convenient endpoint is
selected from the endpoints of the bounding box predicted
from multiple tracks and the likelihood of the merged pre-
diction bounding box is compared with the original likeli-
hood.

Then, in step 5 in the figure, the hypothesis that may
degenerate is updated using the merged measurement. If
there is degeneration, filtering is performed with the mea-
surement error set larger than usual, considering that the
observation error of the measurement is large. The visual
appearance score is also used with a large standard devia-
tion.

Finally, in step 6 in the figure, the track update process-
ing is included in the normal hypothesis of the assumption
that the track and the measurement correspond one by one.
In the proposed method, in the association judgment at the
endpoints in Fig. 2, filtering is performed using only the in-
formation of the associated endpoints.

Compared with the conventional MHT, the tracking
performance can be improved by devising merged bounding
box measurements and filtering considering the occlusion as
described above. The novelty of the proposed method is that
it can cope with the degradation of the bounding box, and it
is characterized by the following three points.

First, as shown in (3) Making Hypothesis in Fig. 1,
the conventional MHT assumes that one measurement cor-
responds to at most one track. The proposed method is
novel in that it generates the hypothesis that multiple tracks
correspond to a single measurement (degeneration hypothe-
sis) and defines degenerated the bounding box measurement
model. Second, compared with the conventional method of
(4) suboptimization in Fig. 1, it efficiently generates N hy-
potheses with high confidence, including the degeneration
hypotheses mentioned above. Finally, it is robust to occlu-
sion compared with the conventional method of the filtered
state vector in (3) of Fig. 1. This is because the endpoints of
the bounding box can be used to update the state vector in
(3) of Fig. 4.

4. Numerical Evaluation
4.1 Simulation Scenario

The effectiveness of the proposed method is verified using
two scenarios. In Scenario 1.1, artificial data is created to
simulate that the lower side of the bounding box becomes
smaller due to occlusion while one target is in progress. The
details of scenario 1 are described. Assuming a person who
moves in the + X axis direction at a speed of 3 pixels/second
with X, Y = 100 pixels, 100 pixels as the initial position, the
size of the bounding box is W, L = 50,200 pixels. Random
noise is added with a standard deviation of 3 pixels. Mea-
surements are made for 10 seconds, and between 5 and 7
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seconds, the detection bounding box is reduced because oc-
clusion due to the foreground obscured the upper side of the
bounding box (the area where y > 100). In scenario 1.2, to
investigate the limitation of the proposed method, the sta-
tistical evaluation results when the observation ratio (which
is the ratio of the size of the observed partial bounding box
to the total size of the bounding box that is not obscured by
obstacles.) varied from 60% to 100% (no occlusion) are de-
scribed. The other settings are the same as in Scenario 1.1.

In Scenario 2, the performance of the proposed method
is evaluated using public open image data. The open data
used training data of MOT16-02, MOT16-04, and MOT16-
09[16], which is data in a crowded environment of multiple
people assuming a fixed camera. Pedestrian detection and
the visual appearance features [13]-[15] used the same data
as Reference [2]. For comparison, a comparison with the
literature method [2] is performed.

In summary, scenario 1 is a simple simulation scenario
to verify the principle, and to validate the effectiveness of the
proposed method when the bounding box is missing due to
occlusion, assuming a single target. Scenario 2 is a realistic
scenario in a multi-target environment. A practical evalu-
ation of the proposed method is performed using a bench-
mark of multi-target tracking in a fixed-point camera.

4.2 Parameters of the Proposed and Conventional Meth-
ods

Table 1 shows the setting parameters of the proposed
method in this study. Measurement noise standard devia-
tion is calculated as a ratio to the size of the bounding box
measurement.

4.3  Simulation Results

The tracking center of the bounding box estimated in Sce-
nario 1.1 is shown. The upper diagram in Fig. 6 shows the
estimated track (“Conv” in the legend), the true center posi-
tion (“True” in the legend), and the apparent center position
of the bounding box (“BB-Center” in the legend) using the
conventional method (normal MHT). The estimated track is
pulled to the apparent center of the bounding box after 5
seconds, and it can be seen that the error between “Conv”
and “True” increases. In contrast, the figure below shows
the center of the bounding box estimated by the proposed
method marked “Prop” in the legend. Since the association
is performed at the endpoints, it can be seen that the true
center position can be estimated even when the bounding
box is hidden by occlusion. Figure 7 shows the results of
the statistical evaluation for Scenario 1.2, where the hori-
zontal axis is the observation ratio and the vertical axis is
the RMSE of the BB estimation. “Proposed” in the legend
indicates the error of the proposed method, and “Obs” in the
legend indicates the error of the bounding box measurement.
Figure 7 shows that if the observation ratio is less than 80%,
the proposed method is able to estimate the occlusion and
suppress the observation error of the BB. However when the
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Table1 MHT configuration parameters

Item
Measurement noise standard | (0.1,0.1,0.1,0.1)
deviation ratio (X,y,w,l)

Frame per second 30
Process noise 80
power spectrum density

Gate size threshold 20
Detection threshold 0.3
(Scenario 2)

Detection probability 0.7
Degeneration judgment | 0.5
threshold (IOU)

Measurement error | 2

magnification for
when degenerate
False alarm rate

update

1.0x1071°

1.0x1071
N best hypothesis number |30
Number of measurements to |5

New target rate

determine

track confirmation

Hypothesis  reliability to|0.9
determine

track confirmation
Average of appearance score | 0.8
Standard  deviation  of |0.1
appearance score
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Fig.6  Tracking result of center position of BB

observation ratio is between 85% and 95%, the observation
error is not sufficiently suppressed.

Next, Fig.8 shows the RMSE of the BB estimation
when the observation ratios are 80, 90, and 100. The hori-
zontal axis indicates the frame number and the vertical axis
shows the RMSE. The top graph shows the simulation re-
sults for an observation ratio of 80, the middle graph for
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Table 2  Performance evaluation (MOT16-02)

MOTA | MOTP | MT | ML | ID | FM | FP | FN

Prop 16.5 71.4 6| 36|20 | 78| 345 14517

Conv 15.2 76.6 3] 3731|114 | 260 14831

Table 3  Performance evaluation (MOT16-04)

MOTA | MOTP | MT | ML | ID FM | FP FN

Prop 353 80.5 6| 34| 76| 389 | 1566 | 29122

Conv 33.3 80 6| 36| 106 | 561 | 1023 | 30584

an observation Ratio of 90, and the bottom graph for an
observation ratio of 100 (no occlusion). In the top graph,
the observation error is suppressed when occlusion occurs
(after 150 frames). However, in the middle graph with an
observation ratio of 90, the occurrence of occlusion can-
not be estimated, and errors occur due to tracking delays in
the frames from 150 to 170, just after the occurrence of oc-
clusion. These results indicate that the proposed method is
particularly effective when the observation ratio is less than
80%.

The evaluation results for Scenario 2 are presented in
Tables 2, 3, and 4. The tracking evaluation indicators are
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Table 4  Performance evaluation (MOT16-09)

MOTA | MOTP MT |ML|ID |FM | FP | FN

Prop 51.6 75.2 6 31|43 93 | 225 | 2275
Conv 457 75.4 4 4139 | 119 | 224 | 2589
Table 5 Calculation time

MOT16-02 MOT16-04 MOT16-09
Proposed 18(7.01) ms 89(39.50) ms | 18(7.39) ms
Conventional | 3(0.56) ms 13(3.46) ms 3(0.51) ms

listed in Ref.[17]. The specific calculation method of the
evaluation indexes in the MOT16 benchmark is given in
[17]. The index summary is as follows. MOTA (Multiple
Object Tracking Accuracy) is the most widely used metric
to evaluate a tracker’s performance and it provides a good
indication of overall performance. MOTP (Multiple Object
Tracking Precision) is the average dissimilarity between all
true positives and their corresponding ground truth targets.
MT is the number of targets which have been successfully
tracked for at least 80% of their lifetime. ML is the number
of tracks which are recovered for less than 20% of its total
length. ID is a mismatch error, where each of the two tracks
is associated with an incorrect measurement corresponding
to another track. FM (Track fragmentations) count the num-
ber of times the ground-truth trajectory is interrupted, FP
(False Positive) represents the number of false alarms, and
FN (False Negative) indicates the number of targets that are
outliers in any hypothesis. “Prop” in the tables indicates
the proposed method and “Conv” indicates the conventional
method (Deep-SORT [2]). It is confirmed that the proposed
method has a high MOTA score in all scenarios and could
reduce ID by approximately 20% while maintaining track-
ing performance, as shown in Tables 2 and 3. The MT,
ML, FM and FN scores are higher than those of the con-
ventional method, and only FP is inferior. This indicates
that the proposed method tends to produce numerous false
tracks. However, the proposed method outperforms the con-
ventional method in terms of the overall evaluation indices
(MOTA and ID). Therefore, it is confirmed that the tracking
performance is improved even in a real environment.

The computation time of the proposed method and the
conventional method for each scenario are shown in Table 5.
The values in the table show the peak computation time for
all frames in each scenario, and the values in parentheses
show the average computation time. In spite of the com-
plexity of the algorithm, the peak computation time of the
proposed method is about 6.0 — 12.5 times less than that of
the conventional method. The computation time of the con-
ventional method is measured using OSS in literature [18].
The computer environment is as follows. The CPU is In-
tel (R) Core @ 3.2 GHz, the installed memory capacity is 8
GB, and the simulator is implemented using C++.
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4.4 Discussion

The proposed method is effective if the prediction is reliable
to some extent; however, the proposed method has the draw-
back that it is ineffective where some predictions cannot be
trusted using a moving camera. Further evaluation and im-
provement studies using various scenarios will be performed
in the future.

5. Conclusion

In this study, we propose a robust tracking method for occlu-
sion that introduces a degeneration hypothesis that relaxes
the MHT measurement to a one-track constraint. The pro-
posed method relaxes the hypothesis that one measurement
and multiple trajectories are associated when the predicted
trajectory of the tracking approaches; therefore the continu-
ation of the tracking is improved using the measurement in
the foreground. The effectiveness of the proposed algorithm
is confirmed through numerical evaluation.
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