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PAPER

A Hybrid Bayesian-Convolutional Neural Network for Adversarial
Robustness

Thi Thu Thao KHONG†a), Nonmember, Takashi NAKADA††, Member, and Yasuhiko NAKASHIMA†, Fellow

SUMMARY We introduce a hybrid Bayesian-convolutional neural net-
work (hyBCNN) for improving the robustness against adversarial attacks
and decreasing the computation time in the Bayesian inference phase. Our
hyBCNN models are built from a part of BNN and CNN. Based on pre-
trained CNNs, we only replace convolutional layers and activation func-
tion of the initial stage of CNNs with our Bayesian convolutional (BC) and
Bayesian activation (BA) layers as a term of transfer learning. We keep
the remainder of CNNs unchanged. We adopt the Bayes without Bayesian
Learning (BwoBL) algorithm for hyBCNN networks to execute Bayesian
inference towards adversarial robustness. Our proposal outperforms ad-
versarial training and robust activation function, which are currently the
outstanding defense methods of CNNs in the resistance to adversarial at-
tacks such as PGD and C&W. Moreover, the proposed architecture with
BwoBL can easily integrate into any pre-trained CNN, especially in scal-
ing networks, e.g., ResNet and EfficientNet, with better performance on
large-scale datasets. In particular, under l∞ norm PGD attack of pixel per-
turbation ε = 4/255 with 100 iterations on ImageNet, our best hyBCNN
EfficientNet reaches 93.92% top-5 accuracy without additional training.
key words: Bayesian neural network, convolutional neural network, ad-
versarial robustness, image classification

1. Introduction

Deep neural networks (DNNs) always exist a certain degree
of risk and can be vulnerable to motivated adversaries [1]
owing to statistical properties. Adversarial examples are
crafted by adding imperceptible perturbations to original
images [2] and they make a well-trained neural network mis-
classify, as seen in Fig. 1. Recent studies have developed
several attack methods to generate adversarial images, such
as Fast Gradient Sign Method (FGSM) [3], Projected Gradi-
ent Descent (PGD) [4], and C&W attack [5]. These are the
popular benchmarks of white-box adversarial attacks, which
are based on a gradient of the loss function to minimize the
perturbation. PGD is an evolution of FGSM. Hence, we fo-
cus on white-box and non-targeted settings on both PGD
and C&W algorithms in our experiments, which are strong
gradient-based iterative attacks currently.

The existence of adversarial instances to image clas-
sification exposes a weakness of DNNs. Hence, many ef-
fective defenses have been proposed, such as defensive dis-
tillation, data augmentation, feature denoising, robust ac-
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Fig. 1 Adversarial perturbation on ImageNet with ResNet-50 model.
Left: the original image is correctly predicted by ResNet-50. Middle: the
adversarial perturbation corresponds to the original image. Right: the per-
turbed image is incorrectly predicted.

tivation functions, and adversarial training. Currently, ad-
versarial training [3], [4] has been the most successful de-
fense of DNNs, which train a model on adversarial im-
ages. Moreover, the stochastic components of DNNs have
also demonstrated the potential robustness against adversar-
ial attacks [6], [7]. Especially, Bayesian Neural Networks
(BNNs) have been indicated as an efficient defense when it
is combined with adversarial learning [8], [9]. Nevertheless,
Bayesian learning is easy on small datasets, e.g., MNIST,
CIFAR-10, and becomes difficult on large-scale datasets like
ImageNet. Therefore, Bayesian inference has been consid-
ered in the Bayes without Bayesian Learning (BwoBL) al-
gorithm [10], [11], which constructed BNNs based on pre-
trained DNNs towards adversarial robustness.

BNNs have been built by replacing all convolutional
layers of Convolutional Neural Networks (CNNs) with
Bayesian convolutional (BC) layers and keeping the rest of
CNNs unchanged in [10], [11]. In this paper, we introduce
Bayesian activation (BA) layers and combine BC with BA
to build BNNs towards the improvement of robustness. Fur-
thermore, changing all convolutional layers and activation
functions into BC and BA layers is unnecessary for boost-
ing performance and consumes the inference time. Thus,
we propose a hybrid Bayesian-convolutional neural network
(hyBCNN). To the best of our knowledge, this proposed ar-
chitecture is the first hybrid of BNNs and CNNs for adver-
sarial robustness with neither Bayesian learning nor adver-
sarial training. Our contributions can be summarized as fol-
lows:

• In addition to BC (Bayesian convolutional), we intro-
duce BA (Bayesian activation) layers and build BNN
from BC and BA layers.

• hyBCNN is constructed by a part of BNN and CNN.
With this construction, we have still generated the
stochastic model but do not make the model bigger.
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• With the application of transfer learning, we build
BNN and hyBCNN from pre-trained CNNs and utilize
learned parameters of CNNs to implement Bayesian in-
ference with the BwoBL algorithm.

• The robustness of the proposed method is evaluated
and confirmed with PGD and C&W attacks on Ima-
geNet.

The remainder of this paper is organized as follows.
Section 2 introduces related work in BCNNs and adversar-
ial robustness. Section 3 shows the construction of BNNs
from BC and BA layers. Section 4 describes the structure of
hybrid Bayesian-convolutional neural networks. Section 5
evaluates the accuracy on natural data and the robustness on
adversarial examples of the proposed hyBCNN. The conclu-
sion is indicated in Sect. 6.

2. Related Work

2.1 Bayesian Convolutional Neural Network

BCNNs are known as stochastic CNNs with the uncertainty
estimation on the parameters of the model, which can solve
an overconfident decision of CNNs. Generally, a BCNN
is built by replacing the weights of convolutional layers in
CNN, which are fixed values, with probabilistic distribu-
tions, as seen in Fig. 2. In Bayesian methods for DNNs,
we aim to estimate the posterior distribution of the weights
w given the observed data D [12]–[14]. However, the exact
computation to the posterior over the weights is often in-
tractable. The posterior approximation is thus studied over
the past time, in which a variational inference has been pro-
posed by Blundell et al. [15]. In this learning, the varia-
tional posterior is assumed to be a Gaussian distribution
q(w|D) ∼ N(μ, σ2). Monte Carlo sampling has been em-
ployed to draw the weight samples from the variational pos-
terior q(w|D). The parameters can be obtained by sampling
a unit Gauss ξ ∼ N(0, I), then shifting by a mean μ and
scaling by a standard deviation σ as follows:

w = μ + σ � ξ (1)

where � is point-wise multiplication. We can realize that
the variational parameters (μ, σ) are learned during the
Bayesian training phase. Besides, the generation of weight
samples is generally not easy in the learning process. For

Fig. 2 Comparison between a CNN and a BNN. Left: a CNN with spe-
cific values of the weights. Middle: a BNN with the Gaussian distribution
on the weights. Right: an inner structure of a neuron with the weights wi j

that are single-point values in CNN or Gaussian distribution in BNN.

these reasons, the learning of BNNs becomes bulky for real
datasets and deep neural networks.

2.2 Adversarial Attacks

Adversarial examples are usually generated by the gradient-
based algorithms to the input to maximize the loss func-
tion [3]–[5], [16]–[18]. Particularly, FGSM is a single-step
attack algorithm [3], which perturbs the original image x by
the direction of the gradient of the loss function J(θ, x, y), in
which y is a label of x, θ is the parameters of a model. A
perturbation ε is added to each pixel to measure a close (l∞)
distance between x and its adversary x′ so that

‖ x − x′ ‖∞≤ ε (2)

It is noted that FGSM is designed to be fast rather than
optimal. Therefore, multi-step perturbations have been pro-
posed to produce optimal adversaries. Currently, the PGD
attack of Madry et al. [4] is the best multi-step variant of
FGSM. The PGD algorithm implements a strong iterative
attack to generate adversarial instances, as follows:

xt+1 =
∏
ε

(
xt + ε sign (	xJ(θ, x, y))

)
(3)

in which ε is an attack step size, and
∏
ε is a projection to

l∞ norm adversary.
In addition, Carlini and Wagner introduced the C&W

approach [5] that dropped the robustness of defensive distil-
lation. Adversarial examples x′ = 1

2 (tanh(w) + 1) are built
by searching for w in l2 distance to solve the optimization:

min
∥∥∥∥∥1

2
(tanh(w) + 1) − x

∥∥∥∥∥
2

2
+c · f

(
1
2

(tanh(w) + 1)

)
(4)

where c is a constant that is chosen by the modified binary
search and f (·) is an objective function defined as follows:

f (x′) = max

(
max
i,i�t

{
Z(x′)i

} − Z(x′)t,−κ
)

(5)

The confidence of an adversarial example is adjusted by κ.
Z(·) is the output of the network. i and t are the classes
of original and adversarial images, respectively. PGD and
C&W are the intense attack algorithms, which are used in
our experiment.

2.3 Robust Activation Function

When proposing adversarial examples, Szegedy et al. [2]
showed blind spots of neural networks that were searched
from the properties of non-linear activation functions. We
realize that non-linear activation functions are fundamen-
tal for DNNs, in which Rectified Linear Units (ReLU) [19]
have been widely used and shown the high performance for
DNN architectures. Nonetheless, several findings [20], [21]
have presented the unbounded, non-smooth, and fixed prop-
erties of non-linear activation functions weaken DNNs in



1310
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.7 JULY 2022

the context of adversarial attacks. In order to improve the
robustness of DNNs, a lot of research has focused on the
change of activation functions, for example, bounded acti-
vation functions [22], [23], data-dependent activation func-
tions [24], quantized activation functions [25], stochastic ac-
tivation pruning [7]. The randomness on the activation
function is mentioned by Dhillon et al. [7], but they have
just proved the robustness of DNNs against weak attacks
(FGSM) on small datasets (CIFAR-10). Most of these acti-
vation functions have just been robust when they are com-
bined with adversarial training. In this paper, we generate
the stochastic activation function by applying the Bayesian
method to the activation function to resist strong attacks on
real datasets like ImageNet without additional training.

2.4 Adversarial Training

Adversarial training has been proposed by Madry et al. [4]
that is optimized as below formula:

min
θ
E(x,y)∼D

[
max
ε∈S J(θ, x + ε, y)

]
(6)

where D is an underlying data distribution over the pairs of
x examples and y corresponding labels, J(·) is a suitable loss
function, θ is network parameters, and the per-pixel pertur-
bation ε is allowed in the perturbed range S . This formula
shows two computation steps of adversarial training: (1) an
inner maximization, which takes adversarial instances, and
(2) an outer minimization, which finds model parameters.
So as to generate adversarial images, we need a fixed ε and
several iterations of the gradient computation to achieve op-
timal adversaries by the PGD algorithm in step (1). These
iterations yield a high cost for training. Moreover, if the
pixel perturbation ε and the number of iterations change,
adversarial training needs to be re-trained to improve the ro-
bustness. In the outer minimization (2), we must implement
many epochs in the training phase to find out the optimal
parameters of a model. Both steps make adversarial train-
ing consume a high cost of the computation time. There-
fore, some studies have focused on training single-step ad-
versaries (FGSM) to reduce the computation time [26], [27].
Nevertheless, FGSM training can make the accuracy of a
model suddenly drop when resisting PGD attacks, which is
known as catastrophic overfitting because of a lack of var-
ious adversarial instances. The incorporation of BNNs and
adversarial training has been perceived as a good defense
to prevent strong gradient-based attacks. Liu et al. [8] in-
dicated the robustness of Bayesian adversarial training to
adversarial attacks on CIFAR-10 and ImageNet-143. How-
ever, this training becomes harder on ImageNet due to the
disadvantages of Bayesian learning and adversarial training.
Consequently, we mainly concentrate on Bayesian inference
based on pre-trained DNNs as a term of transfer learning to
withstand iterative adversarial attacks.

3. Our Bayesian Neural Networks

3.1 BC and BA Layers

Our BNNs are built on pre-trained CNNs via replacing con-
volutional and activation layers with BC and BA layers, re-
spectively. Based on Gaussian variational posterior [15] and
Gaussian dropout [28], we approximate the variational pos-
terior of parameters with a Gaussian distribution. Particu-
larly, we adopt the variational posterior distribution q(w) =
N(θ, ρθ2) with the local reparameterization trick [29]. With
this posterior, the variance of w is tied by its magnitude.
A larger weight is then valuable when it is robust to noise.
Therefore, instead of Eq. (1), we have a formula of the
weight in Bayesian convolutional layers as:

w = θ + αθ � ξ (7)

where ξ is a unit Gauss N(0, I). We treat θ as single fixed
values of learned CNN parameters while α =

√
ρ is em-

pirically determined by the robustness of our BNN model
against the adversarial attack. [11] determined the robust-
ness of BNNs that were constructed by altering all convolu-
tional layers of CNNs with Bayesian convolutional layers.

In this paper, we propose Bayesian activation functions
to generate randomness on the output of activation func-
tions. As mentioned in Sect. 2, stochastic activation func-
tions are an efficient defense of DNNs against adversarial
attacks. The output of each layer in a neural network can
be denoted hi that consists of a linear transformation Wi fol-
lowed by a non-linearity φi as below:

hi = φi(Wihi−1) (8)

It is highlighted that weight matrices and activation func-
tions provide a non-linear mapping from inputs to outputs
in a neural network. Our Bayesian activation function is
built like the following formula:

Φ = φ + βφ � ξ (9)

in which φ is the activation function of pre-trained CNNs.
With this formula, we yield the uncertain activations Φ from
fixed values of the non-linearity φ. Similar to Bayesian con-
volutional layers, the Bayesian activation is approximated
by the Gaussian distribution N(μ, σ2). We also apply the
sampling method followed by the unit Gauss ξ ∼ N(0, I).
Accordingly, μ is treated as single-point outputs φ of acti-
vation layers in pre-trained CNNs. We mainly concentrate
on adjusting β to change the standard deviation σ. Intu-
itively, we draw random samples from the activation map
given probabilistic distributions.

In our experiments, we use two activation functions:
ReLU and Swish. From Eq. (9), we build the Bayesian
ReLU (BReLU) as follows:

ReLU: φR(xi) =

⎧⎪⎪⎨⎪⎪⎩
0 if xi < 0

xi otherwise

BReLU: ΦBR(x) = φR(x) + βφR(x) � ξ
(10)
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where xi ∈ x. We also have the Bayesian Swish (BSwish):

Swish: φS (x) = x · sigmoid(γx)

BSwish: ΦBS (x) = φS (x) + βφS (x) � ξ (11)

where sigmoid(z) = 1
1+e−z , γ is a pre-trained parameter.

From building BC and BA layers based on convolu-
tional and activation layers of CNNs, we use pre-trained
CNNs to construct our BCNNs and perform Bayesian infer-
ence without additional learning. Much research has proved
that the ensemble model outperforms the single model, es-
pecially in adversarial robustness [6], [8], [30]. It is known
that the ensemble phase is a crux of BNNs [14] because the
uncertainty on weights makes BNN equivalent to the ensem-
ble of random models.

3.2 The Search of One Structural Hyperparameter

So as to build our BNNs, we need BC and BA layers with the
parameters in Eq. (7) and the non-linearity in Eq. (9). From
two equations, we focus on controlling α and β to generate
the stochastic models based on pre-trained CNNs. These
two parameters empirically depend on pre-trained CNN ar-
chitectures, they are named the structural hyperparameter.

Algorithm 1. The search of structural hyperparameters

Input: small dataset D’
learned parameters of pre-trained CNNs θ
activation of pre-trained CNNs φ

Bayesian convolutional layers: w = θ + αθ � ξ, ξ ∼ N(0, I)
Bayesian activation layers: Φ = φ + βφ � ξ
procedure α and β search

for α in S do
for β in S do

for (x, y) in D’ do
x̂ = attack function ((θ, φ), x, y)
for i = 1, 2, . . . ,N do # ensemble
ŷi ← fξ((w,Φ), x̂) # N forward passes

end for
ŷ = majority voting(ŷi) # the most frequent output

end for
calculate top-5 accuracy: top5α,β

end for
end for
optimal α, β← argmaxα,β∈S

(
top5α,β

)
end & return optimal α, β

Simply, we treat α and β as one structural hyperparam-
eter for both BC and BA layers, and they are generally called
the α hyperparameter. The α search algorithm is listed in
Algorithm 1, in which β ≡ α. Let x be an original im-
age and y be a corresponding label in a small dataset D’.
We employ l∞ norm PGD attack to generate an adversarial
image x̂ and use pre-trained CNNs with learned weights θ
and non-linearities φ to construct our BNNs with the Gaus-
sian distribution on the weight w and the activation Φ. The
search range S of α is examined in each network. If a pre-
trained CNN is denoted f ((θ, φ), x), our BNN is fξ((w,Φ), x)
in which w and Φ are sampled by the Monte Carlo sampling

Algorithm 2. Bayesian inference with BwoBL algorithm

Input: dataset D
learned parameters of pre-trained CNNs θ
activation of pre-trained CNNs φ

Initialization: ξ ∼ N(0, I), α, and β
Bayesian convolutional layers: w = θ + αθ � ξ
Bayesian activation layers: Φ = φ + βφ � ξ
procedure inference

for (x, y) in D do
x̂ = attack function ((θ, φ), x, y)
for i = 1, 2, . . . do # n ensemble
ŷi ← fξ((w,Φ), x̂) # several forward passes

end for
ŷ = majority voting(ŷi) # the most frequent output

end for
end procedure

method with each probabilistic variable ξ ∼ N(0, I). There-
fore, it generates an infinite number of stochastic models by
the ensemble inference procedure. As in [10], [11], we also
utilize the majority voting scheme to achieve the output of
the ensemble. The search process and the ensemble phase
consume an amount of computation time, then, we have just
executed 10 forward passes (N = 10) for the α search.

3.3 Bayesian Inference with BwoBL Algorithm

The BwoBL algorithm has been introduced in [10] for im-
plementing Bayesian inference based on pre-trained CNNs.
The inference process of our BNNs with the BwoBL algo-
rithm is listed in Algorithm 2. This inference algorithm is
executed after searching and fixing structural hyperparame-
ters for each BNN.

From Eq. (7), we can see that a large α leads to a big
variance of w that causes the uncertainty on model param-
eters. In Eq. (9), β results in probabilistic activation. With
this uncertainty, the model is stochastic and efficient to de-
ceive the adversary. In our BNNs, α and β are treated as
one structural hyperparameter and are found in Algorithm 1.
[11] mentioned that the ensemble was an important property
of Bayesian inference by implementing the stochastic model
many times. A number of samples for the ensemble also
plays an essential role to get better performance. In our ex-
periments, we evaluate 50 samples for ensemble inference
with deep networks on ImageNet.

3.4 BNNs with BC and BA Layers

We make a comparison of BNNs with BC and BA lay-
ers to determine a robust architecture towards adversarial
attacks. For the preliminary assessment, we use ResNet-
50 [31], which is trained on natural ImageNet [32] with pixel
values of images in [0,255], and employ the cheap PGD at-
tack, which perturbs 4 pixels (ε = 4/255) in 10 iterations.

The first BNN is built by replacing all convolutional
layers of pre-trained ResNet-50 with BC layers, which has
already been proposed in [10], [11], named Full BC. In
the second BNN, BA layers (BReLU) are the substitute for
all activation layers ReLU [19] of pre-trained ResNet-50,
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Fig. 3 Our Bayesian ResNet-50 architectures. (a) is the original ResNet-50 for ImageNet. (b) is the
initial stage of the original ResNet-50. (c) illustrates the detail of bottleneck blocks in Stages 1, 2, 3,
and 4 of the original ResNet-50. (b.1), (b.2), (b.3), and (c.1), (c.2), (c.3) are the replacement of (b) and
(c), respectively. Based on the original network, we build our Bayesian ResNet-50 models as follows:
(1) Full BC with the initial stage (b.1) and bottleneck blocks (c.1); (2) Full BA with the initial stage
(b.2) and bottleneck blocks (c.2); (3) Full BC-BA with the initial stage (b.3) and bottleneck blocks (c.3).
BConv (Bayesian Convolution) and BReLU (Bayesian ReLU) stand for our BC and BA layers. We only
replace convolutional and activation layers and keep other layers of the original ResNet-50.

Fig. 4 The change of the α hyperparameter leads to a convex upward
of the accuracy. The optimal α corresponds to the peak of this convex
upward. Proposed model: Full BC-BA ResNet-50. PGD attack: l∞ norm,
ε = 4/255, iteration it = 10. Black and white markers denote the step size
0.1 and 0.01 of α.

which is called Full BA. Our third BNN is the combination
of BC and BA layers to replace all convolutional and acti-
vation layers of pre-trained ResNet-50, named Full BC-BA.
The original ResNet-50 and our Bayesian ResNet-50 with
Full BC, Full BA, and Full BC-BA are illustrated in Fig. 3.

In this comparison, we have just utilized one structural
hyperparameter α for both BC and BA layers in three BNNs,
including Full BC, Full BA, and Full BC-BA. The optimal α
is sought as Algorithm 1, which is implemented on the small
ImageNet (5000 images of the validation set). The search
range S of α depends on each architecture, for example, S =

Table 1 Robustness of three BNNs built on naturally pre-trained
ResNet-50: Full BC [11], proposed Full BA, and proposed Full BC-BA
resisting the PGD attack: l∞ norm, ε = 4/255, iterations it = 10. The
ensemble inference of BNNs is executed with 50 samples and the majority
voting output. The robustness of models is evaluated by the top-5 accuracy
(%). The latency is the average inference time for one image on a single

core of Intel R©Core
TM

i9-10920X CPU and a GeForce RTX3090 GPU.

ResNet-50 α Top-5 (%) Latency (s)

Pre-trained CNN 0.00 4.86 0.0058
Full BC [11] 0.24 44.92 0.3713
Proposed Full BA 0.18 48.29 0.7433
Proposed Full BC-BA 0.14 52.44 0.8238

[0.1,0.5] is enough for the α search in Full BC-BA ResNet-
50, as seen in Fig. 4. With this S range, we can find out the
best robustness of the model against the PGD attack, which
is the top-5 accuracy = 50.9% corresponding to α = 0.14.
Likewise, applying Algorithm 1 for Full BC ResNet-50 and
Full BA ResNet-50, we get α = 0.24 and 0.18, respectively.

We fix the optimal α for each architecture before the
evaluation of the inference phase. The ensemble inference
for three BNNs is followed by Algorithm 2. We generate the
PGD attack on ImageNet with 50000 images of the valida-
tion set and execute the ensemble inference with 50 forward
passes. Table 1 proves that applying the Bayesian method to
activation layers further improves the robustness of naturally
pre-trained CNN, which increases by 3.37% top-5 accuracy
compared to Full BC. Moreover, the combination of Full
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Fig. 5 Structure of hybrid ResNet-50 (hyBCNN). From the original network, hybrid models are built
by sequentially applying Bayesian convolution (BConv) and Bayesian ReLU (BReLU) layers to the
stages: Initial stage, Stages 1, 2, 3, and 4.

BC-BA networks sharply boosts the robustness of naturally
pre-trained CNNs, which achieves 52.44% accuracy against
the PGD attack. Accordingly, our BNN with Bayesian con-
volutional and activation layers via the BwoBL algorithm is
an efficient defense with neither Bayesian learning nor ad-
versarial training. Nevertheless, the computation time is a
weakness of Bayesian inference by the ensemble phase. We
can compare the latency of models in Table 1. The latency
of BNNs is much larger than that of CNN. Among BNNs,
the latency of Full BC-BA is the biggest. It means the en-
hancement of the robustness is difficult to reduce the infer-
ence time of Bayesian models. For that reason, we propose
a hybrid Bayesian-convolutional neural network, which is
the hybrid of BNN and CNN to decrease the number of
Bayesian layers in the architecture.

4. Our Hybrid Bayesian-Convolutional Neural Net-
works

So as to build BNNs towards adversarial robustness and re-
duce the computation time of the ensemble inference, we
introduce a hybrid Bayesian-convolutional neural network
(hyBCNN) that consists of a part of BNN and CNN based
on pre-trained CNNs.

4.1 Structure of hyBCNN

To search the powerful hybrid architecture against the PGD
attack (l∞ norm, ε = 4/255, 10 iterations) on ImageNet, we
implement our experiment with ResNet-50, which is trained
on natural ImageNet. Based on the original ResNet-50 in
Fig. 3 (a), we construct hybrid models by sequentially apply-

ing both BC and BA layers to the stages: the initial stage,
Stages 1, 2, 3, and 4, as shown in Fig. 5. We have hybrid
BCNNs as follows:

• hyBCNN(1): Convolutional and activation layers of the
initial stage are replaced by BConv and BReLU layers
as Fig. 5 (a). The rest of original ResNet-50 is kept.

• hyBCNN(2): Convolution and activation layers of bot-
tleneck blocks in Stage 1 are replaced by BConv and
BReLU layers as Fig. 5 (b). We keep the remainder of
original ResNet-50 unchanged.

• With the same substitution as hyBCNN(2), we achieve
hyBCNN(3), hyBCNN(4), and hyBCNN(5) via the re-
placement of BC and BA layers of bottleneck blocks
in Stages 2, 3, and 4, respectively, as seen in Fig. 5 (c,
d, e). In each hybrid model, only one stage is altered to
generate a part of BNN, the rest parts are CNN.

With these hybrid structures, we seek the best position
of BC and BA layers that is the first, the middle, or the last in
existing CNN architectures. In each hybrid BCNN, the part
of BNN is built from BC and BA layers with two hyper-
parameters α and β that need to be found. Nonetheless, to
simplify the search algorithm, we behave α and β as one hy-
perparameter and employ the same search as Sect. 3.2. The
optimal α of each hybrid network is presented in Table 2.
Based on the top-5 accuracy of hyBCNN(1),(2),(3),(4),(5), it is
confirmed that hybrid BCNNs with the first part of BNN
achieve better robustness resisting adversarial attacks. Then,
could the robustness be further improved if we apply BC
and BA layers to both the initial stage and Stage 1? Ac-
cordingly, we construct hyBCNN(1,2), as shown in Fig. 5 (f),
and execute its experiments like the above hybrid architec-



1314
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.7 JULY 2022

Table 2 Robustness of hybrid BCNNs built on naturally pre-trained
ResNet-50 against the PGD attack: l∞ norm, ε = 4/255, iterations it = 10.
The ensemble inference of each hybrid BCNN is executed with 50 sam-
ples. The robustness of models is evaluated by the top-5 accuracy (%).
The latency is the average inference time for one image on a single core of

Intel R©Core
TM

i9-10920X CPU and a GeForce RTX3090 GPU.

ResNet-50 α Top-5 (%) Latency (s)

hyBCNN(1) 0.24 57.75 0.2779
hyBCNN(2) 0.27 43.74 0.3996
hyBCNN(3) 0.34 21.39 0.4028
hyBCNN(4) 0.35 9.84 0.4253
hyBCNN(5) 0.40 5.16 0.3361
hyBCNN(1,2) 0.18 57.51 0.4254

tures. As a result in Table 2, the robustness of hyBCNN(1,2)

is not enhanced and it takes a long inference time. Among
hybrid BCNNs in Table 2, we can see the application of BC
and BA layers to the initial stage of original ResNet-50 not
only bring the best robustness but also lessen the ensemble
inference time.

Furthermore, we compare Table 1 to Table 2, it is con-
vinced that the hybrid BCNN can improve both the robust-
ness and the inference time. Particularly, compared to Full
BC-BA, the top-5 accuracy of hyBCNN(1) rises by 5.31%,
and hyBCNN(1) runs 2.96× faster. Between Tables 1 and
2, hyBCNN(1) is the best architecture, we then utilize it to
continue examining its efficiency in advanced CNN models
under strong PGD and C&W attacks. In the next sections,
our hybrid model is shortly called hyBCNN, which implies
hyBCNN(1).

4.2 hyBCNN with Two Structural Hyperparameters

We find out the best hyBCNN with treating α and β of BC
and BA layers as one hyperparameter in Sect. 4.1. Then,
what happens if α and β are two independent hyperparam-
eters? It means we must seek α and β separately and their
search algorithm becomes complicated with the loop.

Empirically, we take a search space S = [0.01, 0.9] for
α and β with a step size 0.05, and implement Algorithm 1
with hyBCNN built on naturally pre-trained ResNet-50. We
also generate the PGD attack (l∞ norm, ε = 4/255, itera-
tion = 10) on random 5000 images of the validation set of
ImageNet and execute the ensemble inference over 10 sam-
ples. Figure 6 illustrates a part of the search space of α and
β, which guarantees the optimal search algorithm with con-
vex upwards of the accuracy. Hence, this search algorithm
brings the optimal pair of α and β, which is the highest peak
of convex upwards. For example, with α = 0.2 and β = 0.25
in Fig. 6, the accuracy of hybrid ResNet-50 reaches the peak.
After fixing the optimal α and β, we carry out Bayesian in-
ference of hybrid ResNet-50 on the validation set of Im-
ageNet followed Algorithm 2. We execute the ensemble
phase with 50 forward passes and assess the top-5 accuracy
of hyBCNN that is built on pre-trained ResNet-50 on natu-
ral ImageNet. We make a comparison of hybrid ResNet-50
between using α and a pair (α, β) to build BC and BA lay-
ers. The fact that the employment of two hyperparameters is

Fig. 6 A part of the search space of α and β, which results in convex
upwards of the accuracy. An optimal pair of α and β corresponds to the
highest peak of convex upwards. Proposed model: hyBCNN on pre-trained
ResNet-50. PGD attack: l∞ norm, ε = 4/255, iteration it = 10.

Table 3 Comparison of hyBCNN between using one and two structural
hyperparameters. hyBCNN is built on naturally pre-trained ResNet-50 and
evaluated by the top-5 accuracy on natural (nat.) and adversarial (adv.)
ImageNet.

one hyperparameter two hyperparameters

α
Top-5 (%)

α β
Top-5 (%)

nat. adv. nat. adv.

0.24 77.63 57.75 0.20 0.25 80.21 58.54

more complex and consumes the computation time for the
search loop. However, Table 3 indicates the treatment of the
pair (α, β), which is separate for BC and BA layers of hy-
BCNN, can improve both the robustness on adversarial im-
ages and the accuracy on natural images. Compared to hy-
brid ResNet-50 (α), the accuracy of hybrid ResNet-50 (α, β)
increases by 2.58% and the robustness against the PGD at-
tack (l∞ norm, ε = 4/255, iteration = 10) raises by 0.79%.
Therefore, building the hyBCNN model with the application
of BC (α) and BA (β) layers to the initial stage of CNN ar-
chitectures is promising in the enhancement of robustness
and accuracy.

In order to verify the performance of our hyBCNN
model, in the next section, we implement hyBCNN on
deeper ResNets and EfficientNet family, which are the state-
of-the-art CNNs trained on natural ImageNet.

5. Accuracy and Robustness of hyBCNN

5.1 hyBCNN Models

We build up hyBCNN models from the advanced CNN ar-
chitectures currently, i.e., ResNets and EfficientNets, which
achieve the advanced accuracy on ImageNet [33]. This is
the real dataset for the task of classifying 1000 classes with
large-scale images.

Baseline CNN models used in our experiments are
ResNet-18, ResNet-50, ResNet-152 [31], ResNeXt-101-
32×8d [34], and EfficientNet-B0∼B7 [35]. ResNet models
demonstrate deeper and wider networks can further improve
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Fig. 7 Architecture of EfficientNet-B0 (left) and our hybrid EfficientNet-
B0 (right). We replace convolutional (Conv) and activation (Swish) lay-
ers of the stem stage of original EfficientNet by Bayesian convolutional
(BConv) and Bayesian activation (BSwish) layers in our hybrid Efficient-
Net. MBConv denotes mobile inverted bottleneck blocks.

the performance of CNN in image recognition. Moreover,
the image resolution is also vital for boosting the accuracy of
CNNs. A compound scaling method, which balanced three
elements of networks, i.e., depth/width/resolution, has been
proposed by Tan et al. [35]. They investigated the state-of-
the-art model for real datasets, which is a family of Efficient-
Net. We use pre-trained ResNets [32] and EfficientNets [36]
on natural ImageNet to build our hyBCNN models and exe-
cute Bayesian inference with the BwoBL algorithm. Addi-
tionally, the BwoBL algorithm can apply to pre-trained net-
works on cheap adversarial images to boost the robustness
without adding adversarial training, as determined in [11].
Therefore, we also construct hyBCNN models on adversar-
ial pre-trained EfficientNets, which is AdvProp scheme pro-
posed by Xie et al. [37] and we call them EfficientNet-Adv.

The initial stage of ResNet-18, ResNet-152, and
ResNeXt-101-32×8d are the same as ResNet-50 (as seen in
Fig. 3 (b)), they are only different in the remaining stages.
Our hybrid ResNet-18, ResNet-152, and ResNeXt-101-
32×8d only apply BC (α) and BA (β) layers to the initial
stage, they are thus like hybrid ResNet-50. The remain-
der stages of original ResNet-18, ResNet-152 and ResNeXt-
101-32×8d are maintained. In EfficientNets, the stem stage
is initial, as shown in Fig. 7. We also build hybrid Ef-
ficientNets with the substitution of BC and BA layers to
this stem stage and the rest stages are kept. Swish acti-
vation [38], which works better than ReLU on deeper net-
works, is used in EfficientNet. Hence, we form Bayesian
Swish (BSwish) activation to substitute for Swish activation.
The stem stage is the same from EfficientNet-B0 to B7 and
illustrated in Fig. 7 (left), we thus employ hybrid Efficient-
Net in Fig. 7 (right) to construct our hybrid EfficientNet-
B0∼B7.

So as to validate our methodology, we compare the ro-
bustness of hyBCNN with adversarial training, robust acti-
vation function, and BCNN with BwoBL. So far, adversarial
training is still an outstanding defense towards strong adver-

Table 4 hyBCNN networks built on pre-trained CNNs and structural hy-
perparameters (α, β) of each hyBCNN. Eff-Net-B0∼B7 denote EfficientNet-
B0∼B7, which are trained on natural ImageNet. Eff-Net-Adv-B0∼B7 are
EfficientNet-Adv-B0∼B7, which are trained on both natural and cheap ad-
versarial ImageNet.

hyBCNN on naturally
α β

α β

pre-trained CNNs
ResNet-18 0.10 0.45 hyBCNN
ResNet-50 0.20 0.25 Eff-Net-
ResNet-152 0.10 0.25 Adv
ResNeXt-101-32×8d 0.25 0.15
Eff-Net-B0 0.40 0.15 B0 0.25 0.05
Eff-Net-B1 0.45 0.15 B1 0.30 0.10
Eff-Net-B2 0.45 0.15 B2 0.35 0.10
Eff-Net-B3 0.65 0.15 B3 0.40 0.10
Eff-Net-B4 0.70 0.20 B4 0.50 0.15
Eff-Net-B5 0.70 0.30 B5 0.40 0.20
Eff-Net-B6 0.65 0.35 B6 0.45 0.35
Eff-Net-B7 0.50 0.45 B7 0.40 0.20

sarial attacks. In which, Fast adversarial training [27] is a
fast training method on FGSM adversaries with ResNet-50,
but can resist PGD attacks on ImageNet. We call it ResNet-
50-Fast in our experiments. The second trend to adversar-
ial robustness is robust activation functions. In particular,
SPLASH activation [21], which does not need adversarial
training but can withstand powerful attacks like C&W on
ImageNet, is compared to ReLU and Swish. Tavakoli et al.
trained ResNet-18 with ReLU, Swish, and SPLASH on nat-
ural ImageNet and assessed the robustness to C&W attacks.
Lastly, we compare the robustness of BCNN [11] and hy-
BCNN via the BwoBL algorithm. Our experiments are run
on four GeForce GTX1080Ti and two GeForce RTX3090.

5.2 Adversarial Attacks and Structural Hyperparameters

To verify the robustness of our hyBCNN networks, we em-
ploy two strong adversarial attacks that are PGD and C&W.
Following Eq. (3), we generate PGD attacks: l∞ norm, pixel
perturbation ε = 4/255 as Fast training [27], the attack iter-
ation it = {10, 100}. Based on Eq. (4) of C&W, we set attack
parameters as follows: l2 norm, a binary search step of 7
for 1000 steps as SPLASH activation [21]. Both PGD and
C&W are white-box and non-targeted attacks.

We perform the search of two structural hyperparam-
eters followed Sect. 4.2, which are α for BC layers and β
for BA layers in all our hyBCNN models. We test each hy-
BCNN with Algorithm 1 and observe the best pairs of (α, β),
as indicated in Table 4. We fix the pairs of (α, β) for each
hyBCNN before the main Bayesian inference.

Our Bayesian inference of all hyBCNN networks is ex-
ecuted as Algorithm 2. We assess 50 forward passes and
the majority voting output for the ensemble phase in each
hyBCNN.

5.3 Accuracy on Natural ImageNet

We assess the top-5 accuracy of all our hyBCNN models
on natural ImageNet with 50000 images of the validation
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Table 5 The accuracy on natural images and the robustness under PGD attacks: l∞ norm, pixel
perturbation ε = 4/255, iterations it = {10, 100}. We evaluate the top-5 accuracy (%) and compare our
hyBCNN to naturally pre-trained CNNs, Full BC networks [11], Fast adversarial training [27].

Natural images PGD attack of it = 10 PGD attack of it = 100
pre-trained Full proposed pre-trained Full proposed pre-trained Full proposed

CNNs BC hyBCNN CNNs BC hyBCNN CNNs BC hyBCNN

ResNet-18 89.31 71.63 71.59 1.44 24.40 46.72 0.29 24.79 49.41
ResNet-50 92.89 81.39 80.21 4.78 44.92 58.54 2.50 46.90 61.45
ResNet-152 94.05 84.13 84.33 6.36 54.47 63.82 3.59 58.15 68.25
ResNeXt-101-32×8d 94.56 87.84 87.37 13.95 65.57 71.00 10.75 67.66 74.72
EfficientNet-B0 91.71 76.37 75.61 0.58 27.03 50.57 0.09 32.26 55.27
EfficientNet-B1 91.49 75.53 80.87 0.25 25.84 56.45 0.06 32.14 64.54
EfficientNet-B2 94.40 80.11 86.96 0.57 45.36 72.78 0.20 52.34 77.81
EfficientNet-B3 95.27 86.73 90.16 0.79 53.00 77.26 0.32 61.83 82.69
EfficientNet-B4 96.16 89.87 92.89 0.61 65.60 80.62 0.45 73.48 87.06
EfficientNet-B5 96.77 89.68 93.66 0.66 71.44 84.07 0.14 78.40 89.09
EfficientNet-B6 96.90 91.16 93.86 0.28 68.68 84.16 0.16 78.50 89.86
EfficientNet-B7 96.97 91.65 93.18 0.21 71.19 85.18 0.02 81.62 89.49
EfficientNet-Adv-B0 89.46 80.15 80.96 12.78 46.98 59.14 8.04 49.86 60.85
EfficientNet-Adv-B1 93.29 87.75 87.92 18.28 64.06 75.29 10.27 65.46 76.90
EfficientNet-Adv-B2 94.44 91.17 91.39 18.31 73.78 81.41 10.16 76.20 82.46
EfficientNet-Adv-B3 95.04 91.30 93.31 29.98 81.19 84.89 17.48 81.54 85.90
EfficientNet-Adv-B4 95.85 93.13 93.69 30.33 85.54 88.54 15.63 86.48 89.17
EfficientNet-Adv-B5 96.80 94.79 95.32 32.75 89.65 91.83 13.37 90.40 92.15
EfficientNet-Adv-B6 97.04 95.34 96.06 31.83 90.92 93.11 10.05 91.69 93.74
EfficientNet-Adv-B7 97.14 95.52 96.30 29.66 91.58 93.33 7.67 92.66 93.92

Fast adversarial training on pixel perturbation ε = 4/255
ResNet-50-Fast [27] 77.22 56.85 56.09

set. Many studies of adversarial training indicated that gain-
ing robustness of the model would be losing accuracy on
natural examples. Likewise, the BwoBL algorithm, which
is performed in Full BC neural networks [11] and our hy-
BCNN, is not an exception. This method mainly focuses on
improving the robustness of BNNs to the adversaries rather
than natural images. Nevertheless, compared to Fast adver-
sarial training [27], our hyBCNN can enhance both the accu-
racy and the robustness. A comparison of the top-5 accuracy
between naturally pre-trained CNNs, Full BC [11], Fast ad-
versarial training [27], and proposed hyBCNN is shown in
Table 5. Compared to adversarial training on the same pixel
perturbation ε = 4/255, i.e., ResNet-50-Fast, the accuracy
of our hyBCNN ResNet-50 increases by 2.99%. Moreover,
our hyBCNN is built on naturally pre-trained CNNs, but its
uncertainty is towards the adversarial robustness. Thus, the
accuracy of hyBCNN ResNet-50 significantly decrease from
92.89% to 80.21%. The accuracy of hyBCNN ResNet-50
also declines by 1.18% compared to Full BC while its ro-
bustness is significantly boosted. Otherwise, we realize that
deeper and wider networks yield competitive accuracies on
natural images, our hyBCNN is then applied to the advanced
CNNs. In particular, the top-5 prediction of our hyBCNN
EfficientNet-Adv-B7, which is 96.30%, is the advanced ac-
curacy on natural ImageNet among defense methods cur-
rently.

5.4 Robustness to PGD Attacks

We evaluate the robustness of our proposed hyBCNN mod-
els under l∞ norm PGD attack of pixel perturbation ε =
4/255 and iterations it = {10, 100}. It is known that in-

creasing the iteration of the PGD attack generates optimal
adversaries. In order to validate our method, we compare
the proposed hyBCNN to Fast adversarial training [27], and
Full BC neural networks [11]. Both Full BC networks and
our hyBCNN apply the BwoBL algorithm to naturally pre-
trained CNNs against gradient-based attacks without adver-
sarial training or Bayesian learning.

With the same application of the BwoBL algo-
rithm [10], our hyBCNN is better than Full BC net-
works [11], as shown in Table 5. The top-5 accuracy of
our hyBCNN ResNet-50 increases by 13.62% and 14.55%
compared to Full BC ResNet-50 resisting PGD attacks of
the pixel perturbation ε = 4/255 and the iterations it =
{10, 100}, respectively. Fast adversarial training achieves the
56.85% prediction with ResNet-50-Fast under the PGD at-
tack of it = 10 and decreases by 0.76% when increasing
the attack iteration it = 100. In contrast, the accuracy of
proposed hyBCNN ResNet-50 is 58.54% under the PGD at-
tack of it = 10. Our hyBCNN ResNet-50 becomes robust
towards the PGD attack of it = 100 with the 61.45% predic-
tion. To the best of our knowledge, 61.45% is the best ac-
curacy of naturally pre-trained ResNet-50 under the strong
PGD attack (l∞ norm, ε = 4/255, it = 100) among defense
methods currently.

Table 5 also proves that scaling up CNNs by the
depth/width/resolution can considerably boost the adversar-
ial robustness. Large-scale models are often difficult to ad-
versarial training, but our proposal is easy to improve the
robustness of these networks without learning. For instance,
under the PGD attack of ε = 4/255 and it = 100, natu-
rally pre-trained ResNet-152 and ResNeXt-101-32×8d only
achieve 3.59% and 10.75% accuracies, but our hyBCNN
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ResNet-152 and ResNeXt-101-32×8d with the BwoBL al-
gorithm can reach 68.25% and 74.72% predictions. Com-
pared to Full BC networks, our hyBCNN ResNet-152 and
ResNeXt-101-32×8d rise by 8% on average.

Pre-trained EfficientNets on natural images are almost
fooled by PGD attacks, whose top-5 accuracy is less than
1%. However, our hyBCNN EfficientNets with the BwoBL
algorithm, which are based on naturally pre-trained Effi-
cientNets without adversarial training, increase by 79.3%
on average compared to pre-trained networks and 18.2%
on average compared to Full BC networks, under PGD at-
tack of 100 iterations. Furthermore, EfficientNet-Adv is
the model that is trained on cheap PGD adversaries, e.g.,
ε = 4/255, it = 5, and fine-tuned on natural images to en-
hance image recognition. Owing to the advantage of pre-
training on both natural and adversarial examples, our hy-
BCNN EfficientNet-Adv strongly boosts the robustness of
pre-trained EfficientNet-Adv. From Table 5, we can see
the accuracy of pre-trained EfficientNet-Adv only obtain a
maximum of 32.75% and 17.48% under PGD attacks of
it = 10 and it = 100, respectively. Meanwhile, our hy-
BCNN EfficientNet-Adv-B7 reach a maximum of 93.33%
and 93.92% under these PGD attacks. Accordingly, our
hyBCNN with the BwoBL algorithm is conveniently ap-
plied to pre-trained CNNs on natural images and weak ad-
versaries to sharply improve the robustness of pre-trained
models against strong attacks without additional adversarial
training.

5.5 Robustness to C&W Attacks

It is known that the convergence of C&W is slower than that
of PGD due to the iteration of the optimal constant search
as Eq. (4). It hence expends considerable time to generate
C&W attacks. For that reason, we assess the performance
of all networks on random 1000 images, which are correctly
classified from the validation set of ImageNet. We generate
adversarial examples over three runs and evaluate the num-
ber of success attacks in the form of mean ± standard de-
viation. In comparison with no adversarial training and an
influence of activation function, our hyBCNN outperforms
the robust SPLASH activation [21].

Even though structural hyperparameters (α, β) of BC
and BA layers in our hyBCNN are determined based on
the PGD attack, the proposed hyBCNN is still robust under
strong C&W attack, as seen in Table 6. Tavakoli et al. prove
that SPLASH is more robust than ReLU, Swish in ResNet-
18 against the C&W attack when all of them is trained
on natural images. Nonetheless, our hyBCNN ResNet-18,
which is built with Bayesian ReLU activation and based on
naturally pre-trained ResNet-18+ReLU, significantly boosts
the robustness of pre-trained CNNs without additional train-
ing. Compared to ResNet-18-SPLASH against the C&W at-
tack, the number of success attacks of our hyBCNN ResNet-
18 is reduced by about one second. Notice that both ResNet-
18-SPLASH and our hyBCNN ResNet-18 use a naturally
pre-trained model towards adversarial robustness.

Table 6 Robustness of pre-trained CNNs, Full BC networks [11],
SPLASH activation [21], and our hyBCNN networks to l2 norm C&W at-
tack, which is assessed by mean ± standard deviation of the number of
success attacks on correctly classified 1000 images of pre-trained CNNs.
Each model is attacked 3 times.

Pre-trained Full BC proposed
CNNs hyBCNN

ResNet-18 1000 ± 0 501 ± 9.18 419 ± 14.45
ResNet-50 1000 ± 0 378 ± 14.27 363 ± 7.94
ResNet-152 1000 ± 0 370 ± 6.19 325 ± 18.63
ResNeXt-101-32×8d 1000 ± 0 282 ± 6.19 251 ± 9.27
EfficientNet-B0 1000 ± 0 590 ± 8.06 474 ± 9.09
EfficientNet-B1 1000 ± 0 581 ± 11.52 342 ± 14.98
EfficientNet-B2 1000 ± 0 470 ± 15.97 261 ± 10.41
EfficientNet-B3 1000 ± 0 375 ± 2.94 217 ± 11.33
EfficientNet-B4 1000 ± 0 266 ± 10.41 161 ± 9.00
EfficientNet-B5 1000 ± 0 241 ± 4.12 137 ± 11.56
EfficientNet-B6 1000 ± 0 246 ± 3.42 132 ± 5.57
EfficientNet-B7 1000 ± 0 227 ± 7.79 136 ± 3.74
EfficientNet-Adv-B0 1000 ± 0 776 ± 6.95 563 ± 9.04
EfficientNet-Adv-B1 1000 ± 0 596 ± 10.42 375 ± 8.96
EfficientNet-Adv-B2 1000 ± 0 473 ± 14.14 287 ± 14.99
EfficientNet-Adv-B3 1000 ± 0 378 ± 21.06 266 ± 6.03
EfficientNet-Adv-B4 1000 ± 0 273 ± 18.57 185 ± 8.74
EfficientNet-Adv-B5 1000 ± 0 174 ± 5.00 126 ± 6.86
EfficientNet-Adv-B6 1000 ± 0 155 ± 10.42 99 ± 3.27
EfficientNet-Adv-B7 1000 ± 0 129 ± 4.97 95 ± 2.94

SPLASH activation function trained on natural images
ResNet-18-SPLASH [21] 929 ± 1.8

The proposed hyBCNN networks, which are built on
scaling models such as ResNet-50, ResNet-152, ResNeXt-
101-32×8d, EfficientNets, continue exposing their high ro-
bustness against the C&W attack. The number of success
attacks of these hyBCNN models is very low while their
pre-trained networks are almost attacked. Particularly, pre-
trained EfficientNet-Adv-B7, which is trained on natural im-
ages and cheap PGD adversaries, is completely fooled by
the C&W attack but our hyBCNN EfficientNet-Adv-B7 re-
sists that attack strongly as seen in Table 6.

Tables 5 and 6 verify the best robustness of our hy-
BCNN models with the BwoBL algorithm resisting both
PGD and C&W attacks even when we construct them based
on pre-trained CNNs without additional training.

6. Conclusion

In this paper, we discover a hybrid Bayesian-convolutional
neural network, which is built on various pre-trained CNNs
and applied the BwoBL algorithm against adversarial at-
tacks. Our method builds hyBCNN models on the advanced
pre-trained CNNs via replacing convolutional layers and ac-
tivation function of the initial stage of pre-trained CNNs
with our BC and BA layers. We focus on controlling a
pair of structural hyperparameters of BC and BA layers to
generate the stochastic models and execute Bayesian infer-
ence towards adversarial robustness. We hereby declare the
proposed hyBCNN networks with the BwoBL algorithm as
an effective resistance to a variety of adversaries without
costing adversarial Bayesian learning. In particular, un-
der l∞ norm PGD attack of pixel perturbation ε = 4/255
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with 100 iterations on ImageNet, the top-5 accuracy of our
best hyBCNN reaches 93.92%, which is the most robustness
among defense methods. Our hyBCNN models not only
resist strong PGD attacks but also are robust towards in-
tense C&W attacks and promising for other gradient-based
attacks in the future. Moreover, the proposed algorithm is
based on learned parameters, it is thus expected to be a good
defense for other datasets as long as pre-trained DNNs exist.
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