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PAPER

INmfCA Algorithm for Training of Nonparallel Voice Conversion
Systems Based on Non-Negative Matrix Factorization∗

Hitoshi SUDA†a), Gaku KOTANI†, Nonmembers, and Daisuke SAITO†, Member

SUMMARY In this paper, we propose a new training framework named
the INmfCA algorithm for nonparallel voice conversion (VC) systems. To
train conversion models, traditional VC frameworks require parallel cor-
pora, in which source and target speakers utter the same linguistic con-
tents. Although the frameworks have achieved high-quality VC, they are
not applicable in situations where parallel corpora are unavailable. To ac-
quire conversion models without parallel corpora, nonparallel methods are
widely studied. Although the frameworks achieve VC under nonparal-
lel conditions, they tend to require huge background knowledge or many
training utterances. This is because of difficulty in disentangling linguistic
and speaker information without a large amount of data. In this work, we
tackle this problem by exploiting NMF, which can factorize acoustic fea-
tures into time-variant and time-invariant components in an unsupervised
manner. The method acquires alignment between the acoustic features of
a source speaker’s utterances and a target dictionary and uses the obtained
alignment as activation of NMF to train the source speaker’s dictionary
without parallel corpora. The acquisition method is based on the INCA
algorithm, which obtains the alignment of nonparallel corpora. In contrast
to the INCA algorithm, the alignment is not restricted to observed samples,
and thus the proposed method can efficiently utilize small nonparallel cor-
pora. The results of subjective experiments show that the combination of
the proposed algorithm and the INCA algorithm outperformed not only an
INCA-based nonparallel framework but also CycleGAN-VC, which per-
forms nonparallel VC without any additional training data. The results also
indicate that a one-shot VC framework, which does not need to train source
speakers, can be constructed on the basis of the proposed method.
key words: voice conversion, exemplar-based voice conversion, non-
negative matrix factorization, INCA algorithm, one-shot voice conversion

1. Introduction

Voice conversion (VC), or voice transformation, is a tech-
nique to transform specific nonlinguistic information of an
input utterance while other pieces of information are pre-
served [1]. In particular, speaker conversion is a system that
converts an input utterance as if it is spoken by a specific
(target) speaker without modifying the linguistic content. In
this paper, the term VC refers to speaker conversion. A
VC system consists of two phases: a training phase and
a conversion phase. Firstly, in the training phase, a sta-
tistical model is trained using some speech corpora. Tra-
ditional frameworks use parallel corpora, in which source
and target speakers utter the same linguistic contents, as
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the speech corpora to acquire a source-to-target mapping
function of acoustic features. As typical conversion models,
Gaussian mixture models (GMMs) [1]–[3], restricted Boltz-
mann machines (RBMs) [4], [5], feedforward neural net-
works (NNs) [6], [7], recurrent neural networks (RNNs) [8],
and non-negative matrix factorization (NMF) [9], [10] are
adopted. In the conversion phase, an input utterance is trans-
formed using the trained model, and a converted utterance
is synthesized. Since the traditional parallel methods require
parallel data for training, they are not applicable in situations
where parallel data are unavailable.

To train models under conditions where parallel data
are unavailable, nonparallel methods that do not require par-
allel corpora have also been widely studied. The main re-
search topic about nonparallel VC frameworks is how to
construct a conversion model without any aligned corpora.
In this paper, we roughly classify approaches for nonparal-
lel VC into two types. In the first type, background models
trained with external data are utilized to disentangle speaker
and linguistic information from acoustic features. By utiliz-
ing background knowledge, the methods based on the first
type of approach require only a small amount of training
data for source speakers. Nonetheless, the methods require
huge background models for high-quality conversion, and it
is costly to construct entire systems. The other type obtains
mapping functions without any additional data. In this pa-
per, we focus on the construction of small VC systems and
therefore discuss the latter type of approach.

In some studies, methods that do not require external
data have already been introduced. However, the meth-
ods have a basic common drawback; the methods deal
with source and target speakers equally. This equality
makes the models difficult to train with smaller corpora,
and hence these methods tend to be unstable and require
a larger amount of training data for both speakers than
those based on the former type of approach. For instance,
CycleGAN-VC [11] and the INCA algorithm [12] obtain
source-to-target mapping and target-to-source mapping si-
multaneously, and VC based on VAEs [13] models latent
space using both source and target utterances with the same
architecture. Regarding a VC system as a speech genera-
tor of a target speaker, the VC system only needs to create
an acoustic model of a target speaker while preserving the
linguistic consistency between the source and target speak-
ers [14]. Note that there is inequality between the source
and target speakers, that is, there is no need to construct
a detailed acoustic model for a source speaker to the same
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extent as for a target speaker. The methods based on the lat-
ter approach handle source and target speakers’ utterances
equally and require more source speaker’s utterances than
needed to acquire linguistic consistency. The goal of this
study is to obtain a linguistically consistent converter and a
high-quality generator with neither many source speakers’
utterances nor additional data.

To achieve this goal, in this paper, we introduce a new
method named the INmfCA algorithm, which generates par-
allel data from nonparallel corpora. The main contribution
of this paper is the establishment of the method that requires
only a small nonparallel corpus of source and target speak-
ers. Compared with other nonparallel techniques that do not
require background data, the method separately achieves the
construction of a target generator and the maintenance of
linguistic consistency; thus, the method can perform VC
with a small number of source speakers’ utterances. The
method is based on exemplar-based VC [9], which disentan-
gles speaker and linguistic information by NMF. In this pa-
per, we interpret the activation of NMF as soft alignment be-
tween decomposed features to exemplars and similarly ac-
quire activation as the INCA algorithm. Owing to NMF’s
property of sparse representation, the method is expected to
precisely model a target speaker with a sufficient linguistic
consistency preserved. The algorithm was first introduced
in [15]. Here, we provide a more detailed and analytical
description and present further discussion of experimental
results by constructing cross-lingual and one-shot VC sys-
tems.

The INCA algorithm has a problem that incorrect
alignment can degrade the final conversion model. To sup-
press the incorrect alignment, some researchers use joint
features in time series and dynamic features [16], [17].
These features take time-series information into account and
inhibit incorrect alignment. This problem originates from
the frame-to-frame nearest neighbor search in the INCA al-
gorithm. The proposed method performs soft alignment in-
stead of one-hot alignment and can avoid this problem.

The rest of this paper is organized as follows. In Sect. 2,
we describe some nonparallel VC methods as related works.
In Sect. 3, we describe baseline techniques that underlie the
proposed method. In Sect. 4, we show a detailed description
of the INmfCA algorithm, which is the method proposed in
this paper. In Sects. 5–7, we describe the experiments we
carried out to evaluate the proposed method. In Sect. 8, we
discuss the effectiveness of the method on the basis of the
experimental results, and in Sect. 9, we present our conclu-
sions.

2. Related Works

2.1 Nonparallel VC Methods Using External Data

One type of approaches to nonparallel VC is to construct
background knowledge using external data and perform VC
by disentangling acoustic features into speaker and linguis-
tic information using the acquired knowledge. A VC frame-

work based on parameter adaptation of GMMs creates a par-
allel VC system by first using some parallel corpora and
then adopts the model to objective source and target speak-
ers [18]. Eigenvoice conversion utilizes supervectors, which
are composed of joint mean vectors of GMMs, as speaker
representation and posteriors of mixtures as linguistic rep-
resentation [19], [20]. The method performs principal com-
ponent analysis (PCA) on supervectors of training speak-
ers and acquires low-dimensional speaker representation.
I-vector [21], which is the common utterance-level feature
used for speaker verification, is also adopted in VC [22].
The technique extracts and converts an i-vector and manip-
ulates input features to hold the converted i-vector. Tran-
scription is also used as external data in nonparallel VC
frameworks. In some studies, neural networks trained with
transcription are utilized to acquire linguistic and speaker
embeddings [23]. VC frameworks based on phonetic pos-
teriograms eliminate speaker information and similarly ex-
tract linguistic information as automatic speech recognition
(ASR) systems, and synthesize utterances in the same way
as text-to-speech (TTS) systems [24]. Since these nonpar-
allel methods extract linguistic information from input ut-
terances using background knowledge, the methods require
only a small amount of training data for source speakers.
However, these methods require huge external data to per-
form high-quality VC, and it is costly to construct entire sys-
tems.

2.2 Nonparallel VC Methods without External Data

The other type of approaches to nonparallel VC uses only
source and target speakers’ utterances and does not re-
quire any external data. CycleGAN-VC and its variants
model source-to-target and target-to-source conversion si-
multaneously without parallel corpora, considering whether
the composite mapping is identity mapping and converted
features deceive the discriminators [11], [25], [26]. VC sys-
tems based on variational autoencoders (VAEs) elaborate la-
tent variables that carry linguistic information by condition-
ing the VAEs with one-hot speaker codes [13]. Although
both CycleGAN-based and VAE-based VC methods are ex-
tended to multi-speaker tasks, the core concepts are the same
as the one-to-one models [27], [28]. INCA, which is an it-
erative combination of a nearest neighbor search step and a
conversion step alignment method, is a method to acquire
parallel data from nonparallel corpora by iterating the near-
est neighbor search and conversion [12]. Since the INCA
algorithm is a method to generate parallel data from nonpar-
allel corpora, any traditional parallel VC framework can be
incorporated. As discussed in Sect. 1, these methods tend
to require a larger amount of training data than necessary to
perform VC because the methods symmetrically treat source
and target utterances.
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Fig. 1 Conceptual image of NMF. NMF is a method to find a hyper-
pyramid that contains almost all the observations. Each basis, or exemplar,
corresponds to an edge of the hyperpyramid.

3. Baseline Techniques

3.1 NMF

NMF is a group of algorithms to decompose a non-negative
matrix into a multiplication of two non-negative matri-
ces [29]. Let Y ∈ R≥0,K×T be a matrix to be decomposed.
NMF obtains H ∈ R≥0,K×N and U ∈ R≥0,N×T that satisfy

Y ≈ HU. (1)

H and U are called dictionary and activation, respectively,
and N denotes the size of the dictionary.

Assuming that Y =
[
y1, y2, . . . , yT

]
is time-series data

such as a spectrogram, the approximation in Eq. (1) can be
rewritten as

yt ≈
N∑

n=1

hnun,t, (2)

where

H = [h1, h2, . . . , hN], (3)

U = [u1,u2, . . . ,uT ], (4)

ut =
[
u1,t, u2,t, . . . , uN,t

]�, (5)

and � denotes transposition of the vector. In this con-
text, K and T denote the numbers of frequency bins
and time frames, respectively. Equation (2) indicates
that an observation yt is decomposed into time-invariant
exemplars h1, h2, . . . , hN and their time-variant intensity
u1,t, u2,t, . . . , uN,t. Supposing Y is a spectrogram, each ex-
emplar hn is interpreted as a spectral template, and each ac-
tivation un,t represents its usage. This is why NMF-based
methods are exemplar-based. Because of its property, NMF
is widely adopted in signal processing studies such as au-
tomatic music transcription [30], noise reduction [31], and
bandwidth expansion [32].

Another aspect of NMF is that it acquires edges, or ex-
emplars, of a subspace that contains almost all the observa-
tions. Figure 1 shows a conceptual image of the acquisition
of representative vectors. The dimension of the subspace, or
the hyperpyramid, corresponds to the number of exemplars.
Each exemplar is also called a basis because the exemplars
form the subspace. Since the exemplars are non-negative

and of the same dimension as the observations, they can be
interpreted as physical quantities similarly to the observa-
tions y1, y2, . . . , yT .

H and U are obtained by minimizingD(Y |HU), where
D is a divergence function such as the Euclidean distance or
generalized Kullback–Leibler (KL) divergence. The prob-
lem cannot be solved analytically, and therefore, the auxil-
iary function method is used to optimize it [33]. The method
optimizes iteratively the objective function using an upper-
bound function as an auxiliary function. For example, letD
be the generalized KL divergence defined as

DKL(Y | X) =
∑
k,t

(
yk,t log

yk,t

xk,t
− yk,t + xk,t

)
, (6)

where

yt =
[
y1,t, y2,t, . . . , yK,t

]�, (7)

X = HU = [x1, x2, . . . , xT ], (8)

xt =
[
x1,t, x2,t, . . . , xK,t

]�. (9)

On the basis of the auxiliary function method, the diver-
gence can be monotonically reduced by iterating the follow-
ings:

hk,n ← hk,n

∑
t
yk,t

xk,t
un,t∑

t un,t
, (10)

un,t ← un,t

∑
k
yk,t

xk,t
hk,n∑

k hk,n
, (11)

where hn =
[
h1,n, h2,n, . . . , hK,n

]�. NMF is equivalent
to maximum likelihood estimation, where the generative
model corresponds to the divergence. If the divergence is
the generalized KL divergence, Y is supposed to be gener-
ated by adding Poisson noise to HU [29].

3.2 Exemplar-Based Parallel VC Framework

NMF has the property to factorize time-series data into time-
invariant exemplars and time-variant activation. Utilizing
this property, Takashima et al. proposed a parallel NMF-
based VC system [9]. Figure 2 shows an overview of the
system.

Let Y(s) = [y(s)
1 , y

(s)
2 , . . . , y

(s)
Ts

] and Y(t) = [y(t)
1 , y

(t)
2 , . . . ,

y(t)
Tt

] be spectrograms of source and target speakers’ utter-
ances, respectively, which have the same linguistic contents.
For better performance, sequences of spectral envelopes are
used as the decomposed spectrograms. By using align-
ing algorithms such as DTW, the time-aligned spectrograms
Y′(s) = [y′(s)

1 , y
′(s)
2 , . . . , y

′(s)
T ] and Y′(t) = [y′(t)1 , y

′(t)
2 , . . . , y

′(t)
T ]

are obtained. The framework approximates the spectro-
grams with speaker-dependent dictionaries and speaker-
independent activation, that is,

Y′(s) ≈ H(s)U and Y′(t) ≈ H(t)U. (12)

Each dictionary H represents a set of spectral templates
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Fig. 2 Overview of the conventional parallel VC system based on
NMF [9]. Gray matrices are estimated or calculated in each step.

of its speaker, and the activation matrix U determines how
dominant each template is at each time. Since the activation
U is shared, h(s)

n acoustically corresponds to h(t)
n for each ex-

emplar index n. Finally, H(s) and H(t) are kept as a conver-
sion model. In contrast to joint-dimensional GMM-based
VC [1], NMF-based VC does not simultaneously model
both source and target features but decomposes them sep-
arately. This procedure is empirically known to mitigate the
degradation caused by the alignment errors, compared with
the simultaneous decomposition of source and target fea-
tures.

In the conversion step, an activation matrix U is
obtained from an input spectrogram Y(s) and the source
speaker’s dictionary H(s), and then a converted spectrogram
X(t) is calculated as X(t) = H(t)U.

NMF-based VC is regarded as the decomposition of
spectra into speaker representation H and linguistic infor-
mation U in an unsupervised manner. This is because the
speaker representation and the linguistic information are ex-
pected to be time-invariant and time-variant, respectively.
However, NMF itself is simply a decomposition process
without explicit constraint for the expected disentanglement,
and the correspondence between dictionaries and speaker
information is not always assured. Hence, NMF does not
perform a perfect disentanglement, that is, activation can in-
clude speaker information. In the parallel NMF-based VC,
the shared activation in the training process also contains the
source speaker’s information. Since the activation includes
unnecessary speaker information, the information degrades
the acquired target speaker’s dictionary. This can lead to
degradation of the naturalness and speaker identity of con-

Fig. 3 Overview of the iteration process in the INCA algorithm [12].
Through iterations, fi(Y(s)) becomes more likely the target speaker, and
alignment becomes feasible.

verted utterances.
The essence of exemplar-based VC is to acquire H(t)

from training utterances and U from utterances to be con-
verted. The source speaker’s dictionary H(s) is simply a
tool to provide linguistic consistency. If U can be estimated
from input features Y(s) without any parallel data, converted
features X(t) can be calculated under nonparallel conditions.
This is a basic idea of the proposed method.

3.3 INCA Algorithm

INCA is an algorithm to obtain alignment, or frame-
by-frame acoustic correspondence, from nonparallel utter-
ances [12]. The INCA algorithm is not a VC method but
just an algorithm for alignment, and thus any parallel VC ap-
proach can be incorporated with the INCA algorithm. Fig-
ure 3 shows a brief explanation of the algorithm.

The INCA algorithm provides alignment by iterating
the following three steps: transformation of source features,
alignment, and training of a temporary conversion model.
Let Y(s) = [y(s)

1 , y
(s)
2 , . . . , y

(s)
Ts

] and Y(t) = [y(t)
1 , y

(t)
2 , . . . , y

(t)
Tt

]
be the feature sequences of source and target speakers’ ut-
terances, respectively. In the transformation step, the source
features are converted by calculating

y(s)
i,n = fi−1

(
y(s)

n

)
, (13)

where i denotes an index of the iteration and fi−1 is a con-
version function trained in the previous iteration. In the first
iteration, identity mapping is used as the conversion func-
tion f0, that is, y(s)

1,n = y
(s)
n . Then, in the alignment step,

alignment between Y(s)
i and Y(t) is obtained by the nearest

neighbor method:

pi(n) = arg min
m

d
(
y(s)

i,n , y
(t)
m

)
(14)

= arg min
m

d
(

fi−1

(
y(s)

n

)
, y(t)

m

)
, (15)

qi(m) = arg min
n

d
(
y(s)

i,n , y
(t)
m

)
(16)

= arg min
n

d
(

fi−1

(
y(s)

n

)
, y(t)

m

)
, (17)

where d is a distance function such as the Euclidean dis-
tance, and pi and qi denote the obtained alignment. Al-
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though the equations indicate that the alignment is per-
formed between the converted features Y(s)

i and the target
features Y(t), this step is equivalent to obtaining the align-
ment between the source features Y(s) and the target fea-
tures Y(t) using the conversion function fi−1. At the end of
each iteration, in the training step, a temporary conversion
function fi is trained from the aligned joint parallel features
[y(s)�

n , y
(t)�
pi(n)]

� and [y(s)�
qi(m), y

(t)�
m ]�. Although the conversion

is equivalent to parallel VC, a coarse mapping function is
used. This is to avoid overfitting, that is, to suppress the ef-
fect of the lack of training samples even when the number
of training utterances is small. Over iterations, the align-
ment and the temporary conversion function are optimized.
Finally, a conversion model is trained using the aligned cor-
pora [y(s)�

n , y
(t)�
pi(n)]

� and [y(s)�
qi(m), y

(t)�
m ]�.

The convergence can be measured with the mean
squared error, which is calculated using

di =
1

Ts + Tt

( Ts∑
n=1

∥∥∥∥y(s)
i,n − y(t)

pi(n)

∥∥∥∥2

+

Tt∑
m=1

∥∥∥∥y(s)
i,qi(m) − y(t)

m

∥∥∥∥2
)
, (18)

and the error is mathematically proved to converge [34].

4. INmfCA Algorithm

The INCA algorithm consists of iteration of searching for
nearest pairs of source and target features and moving of
source features close to the nearest target speaker’s observa-

Fig. 4 Conceptual image of the INCA and INmfCA algorithms. Both
methods gradually convert source features y(s) by repeating alignment,
training conversion model fi, and conversion. The INCA algorithm con-
verts features on the basis of discrete alignment, whereas the INmfCA al-
gorithm moves the source features to the target speaker’s hyperpyramid.

tions. Figure 4 (a) shows a conceptual image of this. The
method seeks one sample for every source and target fea-
ture. If the amount of training data is small, an appropri-
ate corresponding feature may not be present in the data.
Therefore, the method can be vulnerable to phonemes that
are not observed. Consequently, the method can be affected
by unnatural and discontinuous intermediate features. To
eliminate these defects, we propose the INmfCA algorithm,
which is based on exemplar-based VC. Instead of a near-
est neighbor search, the method utilizes NMF and shifts ob-
served source features to the factorized subspace of the tar-
get speaker. The method generates continuous features by
utilizing the activation obtained by NMF. Since the trans-
formation is not restricted to observed samples, the method
can produce reasonable features even when there are no cor-
responding phonemes in the target speaker’s dataset for the
input. Therefore, the method is expected to generate more
natural features than the INCA algorithm. Figure 4 (b) illus-
trates the concept of the method. Owing to its nonnegativity,
NMF can obtain sparse representation. Hence, the subspace
tends to be small and the acquired activation is sparse [29].
The proposed method relies on this capability because the
subspace should be so small that it only contains target fea-
tures.

Another aspect of the INmfCA algorithm is that the
method performs continuous alignment instead of discrete
alignment, or one-hot alignment, in the INCA algorithm.
Exemplar-based VC decomposes spectrograms into exem-
plars and activation, which carries linguistic information.
Note that the speaker of the exemplars does not matter be-
cause the dictionaries are parallel, that is, linguistically con-
sistent. Since the activation indicates how dominant each
exemplar is at each time, the activation can be regarded as
alignment between the decomposed spectrogram and the ex-
emplars. Figure 5 illustrates the concept of soft alignment.
From this viewpoint, the INmfCA algorithm replaces one-
hot alignment in the INCA algorithm with soft alignment
performed by NMF. Since the property that activation is
non-negative and can be regarded as soft alignment is indis-
pensable to the proposed method, NMF is an optimal factor-
ization method among various decomposition methods for

Fig. 5 Visualization of the concept that activation is soft alignment.
While the INCA algorithm performs one-hot alignment between source
and target features, the INmfCA algorithm acquires continuous mapping
from source features to target exemplars.
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Fig. 6 Overview of the process of the INmfCA algorithm. Gray matrices
are estimated or calculated in each step.

the INmfCA algorithm.
By similarly acquiring soft alignment as the INCA al-

gorithm, the proposed method constructs an NMF-based
VC system with neither parallel data nor a large amount of
training data while preserving the linguistic consistency of
dictionaries. Since the alignment is not restricted to ob-
served samples, the correspondence of dictionaries can be
retained even if the number of utterances is small for the
source speaker.

The method consists of three steps: training of a tar-
get dictionary, estimation of activation from source fea-
tures, and acquisition of a source dictionary. Figure 6 sum-
marizes the method. Let Y(s) = [y(s)

1 , y
(s)
2 , . . . , y

(s)
Ts

] and

Y(t) = [y(t)
1 , y

(t)
2 , . . . , y

(t)
Tt

] be the feature sequences of source
and target speakers, respectively.

In the first step, a target dictionary H(t) is obtained
by decomposing Y(t) using NMF. This step is regarded as
acoustic modeling of the target speaker. Since the factor-
ization is not constrained, the dictionary models the target
speaker as well as it potentially can. In this method, this
target speaker’s dictionary is not updated in the latter proce-
dures. This is because joint modeling of source and target
speakers can lead to performance degradation, as in the case
of parallel NMF-based VC.

In the second step, an activation matrix U is estimated
from the source features Y(s) by iterating the following four
substeps.

1. Transformation. Auxiliary features Y(s)
i are obtained

by calculating

y(s)
i,ts
= fi−1

(
y(s)

ts

)
, (19)

where i denotes an index of the iteration, and fi−1 is
a transformation function trained in the previous itera-
tion. In the first iteration, the identity transformation is
applied, that is, y1,ts = y

(s)
ts

.

2. NMF Decomposition. Y(s)
i is decomposed by NMF as

follows:

Y(s)
i ≈ H(t)Ui, (20)

where Ui denotes the acquired activation at the i-th it-
eration. This step corresponds to the alignment step
in the INCA algorithm, and Ui carries alignment infor-
mation between the converted features Y(s)

i and the tar-
get dictionary H(t). This is equivalent to the alignment
between the source features Y(s) and the target dictio-
nary H(t) obtained using the conversion function fi−1.
Compared with the INCA algorithm, the alignment is
continuous.

3. Reconstruction. Converted feature Xi is obtained by
calculating

Xi = H(t)Ui. (21)

Xi represents the converted features of Y(s), and this
step is equivalent to parallel data generation.

4. Training. A conversion function fi is trained using Y(s)

and Xi. A coarse conversion method such as GMM-
based VC with a small number of Gaussian compo-
nents is applied to avoid overfitting. Although Xi does
not represent the target speaker well, it is closer to the
target than Y(s) because Xi is in the target speaker’s
space. Therefore, the trained conversion fi is capable
of gradual conversion.

The quality of temporary conversion can be measured
using the NMF divergence D( fi(Y(s))|Xi) in the same way
as in the case of the INCA algorithm. The convergence of
the method cannot be mathematically proved because the
criteria of NMF and temporary conversion f are different.
Nevertheless, this does not matter empirically as shown in
Sect. 6.

In the last step, a source dictionary H(s) is acquired by
NMF using the source features Y(s) and the obtained activa-
tion U.

In the conversion phase, input features can be con-
verted using the trained dictionaries in the same way as in
the case of the NMF-based parallel VC framework.

Since the INmfCA algorithm is an alignment method
similar to the INCA algorithm, it can be combined with
any parallel VC system. To train parallel VC systems, Y(s)

and Xi are used for source and target features, respectively.
However, in this paper, we adopt the exemplar-based VC
framework as a conversion method to utilize the target dic-
tionary H(t).



1202
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.6 JUNE 2022

As stated in Sect. 3.2, NMF does not perform the per-
fect disentanglement of the speaker information and linguis-
tic information. In contrast to the parallel NMF-based VC
framework, in the INmfCA algorithm, the activation ac-
quired at the first step is discarded, and the leaked speaker
information does not degrade the final conversion quality,
especially the naturalness. However, because of the imper-
fect disentanglement, the subspace of the target speaker’s
dictionary tends to be larger than necessary. This can cause
the degradation of the speaker identity of the converted ut-
terances.

5. Common Experimental Setups

The Japanese–English and Japanese–Chinese Bilingual
Speech Corpus† was used as the dataset. In this study,
only Japanese–English bilingual speakers were selected.
EJF101, EJF102, and EJM101 were professional speakers,
and the other speakers were not. Each speaker uttered both
Japanese and English sentences. Table 1 shows detailed in-
formation about the speakers. The utterances that contained
phonetically balanced sentence sets were used for training,
and those that contained semantically unpredictable sen-
tences were used for evaluation. Each utterance for training
and evaluation was about 5 s and 3.5 s long, respectively.
The speech was downsampled to 24 kHz. WORLD [35]
(D4C edition [36]) was used for analysis and synthesis. In
the synthesis process, Requiem, which is a variation of
WORLD, was adopted. To improve the naturalness of syn-
thesized speech, zero-phase filtering was incorporated with
the synthesis process of Requiem. The frame periods were
1 ms. The fundamental frequencies were linearly converted
as follows:

φ̂(t)
t =

σ(t)

σ(s)

(
φ(s)

t − μ(s)
)
+ μ(t), (22)

where φ(s)
t and φ̂(t)

t denote the source and converted logarith-
mic fundamental frequencies at the t-th frame, and μ and
σ are the mean and the standard deviation of the logarith-
mic fundamental frequencies, respectively. The aperiodic
parameters were not converted. In systems based on NMF,
the decomposed matrices were 256th-order mel-scaled ab-
solute spectrograms that were acquired by WORLD analy-
sis, and the factorization criterion was the generalized KL
divergence. The number of bases was fixed to 128.

In the INCA and INmfCA algorithms, a temporary
conversion model was applied to 100th-order mel-cepstral
coefficients. The model was gradually complicated over it-
erations to expedite convergence and to improve the stability
of the training process††. Table 2 shows the schedule of the
model. Frequency transformation is defined in the z-domain
as

†https://alaginrc.nict.go.jp/slc-outline.html
††The process to increase the number of Gaussian components

of GMMs is called mixup. This technique is adopted in frame-
works such as MSR Identity Toolbox.

Table 1 Detailed information about the speakers. The native languages
of the professional speakers are not available in the dataset.

speaker gender native language professional or not

EJF04 female Japanese, English nonprofessional
EJF08 female Japanese nonprofessional
EJM09 male Japanese, English nonprofessional
EJM13 male Japanese nonprofessional
EJF101 female professional
EJF102 female professional
EJM11 male Japanese nonprofessional

EJM101 male professional

Table 2 Schedule of the temporary conversion function. Each model is
applied to 100th-order mel-cepstral coefficients.

iteration conversion model number of parameters

1–10 Frequency transformation 1
11–20 GMM-based VC (M = 1) 500
21–30 GMM-based VC (M = 2) 1,001
31–40 GMM-based VC (M = 4) 2,003
41–50 GMM-based VC (M = 8) 4,007
51–60 GMM-based VC (M = 16) 8,015

ẑ−1 =
z−1 − α
1 − αz−1

, z = e jω, ẑ = e jω̂, (23)

where α is a warping parameter that is −1 < α < 1,
and ω and ω̂ are normalized angular frequencies before
and after transformation, respectively [37]. The transfor-
mation was calculated using a recursion formula in the
cepstral domain [38]. A GMM-based VC system converts
source features x = [x1, x2, . . . , xT ] into target features
y =

[
y1, y2, . . . , yT

]
using a GMM [1]. In a GMM-based VC

system, a GMM models joint features z = [z1, z2, . . . , zT ]
(zt =

[
x�t , y�t

]�) as follows:

p(z) =
M∑

m=1

wmN(z;µm,Σm), (24)

µm =

[
µ(x)

m

µ(y)
m

]
, Σm =

[
Σ

(xx)
m Σ

(xy)
m

Σ
(xy)
m Σ

(yy)
m

]
(25)

where M is the number of mixtures, and µm and Σm denote
the mean vector and the variance matrix of the m-th mix-
ture, respectively. To avoid overfitting, Σ(xx), Σ(yy), and Σ(xy)

were restricted to diagonal matrices. The mapping function
is acquired on the basis of maximum likelihood estimation
as follows:

ŷ = arg max
y

p(y|x), (26)

where x and ŷ are the input and converted features, respec-
tively [3]. In Eq. (26), p(y|x) is given by

p(y|x) =
M∑

m=1

p(m|x)p(y|x,m), (27)

where

p(m|x) =
wmN

(
x;µ(x)

m ,Σ
(xx)
m

)
∑M

m′=1 wm′N
(
x;µ(x)

m′ ,Σ
(xx)
m′

) , (28)
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p(y|x,m) = N(y; Em, Dm). (29)

In Eq. (29), Em and Dm are defined as

Em = µ
(y)
m + Σ

(xy)
m Σ

(xx)
m
−1(

x − µ(x)
m

)
, (30)

Dm = Σ
(yy)
m − Σ(xy)

m Σ
(xx)
m
−1
Σ

(xy)
m . (31)

Although any parallel VC method can be applied, a GMM-
based VC method was adopted in this paper because con-
tinuous conversion can be achieved with a small number of
parameters, and the complexity of the model can be gradu-
ally increased.

6. Objective Evaluation of the Proposed Method

6.1 Experimental Setups

EJF04 and EJM09 were selected as the source speakers,
and EJF08 and EJM13 were selected as the target speak-
ers. EJF04 and EJF08 are female speakers, and EJM09
and EJM13 are male speakers. The numbers of utterances
were 30 for training target speakers and 1 for training source
speakers.

6.2 Convergence of the Method

To confirm the convergence of the INmfCA algorithm, the
NMF divergence D( fi

(
Y(s)

)
|H(t)U) was observed. As de-

scribed in Sect. 4, the divergence is expected to converge be-
cause it indicates the distance between fi

(
Y(s)

)
and the target

speaker’s ideal features.
Figure 7 shows the results. All the results demon-

strate that the INmfCA algorithm converged in terms of
NMF divergence. Since the convergence is not mathemat-
ically proved, the divergence did not decrease monotoni-
cally. However, it was shown to be a reasonable assump-
tion. The results also indicate that the divergence gradually
decreased over iterations by scheduling the temporary con-
version function.

6.3 Quality of Temporary Conversion

To evaluate the quality of temporary conversion fi, the mel-
cepstral distortion (MCD) between converted features and
the ground truth was examined. MCD is defined as

MCD[dB] =
10

log 10

√√√
2

24∑
d=1

(
mc(y)

d − m̂c(y)
d

)2
, (32)

where mc(y)
d and m̂c(y)

d denote the d-th component of the tar-
get and converted mel-cepstral coefficients, respectively†.

†In this paper, all the MCD values were calculated using
24th-order mel-cepstral coefficients although the 100th-order mel-
cepstral coefficients were used for conversion. Since the values
of higher-order mel-cepstral coefficients are so small, they do not
affect the MCD values.

Fig. 7 NMF divergence D
(

fi
(
Y(s)

)∣∣∣H(t)U
)

over iterations. The bottom
panel shows the magnified chart of the top panel. The divergence indicates
the convergence of the proposed method.

Fig. 8 MCD between intermediate features and the ground truth.

As the ground truth, parallel corpora, which are not avail-
able in practical nonparallel situations, were used only for
this evaluation. In this experiment, a method combining the
INCA and INmfCA algorithms was also examined. In this
method, the INCA algorithm was applied for 25 iterations
followed by the INmfCA algorithm.

Figure 8 shows the results. Although the results show
that the INmfCA algorithm reduced MCD gradually, the
method did not achieve an MCD as low as that achieved
with the INCA algorithm in some cases. The results also
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Table 3 Results of A/B and ABX tests to compare the conversion quality. Each cell shows the
superior systems, and the significantly superior systems (p < 0.05) are shown in bold.

Evaluated pair
Naturalness Speaker identity

Intra-gender Inter-gender Intra-gender Inter-gender

(a) INCA vs INmfCA INmfCA INmfCA INmfCA INmfCA
(b) INCA vs Combi Combi Combi Combi Combi
(c) Para vs Combi Combi Combi Combi Combi
(d) CycleGAN vs Combi Combi Combi Combi Combi
(e) Combi: 1 vs 10 utterances for source 10 utterances 10 utterances 10 utterances 10 utterances
(f) Combi: 10 vs 30 utterances for target 10 utterances 30 utterances 30 utterances 30 utterances
(g) Combi: 5 vs 30 utterances for target 30 utterances 30 utterances 30 utterances 30 utterances

show that the INCA algorithm was easily overfitted with
a complex conversion model, especially under inter-gender
conditions. From these results, a model more complicated
than GMM-based VC with eight mixture components was
not suitable for the temporary conversion model. On the
other hand, the INmfCA algorithm was hardly overfitted, as
far as the experimental results show. The results show that
the combination method attained a comparable conversion
quality to the INCA algorithm. Therefore, the combination
method had a property of not only gradual optimization but
also a conversion quality as high as that of the INCA algo-
rithm.

7. Performance Evaluation of the Proposed Method

7.1 Experimental Setups

EJF101 and EJM11 were selected as the source speakers,
and EJF102 and EJM101 were selected as the target speak-
ers. EJF101 and EJF102 are female speakers, and EJM11
and EJM101 are male speakers. The experiments examined
both intra-gender and inter-gender conversions.

As subjective experiments, preference A/B tests for
naturalness and ABX tests for the speaker identity were con-
ducted. In each test, at least 25 listeners answered the ques-
tions via a crowdsourcing system. Each listener answered
two questions about each test, and therefore the sample size
was at least 50 in each test. All the evaluated utterances
were in Japanese, and all the listeners were native speakers
of Japanese.

On the basis of the results of the preliminary ex-
periment described in Sect. 6, iteration in the INCA and
INmfCA algorithms was stopped at the 40th and 50th it-
erations, respectively.

Some samples are available at https://www.gavo.t.u-
tokyo.ac.jp/∼hitoshi/inmfca-vc/.

7.2 Intra-language Conversion

In this section, the following systems were evaluated.

• INmfCA: NMF-based VC system trained using the
INmfCA algorithm. The numbers of training utter-
ances were 30 for the target speakers and 10 for the
source speakers.

• Combi: NMF-based VC system trained using the

INCA algorithm and the INmfCA algorithm sequen-
tially, which is described in Sect. 6.3. The training ut-
terances were the same as those in INmfCA.

• INCA: NMF-based VC system trained using the INCA
algorithm. The training utterances were the same as
those in INmfCA and Combi.

• CycleGAN: CycleGAN-VC [11], which can perform
nonparallel VC without any additional data. An open-
source implementation† was utilized. The utterances
used for training were the same as those in INmfCA
and Combi. The number of epochs was 10000. To
improve naturalness, the 0th coefficients were not con-
verted.

• Para: Conventional NMF-based parallel VC [9]. The
number of training utterances was 30, and the utter-
ances were the same as those of the target speaker in
the above systems. Affine-DTW [39] was performed
for time alignment to suppress the effects of time-
alignment mismatches. The number of iterations was
5 in the Affine-DTW.

All the methods using NMF used the same target dictionar-
ies.

First, the systems INCA, INmfCA, and Combi were
compared. In Table 3, (a) and (b) show the results. The re-
sults showed that the proposed INmfCA algorithm outper-
formed the INCA algorithm in terms of naturalness, and the
combination framework outperformed the INCA algorithm
significantly. Consequently, the proposed system performed
better when the result of the INCA algorithm was employed.

Second, the pair Para and Combi was evaluated. In
Table 3, (c) shows the results. The proposed system sig-
nificantly outperformed the conventional parallel method.
This is because the parallel method was affected by mis-
matches on DTW even if Affine-DTW was adopted. The
mismatch damaged the linguistic consistency and deterio-
rated the quality of the converted utterances in an auditory
sense.

Third, the pair Combi and CycleGAN was evaluated.
In Table 3, (d) shows the results. The proposed system out-
performed CycleGAN-VC in terms of naturalness, whereas
the systems showed comparable conversion performance in
terms of the speaker identity. The results show that the pro-
posed method achieves more natural synthesis with a small

†https://github.com/leimao/Voice Converter CycleGAN
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Table 4 Results of A/B and ABX tests to evaluate the conversion quality of the system Combi under
intra- and cross-lingual conditions. Each cell shows the superior systems, and the significantly superior
systems (p < 0.05) are shown in bold.

EJF101–EJF102 EJF101–EJM101 EJM11–EJF102 EJM11–EJM101

Naturalness Intra-lingual Intra-lingual Intra-lingual Cross-lingual
Speaker identity Cross-lingual Intra-lingual Intra-lingual Cross-lingual

dataset than CycleGAN-VC.
Fourth, the systems Combi with different training ut-

terances for source speakers were compared. In this experi-
ment, one model was trained using 10 utterances in the same
way as in the experiments, and the other model was trained
using 1 utterance. In Table 3, (e) shows the results, which
show that more data of the source speakers provided more
naturalness and identity of the target speakers. This seems to
be because the temporary mapping in the iteration became
increasingly precise as the number of the source speaker’s
utterances increased.

Finally, the systems Combi with different training ut-
terances for target speakers were compared. In this experi-
ment, the number of training utterances was varied to 5, 10,
and 30. In Table 3, (f) and (g) show the results. The models
trained with 10 utterances and the models trained with 30
utterances showed comparable performance. On the other
hand, the models trained with 5 utterances were significantly
inferior to those trained with 30 utterances. The results indi-
cate that the proposed framework efficiently performs con-
version with a small number of utterances, whereas a suffi-
cient amount of training utterances is required to construct
the target speakers’ model.

7.3 Comparison of Intra- and Cross-lingual Conversions

In this section, we examine the effectiveness of the pro-
posed combination method in cross-lingual conversion. In
the experiment, the training utterances of the target speakers
were English phonetically balanced sentence sets instead of
Japanese sentences, and the other conditions were the same
as those described in the previous section. To eliminate the
effects of the differences in the pitch between languages, the
same conversion model was used for the conversion of fun-
damental frequencies.

Table 4 shows the results. Under the condition where
the source speaker was female, either the naturalness or the
speaker identity was affected in cross-lingual conversion.
The performance deterioration was caused by the different
phonetical balance in Japanese and English. Since the tar-
get dictionary was trained using English utterances, the syn-
thesized Japanese utterances were affected by the difference
in the language. However, under the condition where the
source speaker was male, the performance of cross-lingual
conversion was comparable to that of intra-lingual conver-
sion and even better than the intra-lingual system in terms
of naturalness. This may be because the Japanese utterances
of the source male speaker can be sufficiently factorized us-
ing English dictionaries.

Fig. 9 Global variances of the converted utterances. The source and tar-
get speakers were EJM11 and EJF102, respectively, and the values show
the means of the global variances over converted utterances.

7.4 One-Shot VC System

In this section, we discuss the one-shot conversion perfor-
mance of the proposed method. In this paper, one-shot con-
version is defined as the system that converts the speaker
identity of a source speaker’s utterance into a trained tar-
get speaker without training the source speaker at all. That
is, the system converts an input utterance whose speaker is
unknown.

In this paper, intermediate features are utilized as
converted features. In a one-shot VC system based on
the INCA algorithm, the temporarily transformed features
fi(Y(s)) were used as converted features. Note that aligned
features y(t)

pi(n) are not suitable because they are unnatural
because of the discontinuous nearest neighbor search. In
a system based on the INmfCA algorithm, the reconstructed
features Xi were used as converted features. As shown in
Fig. 9, the intermediate features were oversmoothed com-
pared with those generated in the other situations, and hence
global variance [3] is compensated for in all the one-shot
systems.

In Table 5, (a)–(c) show the results of the perfor-
mance comparison of one-shot systems INCA, INmfCA,
and Combi. The performance of the system Combi was
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Table 5 Results of AB and ABX tests to compare the conversion quality of one-shot and one-
utterance systems. Each cell shows the superior systems, and the significantly superior systems
(p < 0.05) are shown in bold.

Evaluated pair
Naturalness Speaker identity

Intra-gender Inter-gender Intra-gender Inter-gender

(a) One-shot: INCA vs Combi INCA Combi INCA INCA
(b) One-shot: INmfCA vs Combi INmfCA INmfCA Combi Combi
(c) One-shot: INCA vs INmfCA INmfCA INmfCA INCA INCA

(d) INCA: one-shot vs one-utterance one-shot even one-shot one-shot
(e) INmfCA: one-shot vs one-utterance one-utterance one-utterance one-utterance one-utterance
(f) Combi: one-shot vs one-utterance one-utterance one-utterance one-utterance one-shot

Table 6 MCD [dB] of all the systems and conditions. The intra-gender column shows the average
MCD of the pairs EJF101–EJF102 and EJM11–EJM101. The inter-gender column shows the average
MCD of the pairs EJM11–EJF102 and EJF101–EJM101. The average column shows the average MCD
of all the pairs.

Situation Method
Number of utterances MCD
Source Target Intra-gender Inter-gender Average

Source (Natural) 6.63 7.25 6.94

Parallel 30 30 10.49 10.32 10.41

INCA 10 30 8.09 9.38 8.73
INmfCA 10 30 6.03 6.52 6.28
Combi 10 30 6.14 6.58 6.36

Nonparallel
CycleGAN 10 30 6.00 6.10 5.78

Combi 1 30 6.49 6.90 6.69
Combi 10 10 6.08 6.61 6.35
Combi 10 5 6.74 7.14 6.94

Combi (cross-lingual) 10 30 5.98 6.76 6.37

INCA 1 30 6.22 6.48 6.35
One-shot INmfCA 1 30 6.47 7.00 6.74

Combi 1 30 6.22 6.55 6.38

INCA 1 30 10.12 10.58 10.35
One-utterance INmfCA 1 30 6.14 6.58 6.36

Combi 1 30 6.56 7.06 6.81

comparable to that of the system INCA and superior in
terms of naturalness in inter-gender conversion. In addition,
the system INmfCA outperformed the systems Combi and
INCA in terms of naturalness, whereas the performance was
comparable in terms of speaker identity.

The overall results are quite different from those of the
total VC system; the INmfCA algorithm was superior to the
combination method and the INCA algorithm. These results
indicate that the INmfCA algorithm generated more natural
intermediate features than the INCA algorithm. In contrast
to naturalness, the performance in terms of the speaker iden-
tity was comparable for all the systems.

In addition, the one-utterance systems were also exam-
ined, in which the full VC systems were constructed. In
each system, only one utterance of the source speaker was
used for training, and the utterance was used also for con-
version. That is, the condition is the same as that in one-shot
conversion, but the full VC systems were utilized. The main
difference between one-shot and one-utterance systems is
whether NMF-based VC is adopted or not, that is, whether
dictionaries of source speakers are trained or not. The
investigation of the one-utterance systems aims to reveal
the effects of the conversion model on the total conversion

performance. In Table 5, (d)–(f) show the results of the com-
parison between the one-shot and one-utterance systems. As
for the system INCA, the one-shot system significantly out-
performed the one-utterance system. On the other hand, for
the system INmfCA, the one-utterance system outperformed
the one-shot system. For the system Combi, different results
were obtained for the speaker identity and naturalness; the
one-utterance system outperformed the one-shot system in
terms of naturalness, but the one-shot system outperformed
the one-utterance system in terms of speaker identity.

7.5 Subjective and Objective Comparison of All Systems

To evaluate the proposed system objectively, MCD values
of the generated and target utterances were calculated for
all the systems and conditions. Table 6 shows the results.
The systems Para and INCA show higher MCD values than
the other systems. On the other hand, in terms of one-shot
conversion, the performance of the system INCA was com-
parable to that of the system Combi. As for one-utterance
conversion, although the system INmfCA slightly outper-
formed the system Combi, the results show a similar trend
to those of the full nonparallel VC situations. In addition,
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Table 7 Mean opinion scores of all the systems for naturalness and speaker identity. The naturalness
is evaluated using a 5-point scale from 1 (completely unnatural) to 5 (completely natural), and the
speaker identity is evaluated using a 4-point scale from 1 (absolutely different) to 4 (absolutely the
same).

Situation Method
Number of utterances Naturalness Speaker identity
Source Target Intra-gender Inter-gender Average Intra-gender Inter-gender Average

Source (Natural) — — 4.82 1.36 1.04 1.20
Target (Natural) — — 4.95 — — 3.61

Parallel 30 30 1.84 1.52 1.68 1.97 1.86 1.92

INCA 10 30 2.92 2.32 2.62 2.00 1.40 1.70
INmfCA 10 30 3.60 3.11 3.35 1.92 1.52 1.72
Combi 10 30 3.63 3.13 3.38 1.96 1.39 1.68

Nonparallel
CycleGAN 10 30 2.54 1.78 2.16 2.11 1.58 1.84

Combi 1 30 3.25 2.85 3.05 1.88 1.42 1.65
Combi 10 10 3.78 2.94 3.36 1.87 1.40 1.64
Combi 10 5 2.72 2.43 2.57 1.59 1.44 1.51

Combi (cross-lingual) 10 30 3.90 2.95 3.43 1.93 1.37 1.65

INCA 1 30 2.21 1.36 1.78 2.15 1.71 1.93
One-shot INmfCA 1 30 2.50 2.31 2.41 1.91 1.53 1.72

Combi 1 30 2.14 1.51 1.82 1.97 1.67 1.82

INCA 1 30 1.90 1.40 1.65 2.01 1.53 1.77
One-utterance INmfCA 1 30 3.59 2.99 3.29 1.83 1.40 1.62

Combi 1 30 3.03 2.42 2.73 2.12 1.52 1.82

the system Combi trained using 10 utterances for the source
speakers outperformed that trained using 1 utterance.

In addition, all the systems are compared subjectively
on the basis of mean opinion scores (MOS). For natural-
ness, the systems are evaluated using the 5-point scale from
1 (completely unnatural) to 5 (completely natural). For
speaker identity, the systems are evaluated using the 4-level
scale: (1) absolutely different, (2) different, not sure, (3) the
same, not sure, and (4) absolutely the same. The number
of listeners was at least 25, and all the listeners answered
two questions about each test. Table 7 shows the results.
In terms of naturalness, the proposed systems INmfCA and
Combi outperformed the systems INCA and CycleGAN.
The one-utterance system based on INmfCA outperformed
the other one-shot and one-utterance systems. On the other
hand, in terms of the speaker identity, the results indicate
there is room for improvement for all the systems.

8. Discussion

8.1 Quality of Intermediate Features

The results of the one-shot VC system, which is described
in Sect. 7.4, indicate the quality of intermediate features
because the examined utterances were synthesized directly
from the features. From the results, the intermediate fea-
tures of the INmfCA algorithm were found to be more nat-
ural than those of the INCA algorithm. The INCA algo-
rithm tends to be vulnerable to incorrect alignment because
the INCA algorithm performs frame-by-frame discrete map-
ping between source and target features. In some studies,
the problem is minimized by taking time-series information
into account [16], [17]. In contrast to the INCA algorithm,
the INmfCA algorithm performs soft alignment and avoids

unnatural mapping. The samples generated by the combi-
nation system were also inferior to those of the INmfCA
algorithm in terms of naturalness. This is because the com-
bination system used the distorted features generated by the
INCA algorithm for initialization. In terms of the speaker
identity, no significant differences were observed, although
the INmfCA algorithm was inferior in terms of objective
evaluation. One possible reason is that the samples gen-
erated by the INCA algorithm and the combination system
were distorted, and thus the inadequate naturalness affected
the speaker identity in the auditory sense.

8.2 Conversion Quality in the Full VC Situations

The result is different when the conversion models were
used. As for the speaker identity, the INmfCA algorithm
lacks quality, as shown in Sect. 6.3. The combination sys-
tem resolved the problem by initializing the INmfCA algo-
rithm using the results of the INCA algorithm. In addition,
the combination system outperformed the INCA algorithm.
This could be because the INCA algorithm obtained a dis-
continuous and unnatural alignment, and source dictionaries
were degraded. Although the combination system was infe-
rior to the INmfCA algorithm in the one-shot situations in
terms of naturalness, its performance was comparable to that
of the INmfCA algorithm in the full VC situations. Since the
conversion model was trained using continuous activation,
this problem could be minimized by training source dictio-
naries. Consequently, the combination method generated
speech that is as natural as that generated by the INmfCA
algorithm and more similar to the target than that generated
by the INCA algorithm in terms of the speaker identity.
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8.3 Effects of the Alignment Mismatches

From the results of experiments, the conversion quality of
the INCA algorithm and the parallel NMF-based VC system
was inferior to that of the INmfCA algorithm and the com-
bination method. The reason considered is that NMF-based
VC is vulnerable to alignment mismatches. The results of
the comparison between the one-shot and one-utterance sys-
tems also indicate this problem. Since the proposed frame-
work utilizes continuous activation obtained by NMF, the
framework could avoid the problem. Therefore, the exper-
imental results confirmed the effectiveness of the proposed
concept in NMF-based VC.

8.4 Quality of the Target Generators and Linguistic Con-
sistency

The system trained with 10 utterances outperformed that
trained with 1 utterance, as described in Sect. 7.2. This
result suggests that the degradation of the source dictio-
nary caused the deterioration of the speaker identity and
naturalness. That is, a more linguistically consistent con-
verter is achieved with more source speakers’ utterances.
Although the method requires fewer training utterances for
source speakers than for target speakers, a sufficient num-
ber of source speakers’ utterances are still required to con-
struct the linguistically consistent converter. Similarly, the
systems with a small number of training utterances for the
target speaker were affected in terms of speaker identity and
naturalness. In addition, as for cross-lingual conversion, the
target dictionaries were trained using a different language,
and the naturalness and speaker identity were degraded in
some cases. These results indicate that the training utter-
ances with sufficient quantity and high quality are required
to construct the target speaker’s dictionary. Consequently,
as for the proposed combination system, the quality of both
the target speaker’s dictionary and the temporary conversion
model determine the naturalness and the speaker identity of
the converted utterances. That is, the high quality of both the
target generator and the linguistic consistency is required
for high-quality conversion. However, the cross-lingual
systems outperformed the intra-lingual systems in male-to-
male conversion. In addition, no significant difference was
found between the intra-lingual and cross-lingual systems
in objective experiments. Therefore, the mismatches of lan-
guages do not necessarily lead to a lower conversion perfor-
mance.

8.5 Comparison of One-Utterance and One-Shot Systems

The results of the comparison between the one-utterance and
one-shot conversion systems indicate the effectiveness of the
NMF-based VC systems in each situation. As for the INCA
algorithm, the one-shot conversion system outperformed the
one-utterance system. This can be explained by the fact
that alignment errors easily degrade NMF-based VC. On the

other hand, as for the INmfCA algorithm, the one-utterance
system was superior to the one-shot system. One possible
reason is that the obtained activation was sparse in the one-
utterance system. The means of the Wiener entropy, which
is a metric of the flatness of vectors, of utilized activation
were 0.1331 and 0.5530 in the one-utterance and one-shot
systems, respectively; hence, the one-utterance system uti-
lizes more sparse activation than the one-shot system. When
using more sparse activation, the target dictionaries were
used as spectral templates; thus, the generated utterances
sounded more natural. This improvement in naturalness
seemed to be caused by the NMF-based VC framework. The
results of the combination system are the composition of
the previous two results. Although the naturalness was im-
proved using NMF-based VC, the speaker identity was still
affected by unnatural alignment. Overall, the one-utterance
system with the INmfCA algorithm is optimal for one-shot
situations.

9. Conclusion

In this paper, we proposed a new nonparallel train-
ing method, which is named the INmfCA algorithm, of
exemplar-based VC systems. The method is based on the
INCA algorithm and acquires alignment from nonparallel
corpora by iterating NMF and transformation. In contrast to
the INCA algorithm, which obtains alignment between ob-
served samples of the source and target speakers’ utterances,
the proposed method acquires soft alignment from source
features to target exemplars. Hence, the proposed method
generates more natural speech than the INCA algorithm.
The results of the subjective experiments show that the pro-
posed method was superior to the INCA algorithm in terms
of naturalness. The results also show that the method com-
bining the INCA algorithm and the INmfCA algorithm gen-
erated speech more similar to the target than the INmfCA
algorithm in terms of the speaker identity. One-shot VC,
which does not require training utterances for source speak-
ers, is also presented here. The experimental results demon-
strate the effectiveness of the proposed method in one-shot
VC situations.

In future work, the quality of exemplars of target speak-
ers should be investigated. This is because the proposed
method relies on the smallness of the subspace of the tar-
get speaker factorized by NMF. The experimental results
indicate that the hyperpyramid was too large, and thus the
speaker identity was not sufficiently converted. To over-
come this problem, the combination method with the INCA
algorithm was used in this study. Some constraints of
NMF such as minimum-volume constraint [40] and sparse
constraint [41], [42] will help improve target dictionaries.
Moreover, the WORLD vocoder is adopted in this paper
to precisely evaluate the proposed method; however, neu-
ral vocoders [43]–[45] or WaveCycleGAN [46] can also be
adopted. These methods will improve both the natural-
ness and speaker identity of converted speech. In addi-
tion, experiments to compare the proposed method and other
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nonparallel VC frameworks should be conducted. In this
paper, we focused on the experimental evaluation of the
method within the scope of NMF-based VC. Although the
comparison between the proposed method and CycleGAN-
VC was conducted, comparison with various non-parallel
VC methods, regardless of the necessity of external data,
will help clarify the characteristics of the proposed method.
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