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Decompositions and Their Applications to Real-World Networks
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SUMMARY Betweenness centrality is one of the most significant and
commonly used centralities, where centrality is a notion of measuring the
importance of nodes in networks. In 2001, Brandes proposed an algorithm
for computing betweenness centrality efficiently, and it can compute those
values for all nodes in O(nm) time for unweighted networks, where n and m
denote the number of nodes and links in networks, respectively. However,
even Brandes’ algorithm is not fast enough for recent large-scale real-world
networks, and therefore, much faster algorithms are expected. The objec-
tive of this research is to theoretically improve the efficiency of Brandes’
algorithm by introducing graph decompositions, and to verify the practical
effectiveness of our approaches by implementing them as computer pro-
grams and by applying them to various kinds of real-world networks. A
series of computational experiments shows that our proposed algorithms
run several times faster than the original Brandes’ algorithm, which are
guaranteed by theoretical analyses.
key words: BC-tree, Brandes’ algorithm, centrality of networks, graph
decomposition

1. Introduction

Network analysis has been a surprisingly active research
area since the World Wide Web was invented. There are
a lot of significant topics of interest in this area (e.g., [1]),
and among those computing “centrality” is one of such top-
ics. When we model real-world networks as graphs, central-
ity is an index of the vertices of graphs that represents the
importance of each node in those networks. The notion of
centrality itself has a long history in graph theory, but in the
context of network analysis, some of them are rediscovered
and several notions are newly proposed due to their increas-
ing importance in applications to real-world networks. They
include degree centrality, closeness centrality [2], PageRank
centrality [6], and so on, and used differently depending on
the purpose. Among those the betweenness centrality is one
of the most common centralities, and has attracted much at-
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tention since its introduction by Freeman [10] in 1977. The
betweenness centrality of a vertex is defined by in how many
shortest paths between any two vertices the vertex is in-
cluded, and considered to have a wide variety of potential
applications to real-world networks such as finding signifi-
cant person (like terrorist) in social networks [8], or protein
structure analyses [9], and so on.

Computing centrality efficiently is an important issue
since the real-world networks are so enormous and evolv-
ing. For betweenness centrality, an algorithm proposed by
Brandes [4] in 2001 (the so-called Brandes’ algorithm) is
well-known as one of the most efficient ways to compute
its exact values. The algorithm is a kind of dynamic pro-
gramming approach, and it first finds shortest paths from
each starting vertex, and it computes and accumulates con-
tributions to betweenness centrality of the other vertices by
traversing all the vertices in farthest-first order. The running
time of the algorithm is O(nm) for unweighted graphs and
O(nm+n2 log n) for weighted graphs, where n and m are the
number of vertices and edges of a graph, respectively. How-
ever, this implies that even Brandes’ algorithms is not fast
enough for huge networks of the current era.

By this reason, many alternative approaches for com-
puting betweenness centrality have been considered and
proposed so far. One is to approximate them, instead of
to compute exact values. Brandes and Pich [5] proposed an
algorithm of computing approximate values of centrality by
deriving shortest paths for vertices in randomly sampled ver-
tex subset. Another approach focuses on the dynamic aspect
of real-world networks, that is, nodes and links are added
and/or deleted frequently. However, it is inefficient and un-
desirable to compute centrality from scratch every time of
the change. Therefore, for those kind of networks it is use-
ful if we can recompute them by their differences, and such
algorithms have been studied extensively [3], [12], [15].

In view of this situation, the objective of this paper is
to propose yet another approach of computing betweenness
centrality efficiently. We tackle this problem straightfor-
wardly, that is, we are still trying to compute their exact
values of static networks based on Brandes’ algorithm. To
this end, we will fully exploit the decomposition structures
of networks. Specifically, our algorithm first prepares bi-
connectivity decompositions of input networks, and then ap-
plies Brandes’ algorithm on those decomposed graphs. This
may reduce the time for computation since the required in-
formation for computation is aggregated in decomposition
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trees. We see that many of the real-world networks have
such nice decomposition structures, and we show that our
proposed algorithm contributes greatly to the effectiveness.

2. Betweenness Centrality

2.1 Definition

We assume throughout the paper, that a graph G = (V, E)
is simple, undirected and connected, where V and E are its
vertex and edge sets, respectively, We denote n = |V | and
m = |E|.

Let s and t be two distinct vertices in V , and consider
the shortest paths from s to t (s, t-shortest paths). Let σst

be the number of distinct s, t-shortest paths, where σss is
defined to be 1. Among s, t-shortest paths, let σst(v) denote
the number of those passing through v as a midpoint which
is different from s and t. Now the betweenness centrality
g(v) of v (∈ V) is defined as follows:

g(v) =
∑

s,t∈V\{v}

σst(v)
σst
. (1)

In addition, by introducing a new variable δst(v) ≜
σst(v)
σst

, we
can rewrite the definition formula (1) as

g(v) =
∑

s,t∈V\{v}
δst(v). (2)

Remark that this value of g(v) is often used by being nor-
malized to fit in the range between 0 and 1. This can be
computed by dividing g(v) by (n− 1)(n− 2), since the possi-
ble maximum value of g(v) is achieved when v exists on the
shortest paths of all (n−1)(n−2) pairs of the vertices except
v itself. Figure 1 illustrates a graph and (normalized) values
of betweenness centrality of each vertex.

2.2 Brandes’ Algorithm

In this subsection, we explain basic ideas of Brandes’ algo-
rithm [4] that computes exact values of betweenness central-
ity for all vertices of an unweighted graph in O(nm) time.

The betweenness centrality of a single vertex v is com-
puted simply according to formula (1) which is a direct def-
inition of the notion. However, when we compute the value
for all the vertices, applying formula (1) may contain re-
peated computation of similar shortest path length many
times due to the double summation on vertices, and thus,
this naive approach is quite inefficient. Then, to avoid this

Fig. 1 A small graph and normalized betweennes centrality of its ver-
tices.

inefficiency, Brandes [4] introduced the following value:

δs•(v) =
∑

t∈V\{s,v}
δst(v). (3)

The value δs•(v) defined in this way has the following prop-
erty, where Ps(u) is a set of vertices that precede u (prede-
cessor of u) in the shortest path starting at s.

Theorem 2.1 [4] For all s, v ∈ V , it holds that

δs•(v) =
∑

u:v∈Ps(u)

σsv

σsu
· (1 + δs•(u)). (4)

To compute the betweenness centrality for all the ver-
tices efficiently, Brandes’ algorithm pre-computes, by using
the property of Theorem 2.1, the order of vertices in their
distances (farthest first) and the set of predecessors for each
starting vertex s by traversing their shortest paths. We show
Brandes’ algorithm as Algorithm 1 in the appendix for con-
venience since we utilize its basic ideas for the further dis-
cussions in the subsequent sections. The time complexity of
such Brandes’ algorithm is stated as follows.

Theorem 2.2 [4] The betweenness centrality of all vertices
can be computed in O(nm) time for unweighted graphs and
O(nm + n2 log n) time for weighted graphs both in O(n +m)
space.

As we see in the theorem, the notion of betweenness
centrality is defined not only on unweighted graphs but on
edge-weighted graphs. However, since the way of comput-
ing the centrality for unweighted graphs can be generalized
into weighted ones relatively in a straightforward manner,
we only focus on unweighted graphs in this paper. We also
remark here that any path-comparison based algorithm can-
not compute the betweenness centrality for all the vertices
faster than O(nm) time [14].

3. Graph Decompositions

The main objective of the paper is an attempt to acceler-
ate Brandes’ algorithm by running it on small graphs after
decomposing input graphs. Therefore, in this section, we
introduce some notions of graph decompositions, that is, bi-
connectivity decompositions and BC-trees. We remark that
we will use the terms vertex (and edge) for input graphs, and
node (and edge) for BC-trees from now on.

3.1 Biconnectivity Decomposition and BC-Tree

For a connected graph G = (V, E), a vertex v ∈ V is a cut-
vertex if its removal makes G disconnected, and a block is
a (inclusion-)maximal subgraph of G without cut-vertices.
Let B and C be families of blocks and cut-vertices of G,
respectively. Then the block graph of G is a graph whose
node set is B ∪ C and there is an edge (b, c) (b ∈ B, c ∈ C)
if a cut-vertex c belongs to a block b. A BC-tree is a block
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Fig. 2 A graph and its BC-tree. B and C stand for B-node and C-node,
respectively.

graph rooted at an arbitrary node b ∈ B. For more details of
BC-trees and related notions, see [11], for example.

In a BC-tree, a node b ∈ B, which represents a block, is
called a B-node, and a node c ∈ C, which represents a cut-
vertex, is called a C-node. By definition, no two B-nodes
can be adjacent and no two C-nodes either. For a graph, its
BC-tree is uniquely determined, and it shows how the graph
is decomposed into biconnected components. Figure 2 illus-
trates an example of a graph and its BC-tree.

4. Computing Betweenness Centrality by Biconnectiv-
ity Decompositions

Decomposed structures of graphs may help computing var-
ious network invariants since such computation could be
done separately within each decomposed component and
merged appropriately. In this section, we propose a new ap-
proach to compute betweenness centrality efficiently by de-
composing a graph into biconnected components. The idea
is firstly to construct the BC-tree after biconnectivity de-
composition, and then to apply Brandes’ algorithm to each
B-node.

To this end we introduce some values that are used dur-
ing the computation. For any node x ∈ B ∪ C in a BC-tree
and a node y adjacent to x, we denote a block or a cut-vertex
corresponding to x by S x, a cut-vertex or a block corre-
sponding to y, respectively, by S y, and a unique vertex that
belongs to both S x and S y by cxy. Let w(x, y) be the number
of vertices except cxy in block y and its descendant blocks
when regarding x as a root node of a BC-tree.

Now we can describe our algorithm of computing be-
tweenness centralities in detail.

1. For a given graph, construct its BC-tree by executing a
single depth-first search.

2. Select an arbitrary B-node as a root of the BC-tree, and
apply the following procedure to all nodes except the
root by the post-order of a depth-first search on the BC-
tree.
Let q be a node where the depth-first search is now vis-
iting, p be the parent of q, qc be the children of q, and
nq be the number of vertices except cpq in S q. Since
all the child nodes of q have been processed due to the
post-order visit, a breadth-first search can compute nq

and thus we can compute w(p, q) by the following for-
mula:

Fig. 3 Shortest paths between two end vertices 1 and 6 (drawn in grey)
that belong to different biconnected components (1, 6-shortest paths are
shown by bold edges). Any 1, 6-path goes through a cut-vertex that belongs
to both biconnected components, one containing 1 and the other contain-
ing 6.

w(p, q) =
∑
r∈qc

w(q, r) + nq. (5)

Although graphs are assumed to be undirected, we
cannot compute w(q, p) within the above procedure of
computing w(p, q). For this reason, we need to com-
pute w for all pairs of vertices. This will be done in the
next step (Step 3).

3. By a depth-first search starting at q, compute value w
in pre-order, and apply Brandes’ algorithm to each B-
node in post-order. (This will be explained in detail
below.)

Step 3 is the main part for making Brandes’ algorithm
more efficient by biconnectivity decomposition. This is
achieved by a simple observation that any (shortest) path
between two vertices in different biconnected components
must go through the cut-vertices between them. To exploit
this property in Brandes’ algorithm and to make it work cor-
rectly, we have to give some modifications to formula (4)
of the original algorithm, depending on if s or v is a cut-
vertex. These are to compute the contribution (value) of end
vertices, which are not contained in the currently visiting
B-node, of shortest paths to the centrality value at the same
time of applying Brandes’ algorithm to the current B-node.
Figure 3 shows an example of such shortest paths.

We have the following four cases depending on
whether s or v is a cut-vertex or not.
(i) Neither s nor v is a cut-vertex.

We do not need any change in this case.
(ii) Only s is a cut-vertex.

We need to consider the contributions of v to the be-
tweenness centrality by the shortest paths between the ver-
tices that are reachable to s and are outside of the current
B-node, and the vertices in the currently visiting B-node.
Those shortest paths always go through s, and thus traverse
the same route within the current B-node. This implies that
δs•(v) increases, for each u, by the ratio of shortest paths
passing through v, out of all the shortest paths starting at
outside vertices that are reachable to s (Fig. 4). Therefore,
in this case, we can change formula (4) as follows:

δs•(v) =
∑

u:v∈Ps(u)

(
σsv

σsu
· (1+δs•(u))+

σsv

σsu
· w(q, p)

)
.

(iii) Only v is a cut-vertex.
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Fig. 4 Each white vertex denotes a cut-vertex, and q is the current B-
node, s is a cut-vertex, and p is a C-node that shares the cut-vertex s with
q. The contributions of v to the centrality by x, u-shortest paths starting at
x, which is reachable to s and is in a descendant B-node of p rooted at q, is
also computed.

Fig. 5 Each white vertex denotes a cut-vertex, and p is the current B-
node, v is a cut-vertex, and r is a C-node that shares the cut-vertex v with
p. The contributions of v to the centrality by s, y-shortest paths ending at y,
which is reachable from v and is in a descendant B-node of r when rooted
at p, is also computed.

We need to consider the contributions of v to the be-
tweenness centrality by the shortest paths between s and
the vertices that are reachable from v and are outside of the
current B-node. Those shortest paths always go through v,
which forms a C-node r, and they traverse the same route
within the current B-node in case that v is the end vertex
(Fig. 5). Therefore, since δs•(v) increases by the number of
vertices reachable from v and outside of the current B-node,
we need to change formula (4) as follows:

δs•(v) = w(q, r) +
∑

u:v∈Ps(u)

σsv

σsu
· (1 + δs•(u)).

(iv) Both s and v are cut-vertices.
In addition to cases (ii) and (iii), we need to consider

the contributions of v to the betweenness centrality by the
shortest paths between the vertices that are reachable to
s and are outside of the current B-node, and the vertices
that are reachable from v and outside of the current B-node
(Fig. 6). Therefore, δs•(v) increases not only by cases (ii)
and (iii) but the number of vertices reachable to s (and out-
side of the current B-node) for each vertex that is reachable
from v (and outside of the current B-node). Thus, we need
to change formula (4) as follows:

δs•(v)=w(q, r)+w(q, r) · w(q, p)

+
∑

u:v∈Ps(u)

(
σsv

σsu
·(1+δs•(u))+

σsv

σsu
·w(q, p)

)
.

As we analyzed so far, we can compute exact between-
ness centrality values correctly only by using vertices within
a B-node, once we have computed w values beforehand. The
following Procedure 1 illustrates a function WCALC that
computes w values in a post-order of a depth-first search.
The overall algorithm of our proposed approach is presented
as Algorithm 2 in the Appendix.

Fig. 6 Each white vertex denotes a cut-vertex, and q is the current B-
node, s and v are cut-vertices, p is a C-node that shares the cut-vertex s with
q, and r is a C-node that shares the cut-vertex v with q. In addition to the
shortest paths of Figs. 4 and 5, the contributions of v to the centrality by x, y-
shortest paths, starting at x which is reachable to s and is in a descendant
B-node of p and ending at ywhich is reachable from v and is in a descendant
B-node of r, is also computed.

Procedure 1 W-Calculation function
1: N[vBC]: the number of vertices in a node vBC of the

BC-tree of an input graph
2:
3: function WCALC(v′, s′)
4: visit[v′] = 1;
5: for neighbor w′ of v′ do
6: if visit[w′] = 0 then
7: p[w′] = v′;
8: WCALC(w′, s′);
9: end if

10: end for
11: if v′ , s′ then
12: for neighbor w′ of v′ do
13: if w′ , p[v′] then
14: W[p[v′]][v′]← W[p[v′]][v′]+W[v′][w′];
15: end if
16: end for
17: W[p[v′]][v′]← W[p[v′]][v′] + N[v′] − 1;
18: end if
19: end function

We finally discuss the computational complexity of our
proposed algorithm. This is estimated as follows.

Theorem 4.1 Let nb and mb be the number of vertices and
edges contained in each biconnected component b ∈ B, re-
spectively. Then we can compute the betweenness central-
ity g(v) for all the vertices v ∈ V of an unweighted graph
G = (V, E) in time

∑
b∈B O(nbmb).

Proof. In the algorithm, we spend O(n+m) time for a depth-
first search to decompose a graph into biconnected compo-
nents and to construct a BC-tree as a preprocess. Then it
requires O(|B|+ |C|) time for computing w and w′ values and
O(|B|+ |C|)+∑b∈B O(nbmb) time for computing betweenness
centralities. Altogether, since

∑
b∈B O(nbmb) is dominant the

result follows. □

Observe in the theorem that if we let NB = maxb∈B nb,
then the total computational time could be rephrased by∑

b∈B O(nbmb) = O(NBm). This observation implies that if
an input graph has a biconnectivity decomposition whose
size of its maximum component is relatively small, then the
computational time can be much smaller compared to O(nm)
of the original Brandes’ algorithm. This suggests that we
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Table 1 Fundamental information about selected networks, and their biconnectivity decompositions:
n and m are the number of vertices and edges of networks, respectively; B, NB and MB are the number of
biconnected components, the number of vertices and edges of the maximum biconnected components,
respectively.

Network (abbreviation) category n m B NB MB

U.Rovira i Virgili (U.R) communication 1,133 5,451 157 976 5,293
Facebook(NIPS) (Fa) online social 2,888 2,981 2,798 69 140
US power grid (US) infrastructure 4,941 6,594 1,688 3,040 4,555
Pretty Good Privacy (PGP) online contact 10,680 24,316 5,992 3,670 15,910
CAIDA (CA) computer 26,475 53,381 10,195 16,264 43,155
Douban (Do) online social 154,908 327,162 103,265 51,634 223,878

can expect the algorithm to work faster in practice when the
real networks are decomposed well.

5. Application to Real-World Networks

In this section, we verify the effectiveness of our proposed
approaches for computing betweenness centralities based on
graph decompositions. We are also interested in the proper-
ties about how the real-world networks are decomposed. To
this end, we implement those ideas as computer programs
and performed a series of computational experiments by ap-
plying them to real-world network benchmark data. The en-
vironment of computational experiments is as follows: OS:
openSUSE 12.3 64bit, Memory: 32GB, CPU: Intel Core i7-
4771 CPU @ 3.50Hz x 8, compiler: g++ 4.7.2.

Benchmark network data are taken from KONECT –
The Koblenz Network Collection (http://konect.uni-koblenz.
de/), which maintains a large collection of network datasets
from many different application areas. Among those, we
selected undirected, connected and unweighted networks.

5.1 OGDF

In implementing our proposed ideas as computer programs,
we used OGDF: The Open Graph Drawing Framework
(http://www.ogdf.net/) libraries. This is a C++ library to
provide algorithms and data structures for graph drawing
purposes and has been developed by Chimani et al. [7]. In
addition to the functions specific to graph drawing, various
kinds of classes that are related to processing graphs are
available, from fundamental to advanced ones: data struc-
tures such as arrays, stacks; algorithms such as Dijkstra’s,
planarizations, decompositions, and so on. It greatly facili-
tated our programming and made programs succinct. Below
we list some of its functions that we used in our implemen-
tation:

• input/output functions for graph (network) data,
• fundamental classes that manipulate graphs, vertices,

edges, etc.,
• data structures necessary for implementing Brandes’

algorithm such as arrays, stacks, queues, lists, etc.,
• hashes to store w values in biconnectivity decomposi-

tions, and
• BC-tree classes.

Remark that BC-tree classes are implemented to construct

BC-trees optimally in linear time, based on the theoretical
results (such as [13], and so on).

5.2 Decomposition Structures of Real-World Networks

We first show the results of biconnectivity decompositions
of some networks in Table 1.

From this table, we can see that the biconnectivity de-
composition structures greatly depend on each network. For
example, Facebook(NIPS) is decomposed into extremely
many components and its maximum size is small; it is only
about 2.39% of the entire network. On the other hand,
U.Rovira i Virgili is decomposed into relatively small num-
ber of components but the maximum size is large; it occu-
pies about 86.1% of the total number of vertices. Similar
observation can be seen in US power grid, that is, it is de-
composed into relatively small number of components and
the maximum component size is about 61.5% of the total
number of vertices. We could see that these phenomena are
due to the category of networks; virtual networks (such as
online social) are known to have many low-degree vertices
(e.g., pendant vertices) on its fringe, and thus easily to be de-
composed into a single edge component. In contrast, phys-
ical networks (such as infrastructure) usually avoid to have
cut-vertices, and thus easy to form a big component.

It is hard to find any common properties of decompo-
sitions shared by all networks, but at least we could say that
most of the networks are decomposed into “small number of
large biconnected components” and “large number of small
biconnected components”. We also remark that, to the best
of our knowledge, there are quite few observations about
decomposition structures of real-world networks, so these
results are valuable on their own.

5.3 Computational Results for Biconnectivity Decompo-
sitions

We now show in Table 2 the experimental results of com-
puting betweenness centralities by implementing (a) naive
Brandes’ algorithm (for comparison purpose), and (b) our
proposed algorithm by biconnectivity decompositions. For
the proposed algorithm, we measured the computational
time for constructing BC-trees and applying Brandes’ algo-
rithm after decompositions, separately.

We have the following observations from Table 2.
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Table 2 Computational time (in seconds) by (a) Brandes’ algorithm and (b) the proposed algorithm
by biconnectivity decompositions. We did multiple (five) trials for each network. For (a), we take their
average. For (b), we take the median in terms of the total time, and BC-tree and Brandes are the times
of that trial. We did so so that the sum of BC-tree and Brandes coincides with the total time.

Network Brandes Biconnectivity decomposition
BC-tree Brandes total

U.R 0.199294 0.001451 0.199611 0.201062
Fa 0.332757 0.001698 0.015221 0.016919
US 1.95956 0.003268 0.994061 0.997329
PGP 13.1339 0.012537 2.82199 2.83453
CA 115.075 0.030944 92.2047 92.2356
Do 10, 083.6 0.253606 2, 574.98 2, 575.23

1. It takes almost no time (within a second) for biconnec-
tivity decompositions and obtaining BC-trees, for any
types of networks.

2. For all networks except one (U.R), the proposed algo-
rithm runs faster than a naive application of Brandes’
algorithm.

3. The effectiveness of the proposed algorithm depends
on the property of decompositions of networks.

We verify the third point in detail. For example, U.Rovira
i Virgili (U.R), which is not well decomposed into bicon-
nected components, takes almost as much time as for Bran-
des’ algorithm, and thus the proposed algorithm has disad-
vantage in spending time for decompositions. On the other
hand, Facebook(NIPS) (Fa), which is decomposed into so
many small components, can receive the advantage of the
decomposition, and the proposed algorithm outperforms a
naive application of Brandes’ algorithm without decompo-
sitions. It runs about 20 times faster than a naive implemen-
tation.

We can conclude that using biconnectivity decompo-
sitions shows great advantage for computing betweenness
centralities as expected.

6. Discussions and Conclusion

In this paper, we studied the problem of computing be-
tweenness centralities of all vertices of a given network.
Especially, we focused on the well-known Brandes’ algo-
rithm and proposed an approach of exploiting decompo-
sition structures of networks to make Brandes’ algorithm
work more efficiently. Furthermore, we implemented these
ideas as computer programs and verified the effectiveness of
the proposed algorithm by performing computational exper-
iments on real-world networks.

As a result, we confirmed that using biconnectivity de-
compositions (applying Brandes’ algorithm after biconnec-
tivity decompositions) has great advantage in the compu-
tational time. We also observed that real-world networks
have various types of biconnectivity decomposition struc-
tures and the effectiveness of proposed approach depends on
those structures. However, the proposed algorithm performs
much better than a naive algorithm (i.e., without using de-
compositions) for large-scale networks, so we claim that we
could always prefer our proposed algorithm for computing

exact betweenness centrality values.
Computing betweenness centrality efficiently is an im-

portant task by its own, but it has great spreading effect.
For future work, we can incorporate our proposed approach
into other algorithms that use centrality computation as sub-
routines, such as Girvan-Newman algorithm for community
detection in social networks. We can expect that they will
be greatly accelerated by our proposed algorithm.
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[7] M. Chimani, C. Gutwenger, M. Jünger, G.W. Klau, K. Klein, and P.
Mutzel, The Open Graph Drawing Framework (OGDF). Chapter 17
in: R. Tamassia (ed.), Handbook of Graph Drawing and Visualiza-
tion, CRC Press, pp.543–569, 2014.

[8] T. Coffman, S. Greenblatt, and S. Marcus, “Graph-based technolo-
gies for intelligence analysis,” Communications of the ACM, vol.47,
no.3, pp.45–47, March 2004.

[9] A. Del Sol, H. Fujihashi, and P. O’Meara, “Topology of small-
world networks of protein-protein complex structures,” Bioinfor-
matics, vol.vol.21, no.8, pp.1311–1315, Jan. 2005.

[10] L.C. Freeman, “A set of measures of centrality based on between-
ness,” Sociometry, vol.40, no.1, pp.35–41, 1977.

[11] C. Gutwenger, “Application of SPQR-trees in the planarization ap-
proach for drawing graphs,” Ph. D Thesis, Dortmund University of
Technology, 2010.

http://dx.doi.org/10.1121/1.1906679
http://dx.doi.org/10.1121/1.1906679
http://dx.doi.org/10.1137/1.9781611973754.12
http://dx.doi.org/10.1137/1.9781611973754.12
http://dx.doi.org/10.1137/1.9781611973754.12
http://dx.doi.org/10.1137/1.9781611973754.12
http://dx.doi.org/10.1080/0022250X.2001.9990249
http://dx.doi.org/10.1080/0022250X.2001.9990249
http://dx.doi.org/10.1142/S0218127407018403
http://dx.doi.org/10.1142/S0218127407018403
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1201/b15385-20
http://dx.doi.org/10.1201/b15385-20
http://dx.doi.org/10.1201/b15385-20
http://dx.doi.org/10.1201/b15385-20
http://dx.doi.org/10.1145/971617.971643
http://dx.doi.org/10.1145/971617.971643
http://dx.doi.org/10.1145/971617.971643
http://dx.doi.org/10.1093/bioinformatics/bti167
http://dx.doi.org/10.1093/bioinformatics/bti167
http://dx.doi.org/10.1093/bioinformatics/bti167
http://dx.doi.org/10.2307/3033543
http://dx.doi.org/10.2307/3033543
http://dx.doi.org/10.17877/DE290R-15654
http://dx.doi.org/10.17877/DE290R-15654
http://dx.doi.org/10.17877/DE290R-15654


INOHA et al.: BETWEENNESS CENTRALITY BY GRAPH DECOMPOSITIONS AND THEIR APPLICATIONS
457

[12] T. Hayashi, T. Akiba, and Y, Yoshida, “Fully dynamic betweenness
centrality maintenance on massive networks,” In the 42nd Int. Conf.
the Very Large Data Bases Endowment (VLDB), vol.9, no.2, pp.48–
59, Oct. 2015.

[13] J. Hopcroft and R.E. Tarjan, “Dividing a graph into triconnected
components,” SIAM J. Comput., vol.2, no.3, pp.135–158, 1973.

[14] S. Kintali, “Betweenness centrality: algorithms and lower bounds,”
arXiv: 0809.1906v2, 2008.

[15] M.-J. Lee, J. Lee, J.Y. Park, R.H. Choi, and C.-W. Chung, “QUBE:
a quick algorithm for updating betweenness centrality,” In the 21st
International World Wide Web Conference (WWW), pp.351–360,
April 2012.

Appendix A: Brandes’ algorithm

Algorithm 1 Brandes’ algorithm
1: g[v]← 0, v ∈ V;
2: for s ∈ V do
3: S ← empty stack;
4: P[w]← empty list, w ∈ V;
5: σ[t]← 0, t ∈ V; σ[s]← 1;
6: d[t]← −1, t ∈ V; d[s]← 0;
7: Q← empty queue;
8: enqueue s→ Q;
9: while Q not empty do

10: dequeue v← Q;
11: push v→ S ;
12: for neighbor w o f v do
13: if d[w] < 0 then
14: enqueue w→ Q;
15: d[w]← d[v] + 1;
16: end if
17: if d[w] = d[v] + 1 then
18: σ[w]← σ[w] + σ[v];
19: append v→ P[w];
20: end if
21: end for
22: end while
23: δ[v]← 0, v ∈ V;
24: while S not empty do
25: pop w← S ;
26: for v ∈ P[w] do
27: δ[v]← δ[v] + σ[v]

σ[w] · (1 + δ[w]);
28: end for
29: if w , s then
30: g[w]← g[w] + δ[w];
31: end if
32: end while
33: end for

Appendix B: Brandes’algorithmwithBC-tree

Algorithm 2 Brandes’ algorithm with BCTree

1: O[vB]: vertices of an input graph corresponding to a B-
node vB

2: C[vO]: a C-node corresponding to a cut-vertex vO of an
input graph

3:
4: p[v′]← 0, v′ ∈ V ′;
5: visit[t′]← 0, t′ ∈ V ′;
6: for e′ ∈ E′ do
7: v′, w′ ← endpoint of e′

8: W[v′][w′] = 0;
9: end for

10: WCALC(s′, s′);
11:
12: g[v]← 0, v ∈ V;
13: visit[t′]← 0, t′ ∈ V ′;
14: S ′ ← empty stack;
15: push s′ → S ′;
16: while S ′ not empty do
17: pop v′ ← S ′;
18: visit[v′]← 1;
19: if N[v′] > 1 then
20: for s ∈ V[v′] do
21: S ← empty stack;
22: P[w]← empty list, w ∈ V[v′];
23: σ[t]← 0, t ∈ V[v′]; σ[s]← 1;
24: d[t]← −1, t ∈ V[v′]; d[s]← 0;
25: Q← empty queue;
26: enqueue s→ Q;
27: while Q not empty do
28: dequeue v← Q;
29: push v→ S ;
30: for neighbor w o f v do
31: if d[w] < 0 then
32: enqueue w→ Q;
33: d[w]← d[v] + 1;
34: end if
35: if d[w] = d[v] + 1 then
36: σ[w]← σ[w] + σ[v];
37: append v→ P[w];
38: end if
39: end for
40: end while
41: δ[v]← 0, v ∈ V[v′];
42: while S not empty do
43: pop w← S ;
44: if O[w] cut-vertex then
45: δ[w]← δ[w] +W[v′][C[w]];
46: if O[s] cut-vertex then
47: δ[w] ← δ[w] + W[v′][C[w]] ·

W[v′][C[s]];
48: end if
49: end if
50: for v ∈ P[w] do
51: δ[v]← δ[v] + σ[v]

σ[w] · (1 + δ[w]);
52: if O[s] cut-vertex then
53: δ[v]← δ[v] + σ[v]

σ[w] ·W[v′][C[s]];
54: end if
55: end for
56: if w , s then
57: g[w]← g[w] + δ[w];
58: end if
59: end while
60: end for
61: end if
62: for neighbor w′ o f v′ do
63: if visit[w′] = 0 then
64: for neighbor x′ o f v′ do
65: if x′ , w′ then
66: W[w′][v′]← W[w′][v′] +W[v′][x′];
67: end if
68: end for
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69: W[w′][v′]← W[w′][v′] + N[v′] − 1;
70: push w′ → S ′;
71: end if
72: end for
73: end while
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