
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022
481

PAPER Special Section on Foundations of Computer Science - New Trends of Theory of Computation and Algorithm -

An Improvement of the Biased-PPSZ Algorithm for the 3SAT
Problem

Tong QIN†a), Nonmember and Osamu WATANABE††b), Member

SUMMARY Hansen, Kaplan, Zamir and Zwick (STOC 2019) intro-
duced a systematic way to use “bias” for predicting an assignment to a
Boolean variable in the process of PPSZ and showed that their biased PPSZ
algorithm achieves a relatively large success probability improvement of
PPSZ for Unique 3SAT. We propose an additional way to use “bias” and
show by numerical analysis that the improvement gets increased further.
key words: 3SAT, randomized algorithm, PPSZ, Biased-PPSZ, numerical
analysis

1. Introduction and Preliminaries

The 3CNF Satisfiability problem (3SAT in short) is a prob-
lem of determining∗ whether a given Boolean formula
F(x1, . . . , xn) in 3-Conjunctive Normal Form (3CNF in
short) over Boolean variables has a satisfying assignment
(sat. assignment in short) i.e., 0 or 1 assignments to F’s
Boolean variables x1, . . . , xn such that F is evaluated 1.

Though we cannot expect a polynomial-time algo-
rithm for 3SAT (unless P = NP), it is still possible to ob-
tain an exponential-time algorithm that solves 3SAT sig-
nificantly faster than naive exponential-time algorithm that
runs 2npoly(n)-time to solve a given 3CNF formula with n
variables, and many researchers have proposed better algo-
rithms for solving 3SAT (see, e.g., [2], [6] for those previ-
ously proposed algorithms). Among them, the randomized
algorithm proposed by Paturi, Pudlák, Saks, and Zane [6]
(PPSZ in short) is simple but quite strong, and it has been
studied as one of the standard templates of 3SAT algorithms.
In fact, several researchers have proposed its improvements;
nevertheless, these improvements are rather technical and
the actual efficiency improvements of these algorithms are
quite minor, and PPSZ had been essentially best until re-
cently.

In 2019 Hansen, Kaplan, Zamir, and Zwick [2] intro-
duced a new idea of using “bias” and claimed that a rela-
tively large improvement (significantly better than the pre-
vious ones) is possible by using “bias”; the actual algorithm
(which we call HKZZ Biased-PPSZ in short) and its com-
plexity upper bound for Unique 3SAT have been shown in

Manuscript received March 26, 2021.
Manuscript revised June 6, 2021.
Manuscript publicized September 8, 2021.
†The author is with SIT Division, Makino Milling Machine

Co., Ltd., Tokyo, 152–8578 Japan.
††The author is with School of Computing, Tokyo Institute of

Technology, Tokyo, 152–8550 Japan.
a) E-mail: tong.qin@makino.co.jp
b) E-mail: watanabe@c.titech.ac.jp

DOI: 10.1587/transinf.2021FCP0009

Table 1 Comparison of exponential coefficients

exp. coeff. 2exp.coeff.

Naive: εnaive 1.0 2
PPSZ: εPPSZ 0.386295 1.307031

Biased PPSZ: εHKZZ-PPSZ 0.386254 1.306995
Our Algo.: εQW-PPSZ 0.386241 1.306984

Comparison of exponential coefficients of algorithms
for solving Unique 3SAT

[10] with the outline of its complexity analysis. There are
two interesting points in their approach. Firstly, they pro-
pose a systematic way to use “bias” for predicting an as-
signment to a variable (when the assignment cannot be in-
ferred from the previous assignments), whereas an assign-
ment is guessed uniformly at random in PPSZ. Since this
idea is natural, we may be able to introduce several varia-
tions following this approach. In fact, we propose an addi-
tional way to use “bias” and define an algorithm QW-PPSZ
that would improve their algorithm further. This is the first
technical contribution of this paper. Secondly, they intro-
duced in [10] (not in [2]) a numerical method for analyzing
the computational complexity of their algorithm. The anal-
ysis is rigorous at least on grid points, and we may expect
that the accuracy of the analysis increases by reducing the
grid interval. Unfortunately, the authors of this paper could
not understand how they justify the precision of their ob-
tained complexity bound; on the other hand, we introduce
in this paper another way to justify (under a certain techni-
cal assumption) the complexity bound that is obtained nu-
merically for our algorithm. This is our second technical
contribution.

As summarized in Table 1, though a simple idea, we
can show that our additional usage of “bias” helps to im-
prove the success probability by a reasonable amount. (See
below for the definition of “exponential coefficient.”)

Remark.

For discussing the computational complexity of algorithms
concretely, we focus on 3SAT in this paper. PPSZ and its
variants are, however, designed for kSAT for any k ≥ 3, and
some of the following discussions are applicable for kSAT
in general. Also from the same reason, we analyze the com-
plexity of algorithms for Unique 3SAT, a restriction of 3SAT

∗The problem is often extended to a more general problem that
asks for computing one of sat. assignments (if it exists). Following
this convention, we consider in this paper algorithms for comput-
ing a sat. assignment.

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers

482
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

where we can assume that an input formula (if it is satis-
fiable) has only one satisfying assignment. As shown by
Scheder and Steinberger [9], a certain amount of efficiency
improvement is guaranteed on the general 3SAT if there is
any exponential efficiency improvement on Unique 3SAT.

Preliminaries

A 3CNF formula is a conjunction of clauses, each of which
is a disjunction of three literals, i.e., a Boolean variable or its
negation. Throughout this paper, we use F and V to denote
respectively an input 3CNF formula and the set of Boolean
variables of F, and use n to denote the number of Boolean
variables of F, which is used as the size parameter for dis-
cussing the computational complexity of 3SAT algorithms.
An assignment is a way to assign 0 or 1 values to all vari-
ables of F. On the other hand, we use “single assignment”
for referring an assignment to one variable. We always use
α to denote a sat. assignment; in fact, by α we usually mean
the target sat. assignment that we consider in the analysis of
a given algorithm.

PPSZ and its variants are randomized algorithms and
their running time is subexponentially bounded (i.e., 2o(n)-
time). Then “success probability” is used for discussing
the complexity of these algorithms. The success probabil-
ity of a 3SAT algorithm is the probability that the algorithm
yields some sat. assignment on a worst-case satisfiable for-
mula with n variables. For example, the naive 3SAT algo-
rithm that guesses each single assignment uniformly at ran-
dom yields a sat. assignment (for any satisfiable formula F)
with probability 2−n; hence, 2−n is the success probability
of the naive 3SAT algorithm. For a given 3SAT algorithm,
if we can give a lower bound of its success probability by
2−(ε+o(1))n, then we say that its exponential coefficient is ε.
For example, εnaive := 1.0 is an exponential coefficient of
the naive 3SAT algorithm. In this paper we use exponential
coefficients as concrete parameters for measuring the com-
plexity of 3SAT algorithms.

Table 1 shows the comparison of exponential coeffi-
cients when running the algorithms for Unique 3SAT. It also
shows 2exponentialcoefficient. Note that the inverse of the suc-
cess probability of a 3SAT algorithm is the average number
of times that we need to execute it to guarantee that a sat.
assignment is obtained with high probability. Thus, for ex-
ample, by using 2εPPSZ = 1.307031, we can estimate that
2(0.386295+o(1))n · 2o(n) = 1.307031n · 2o(n) is an upper bound
of the average running time for obtaining a sat. assignment
with probability > 0.9 by using PPSZ.

2. The PPSZ Algorithm

We briefly explain the PPSZ algorithm for 3SAT. Here
like [2] we follow Hertli’s paper [4] and explain his modi-
fied version of the PPSZ algorithm, which we simply call
PPSZ.

See Algorithm 1 for the description of PPSZ. Its outline
is simple. For a given input formula F and its variable set V ,
based on a random order of variables in V choose variables

and assign them one by one, updating the partial assignment
α′. We refer to this as PPSZ process in the following dis-
cussion. The current formula F′ (which is initially F) is
simplified by these single assignments; that is, a clause con-
taining a literal whose value becomes 1 is removed (since it
is already satisfied), and a literal whose value becomes 0 is
removed from clauses containing this literal. If the “empty”
clause, a clause with no literal, appears in F′, then the al-
gorithm stops with failure. On the other hand, if all clauses
are removed, then the algorithm outputs the obtained assign-
ment α′ (by adding any single assignments to variables that
are not yet assigned) as a satisfying assignment. Techni-
cally, for defining the random order of variables, we use a
random placement π, a mapping from V to [0, 1] where the
value π(x) of each variable x ∈ V is determined uniformly at
random and independently. The order of variables is defined
simply by the order of their π values. (More precisely, for
the implementation of the algorithm, we use 2n bit numbers
for π values; then the probability that two variables have the
same π value is negligible.)

One important feature of PPSZ and its variants is to
use a predicate (denoted by Pd in Algorithm 1) to determine
the assignment of a variable x considered at each iteration.
For any variable x of the current formula F′, Pd(x) suggests
an assignment b ∈ {0, 1} to x. The predicate is designed
so that this suggestion is always correct; hence, the algo-
rithm updates the partial assignment α′ based on this sug-
gestion. It may be the case where Pd(x) returns ? (meaning,
don’t know), in which case the algorithm assigns 0 or 1 to
x uniformly at random. We say (a single assignment to) x
is forced (resp., guessed) if Pd(x) gives b ∈ {0, 1} (resp.,
Pd(x) = ?). Clearly, the probability that each single as-
signment is forced is important. Suppose that Pd(x) always
returns ?; then the algorithm executes like the naive algo-
rithm that randomly guesses a satisfying assignment, and
the probability that it outputs the target satisfying assign-
ment becomes 2−n.

In PPSZ, the value of Pd is determined by “d-
implication.” For any parameter d > 0, we say that a CNF
formula F′ d-implies a single assignment {x ← b} if there

Algorithm 1 The PPSZ algorithm
(∗) Input: A 3CNF formula F over a set V of variables
(∗) π := a random mapping from V to [0, 1]
(∗) α′ := the empty partial assignment; F′ := F

(PPSZ process)
for x ∈ V in the order of π(x) do

if Pd(x) ∈ {0, 1} then
assign Pd(x) to x

else
assign x from {0, 1} uniformly at random

end if
(∗) add this assignment to α′, simplify F′, and

if F′ has the empty clause, then stop with failure;
if F′ has no clause, then output α′ and stop

end for
(∗) These common statements will be omitted in the later algorithm de-
scriptions.

QIN and WATANABE: AN IMPROVEMENT OF THE BIASED-PPSZ ALGORITHM FOR THE 3SAT PROBLEM
483

exists a subformula G ⊆ F′ consisting at most d clauses such
that all satisfying assignments of G assign b to x. The pro-
cedure Pd in Algorithm 1 checks, for a given x, whether the
current formula F′ d-implies {x ← b} for some b ∈ {0, 1}; if
so, Pd(x) = b, and otherwise Pd(x) = ?. It is easy to see that
if Pd(x) = b, the variable x must be assigned b in order to
satisfy F′ (and hence, F), which guarantees the correctness
of Pd.

Now consider the success probability of PPSZ (i.e., Al-
gorithm 1 for Unique 3SAT. For any π, let Guessed(π) de-
note the set of guessed variables when running PPSZ with
π and guessed single assignments consistent with α, and let
G(π) := |Guessed(π)|. As we discussed above, the probabil-
ity that PPSZ outputs α is 2−G(π), which is stated precisely
as follows.

Pr[PPSZ outputs α] = π

[
2−G(π)

]
≥ 2− π[G(π)], (1)

where the probability of the left side is over the randomness
of the algorithm; that is, the choice of π and the random
guessed assignments. On the other hand, for the predicate
Pd, the following upper bound is shown for the probability
that each variable is guessed.

Theorem 2.1 ([4, Theorem 2.4]). For any variable x, we
have

Pr
π

[x ∈ Guessed(π)] ≤ S 3 + ε3(d),

where S 3 is defined as below, and ε3(d) is a function that
goes to 0 for d → ∞.

S 3 :=
∫ 1

0

p
1
2 − p

1 − p
dp.

Note that the d-implication can be checked in
polynomial-time for d = O(log n). Thus, we can execute
Algorithm 1 in polynomial-time with d = log n, and under
this setting, we have

Pr[PPSZ outputs α] ≥ 2− π[G(π)] (by (1))

= 2−
∑

x∈V Pr[x∈Guessed(π)] ≥ 2−(S 3+o(1))n. (2)

We have S 3 = 2 ln 2 − 1 = 0.386294 · · · , from which we
have the exponential coefficient εPPSZ of PPSZ of Table 1.

3. Biased-PPSZ Algorithms

In PPSZ if Pd(x) = ?, i.e., the d-implication cannot deter-
mine the single assignment to x, then x is assigned 0 or 1
with the same probability. Even in such a guessed case, it
may be possible to infer, e.g., {x ← 0} is more likely than
{x ← 1}. Hansen et al. proposed [2] a systematic way to
make use of such biases, which we call biazed-PPSZ al-
gorithms in general. In fact, they gave a specific way to
define biases and showed that the success probability is im-
proved over PPSZ by their biased-PPSZ algorithm (in short,
HKZZ biased-PPSZ).

Here we first consider a generic biased-PPSZ algo-
rithm (in short, Generic Biased-PPSZ) and explain an idea
and properties common to all biased-PPSZ algorithms. Al-
gorithm 2 is the outline of Generic Biased-PPSZ. When an
assignment to a variable x is guessed, it determines a ran-
dom assignment following a bias βT that is given based on
the type T of variable x. PPSZ is a special case of this algo-
rithm where βT is the “trivial” bias 1/2 for all types.

Below we derive the definition of the “best” biases
{β∗T }T∈T . As we will see, they are defined based on the sta-
tistical parameters of an input formula F and its target satis-
fying assignment, and it is likely that some of them are hard
to compute. Thus, instead of computing these biases, we
“guess” them with reasonable precision. In its actual execu-
tion, the algorithm tries all possible values of βT from the set
{1/e(n), . . . , (e(n) − 1)/e(n)} for each type T . Clearly, for a
real bias value β∗T , there is some choice of βT that is 1/e(n)-
close to it; that is, |β∗T − βT | ≤ 1/e(n). We expect that when
all “guessed” biases are 1/e(n)-close to their real values, the
inner loop part of the algorithm (Inner Loop for short) out-
puts a sat. assignment with higher probability than PPSZ.
Note that even with wrong choices of biases Inner Loop
never outputs a wrong answer, i.e., an unsat. assignment al-
though it may also output some sat. assignment.

In the actual design of biases, we choose e(n) and the
type set T so that 1/e(n)-close biases are sufficient to guar-
antee the same exponential coefficient as the real biases, and
still e(n)|T | = 2o(n) holds. The latter condition is needed for
a subexponential-time bound for the algorithm.

Consider the success probability of Generic Biased-
PPSZ for Unique 3SAT. Here we consider the execution of
Inner Loop with {βT }T∈T .(Below we omit the range of type
“∈ T ” for simplifying expressions.) Then the analysis is
essentially the same as PPSZ, and we can generalize (1) as
follows.

Pr[Inner Loop outputs α]

= π

⎡⎢⎢⎢⎢⎢⎣∏
T

β
G0

T (π)
T (1 − βT)G1

T (π)

⎤⎥⎥⎥⎥⎥⎦
≥ 2

π

[
log

(∏
T β

G0
T (π)

T (1−βT)G1
T (π)

)]
, (3)

where Gb
T (π) is the number of guessed variables of type T

Algorithm 2 The generic biased-PPSZ algorithm

for every choice of values βT ∈ { 1
e(n) , . . . ,

e(n)−1
e(n) }
for each T ∈ T do

(Inner Loop: PPSZ process with biases {βT }T∈T)
for x ∈ V in the order of π(x) do

if Pd(x) ∈ {0, 1} then
assign Pd(x) to x

else
identify the type T of x
assign 0 to x with prob. βT , and
assign 1 to x with prob. 1 − βT

end if
end for

end for

484
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

that are assigned b by α.
We analyze the exponent of (3) further. Let GT (π) :=

G0
T (π) +G1

T (π). Define GT := π[GT (π)], and

β∗T := π[G
0
T (π)]/GT . (4)

Then the exponent of (3) can be rewritten as∑
T

GT ·
(
β∗T log (βT) +

(
1 − β∗T

)
log (1 − βT)

)
. (5)

It is easy to see that this is maximized at βT = β
∗
T for

each T . Thus, (4) is indeed the best way to define bi-
ases. Then by using the binary entropy function H(x) :=
−x log x− (1− x) log(1− x), this maximized value is written
simply as −∑T GT ·H(β∗T). Recall, on the other hand, that the
original PPSZ uses the trivial bias 1/2 for all βT ; hence, we
have (5) = −∑T GT = −

∑
x Pr[x is guessed] ≥ −(S 3+o(1))n.

Comparing these expressions for (5), we may claim that the
difference

S 3 −
∑

T

(GT/n) · H(β∗T) (6)

is the “gain per variable” by using the best biases β∗T . We
will analyze this gain in more detail in our numerical analy-
sis.

Consider the case where Inner Loop is executed with
βT 1/e(n)-close to β∗T for all T . By simple calculation, we
have (5) ≥ −∑T GT · H(β∗T) − (

∑
T GT)/e(n). Then noting

that
∑

T GT ≤ n, we can guarantee asymptotically the same
exponential coefficient (more specifically, the above “gain
per variable”) if e(n) = ω(1).

3.1 The HKZZ Biased-PPSZ Algorithm

We explain a biased-PPSZ algorithm that Hansen et al. pro-
posed in [2] and their way to define biases in this algorithm.
Below we refer to their algorithm as HKZZ Biased-PPSZ,
and refer to their way of defining biases as HKZZ Bias. In
this section, in order to simplify our explanation, we con-
sider the algorithm for Unique 3SAT.

A key idea of HKZZ Bias is to use a “maximal set
of disjoint clauses” [5]. We say two clauses are dis-
joint if they have no variable in common. The algorithm
HKZZ Biased-PPSZ first computes a maximal set D of dis-
joint clauses of F; it simply collects clauses to D until no
disjoint clause exists in F \ D. Let VD denote the set of
variables appearing in D; note that |VD| = 3|D|.

An important property here is that every clause in F \D
has at least one variable in VD. By using this property,
we can design an efficient algorithm if |D| is small, more
specifically, less than γn for some small constant γ, say,
γ = 0.1. The algorithm for this part (Algorithm 3 (∗∗)) is
simple. First, note that there are exactly 7|D| assignments†

†A referee pointed out that this bound can be reduced to 6|D|

by using the technique introduced in [1], which immediately gives
a better exponential coefficient 0.386249 · · · with the biased-PPSZ
part.

to VD that satisfy all clauses of D, and it is easy to enu-
merate them. Hence, for each such assignment α′, the algo-
rithm checks whether it can be extended to satisfy remaining
clauses F \ D, in other words, whether (F \ D)|α′ is satisfi-
able. From the above property, it follows that all clauses in
(F \ D)|α′ have at most two literals; that is, (F \ D)|α′ can be
regarded as a 2SAT instance. Thus, we have a polynomial-
time algorithm that checks whether (F \ D)|α′ is satisfiable.
Hence, the whole computation can be done in 7γnpoly(n)-
time. We can easily convert this deterministic algorithm to a
randomized and polynomial-time algorithm whose success
probability is at least 7−γn ≈ 2−2.81γn; that is, the exponential
coefficient of this case is 2.81γ < 0.3 (when γ = 0.1), which
is quite small.

Generic Biased-PPSZ with HKZZ Bias is used for the
case where |D| > γn, which we refer the biased-PPSZ part.
Before executing this part (for simplifying the following dis-
cussion), we assume that the algorithm flips negated vari-
ables appearing in D so that all clauses of D consist of only
nonnegated variables (which is possible since all clauses in
D are disjoint).

Now we explain how biases are defined by HKZZ Bias.
By HKZZ Bias we consider only variables in VD. For
the other variables, the trivial bias 1/2 is used; that is,
these variables are assigned 0 or 1 uniformly at ran-
dom if they have to be guessed. As we discussed for
Generic Biased-PPSZ, it is enough to define the set T of
types; then the biases {β∗T }T∈T are defined by (4). Recall
(see Algorithm 3) that the type of variable x is determined
when it is chosen as the next target variable in PPSZ pro-
cess. Note that x appears in exactly one clause C of D be-
cause all clauses of D are disjoint; let C = (x∨y∨ z). At this
point, some of the other variables in C, i.e., y and z, might
have been already assigned values††. We use the pattern of
this assignment as a type†††, which we call the “prefix” of
x. More specifically, the prefix of x is the pattern of fixed
literal values in the order of π. For example, if α(y) = 0 and
α(z) = 1, and if π(y) < π(z) < π(x), then the prefix P of x
(when x is chosen) is 01; and if π(z) < π(x) < π(y), then

Algorithm 3 HKZZ Biased-PPSZ for 3SAT
compute a maximal set D of disjoint clauses of F
if |D| ≤ γn then

(∗∗) search for a sat. assignment of F
from all possible sat. assignments of D

else (Biased-PPSZ part)
for every weight vector (W1,W2,W3) on D,

every threshold time t ∈ (0, 1), and
every choice of values for {βT }T∈T do

execute Inner Loop of Generic Biased-PPSZ
end for

end if

††We may assume that these values are correct. This is because
we consider only the execution where all guessed assignments are
consistent with the unique sat. assignment.
†††In [2] two more factors are considered for determining types.

But here we give this alternative explanation while the algorithm is
the same.

QIN and WATANABE: AN IMPROVEMENT OF THE BIASED-PPSZ ALGORITHM FOR THE 3SAT PROBLEM
485

P = 1. We define T := {∅, 0, 1, 00, 01, 10, 11} as our domain
of types; here ∅ denotes the case where x is the first variable
in C chosen in biased-PPSZ process (i.e., π(x) < π(y), π(z)).

Now that we have defined our types, the best bi-
ases {β∗P}P∈T are defined by (4) as we discussed for
Generic Biased-PPSZ. But some additional factors are con-
sidered in HKZZ Bias. The first one is a “weight distribu-
tion” on clauses in D. The weight of a clause is the number
of literals evaluated 1 under the unique satisfying assign-
ment α. For a given set D of disjoint clauses, its weight vec-
tor is a triple (W1,W2,W3), where for each i ∈ {1, 2, 3}, Wi is
the number of clauses of D with weight i. We will also use
its fractional version (w1,w2,w3) later, where wi := Wi/|D|.
Since all clauses of D have a positive weight, we have
W1 + W2 + W3 = |D|; hence, the vector is determined by
two parameters such as W1 and W2. A weight vector is a
statistical property of a given formula; in HKZZ Bias, we
intuitively consider† that the best bias values are chosen de-
pending on each weight vector. The second factor is the
“time” that a variable x is chosen. For a given parameter
t (which we call a time threshold) that is fixed “appropri-
ately” from (0, 1), we determine the bias of x depending on
whether π(x) ≤ t or not. In HKZZ Bias, biases {βP}P∈T are
considered only variables x such that π(x) ≤ t. For variables
that are chosen later are given again the trivial bias 1/2.

Here is an intuitive idea of these types. Suppose that
W1 is large for the input formula F; that is, it has many
clauses in D that have only one variable that is assigned 1
under α. (Recall that we assume that all variables are non-
negated in D by flipping negated variables after D is ob-
tained.) Suppose further that the prefix of a variable x when
it is chosen in PPSZ process is 1. Then it is more likely that
α(x) = 0. More specifically, it would be better to determine
the assignment of x proportional to the fraction of variables
that should be assigned 0 (resp., 1) under α among all such
variables with prefix 1 (which idea is indeed the fact that
β∗T is the best choice). Of course, this fraction would vary
depending on the timing when x is considered in PPSZ pro-
cess. For this, HKZZ Bias uses the time threshold t, and
classify a variable x whether it appears in PPSZ process
early (i.e., π(x) ≤ t) or not. Intuitively, it is likely that a vari-
able appearing later is forced. Thus, the trivial bias is used
(for simplifying our analysis) by HKZZ Bias if π(x) > t.

We need to explain a way to determine a weight vector
and a threshold t. Formally speaking, they need to be cho-
sen (and fixed) before determining biases. Clearly, it is hard
to determine F’s weight vector correctly and choose a time
threshold appropriately. Thus, here again we “guess” them.
For a weight vector, note that there are at most n2 possibil-
ities because Wi ∈ {0, . . . , |D|} and W3 is determined once
W1 and W2 are fixed. Thus, we can in fact try all possible
values, and one of them (and exactly one of them) must be
the correct one. On the other hand, for a time threshold, we

†This interpretation is in fact for the sake of our analysis be-
cause the best biases are chosen (based on the brute force search)
for each given input formula F anyway, and there is no need to
choose them depending on F’s weight vector.

simply try all possible values from some finite set TH, where
TH := {τ, 2τ, . . . , τ�0.5/τ�} for some constant τ (We do not
have to consider a time threshold greater than 0.5 since it is
known (see, e.g., [2]) that any variable x with π(x) > 0.5 is
forced with probability 1). While we may expect a better re-
sult by choosing smaller τ, from our numerical analysis, we
can get a reasonable improvement by using τ = 1.0 × 10−2.

In [2] Hansen et al. gave careful case analysis and
proved that the algorithm HKZZ Biased-PPSZ (that uses
HKZZ Bias) gives an exponential coefficient better than
PPSZ for Unique 3SAT. In particular, by numerical analysis
they show [10] that the algorithm guarantees the exponential
coefficient εHKZZ-PPSZ := 0.386254 for Unique 3SAT.

4. Our Improvement: Biased-(∗∗) Search

Here we explain our improvement over HKZZ Biased-
PPSZ. The idea is simple. In HKZZ Biased-PPSZ, in the
case where the obtained set D of disjoint clauses is small,
a sat. assignment is searched in a brute force way at (∗∗)
of Algorithm 3. We propose an algorithm for conducting
this search more efficiently when there is some “bias.” Let
us call this new search algorithm Biased-(∗∗) Search; also
let us refer to an algorithm that uses Biased-(∗∗) Search in
HKZZ Biased-PPSZ as QW-PPSZ.

Algorithm 4 Biased-(∗∗) Search for 3SAT
(Assume that a weight vector (W1,W2,W3) is the correct one)
D1 := W1 clauses randomly chosen from D
determine randomly single assignments to all variables in D1

so that each clause has exactly one literal evaluated 1
D2 := W2 clauses randomly chosen from D \W1

determine randomly single assignments to all variables in D2

so that each clause has exactly one literal evaluated 0
D3 := D \ (W1 ∪W2)
determine single assignments to all variables in D3

so that all literals of each clause are evaluated 1

See Algorithm 4 for the description of Biased-(∗∗) -
Search. We use the weight vector (W1,W2,W3) (correctly
guessed) on D. The algorithm chooses an assignment
to variables in VD uniformly at random from all possible
choices of D1, D2, and D3 and all possible choices of lit-
erals evaluated as 1 (resp., 0) in clauses of D1 (resp., D2).
Clearly, the correct assignment on D is exactly one of these
random choices. Let M := |D| = W1 +W2 +W3. Based on
this consideration, the probability that all variables in VD are
assigned correctly (which is the success probability of this
algorithm) is(

M!
W1!W2!W3!

· 3W1 · 3W2

)−1

,

which is approximated (by Stirling’s approximation) and
bounded as follows ignoring some (1−poly(n)−1)-factor that
is negligible for evaluating the exponential coefficient.

≈
(e

M

)M (W1

3e

)W1 (W2

3e

)W2 (W3

e

)W3

(7)

486
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

≥
(e

M

)M
⎛⎜⎜⎜⎜⎜⎝ W1 +W2 +W3

W1
3e
W1
+W2

3e
W2
+W3

e
W3

⎞⎟⎟⎟⎟⎟⎠
(W1+W2+W3)

=

(
1

3 + 3 + 1

)M

= 7−M .

The second inequality is from the relation between arith-
metic and geometric means, and the equality (i.e., the worst-
case) holds when (w1,w2,w3) = (3/7, 3/7, 1/7), which is
in a sense the “unbiased” case. It is easy to see that the
success probability of our search improves exponentially by
any weight vector deviate from the above “unbiased” case
by a small constant. On the other hand, the numerical anal-
ysis of Sect. 5 shows that this “unbiased” case is prefer-
able for (the biased-PPSZ part of) HKZZ Biased-PPSZ, and
the success probability of this part gets improved expo-
nentially under this particular weight vector. Therefore,
we can conclude that an exponential coefficient better than
HKZZ Biased-PPSZ is obtained by QW-PPSZ.

We should mention here that the idea similar to this
has been proposed by Hofmeister, Schöning, Schuler, and
Watanabe in [5], where they proposed to use a search al-
gorithm that is essentially the same as Biased-(∗∗) Search
with the random walk type algorithm to improve its success
probability. Here we applied the same idea for improving
HKZZ Biased-PPSZ.

5. Numerical Analysis for an Exponential Coefficient
of QW-PPSZ

Hansen et al. [2] claimed the exponential coefficient
εHKZZ-PPSZ (= 0.386254) of their biased PPSZ algorithm
for Unique 3SAT, which is obtained by numerical analy-
sis given by Zamir in his doctoral thesis [10]. Here in or-
der to show the actual effect of our improvement, we fol-
low Zamir’s thesis [10] to derive an exponential coefficient
εQW-PPSZ of our algorithm for Unique 3SAT.

We first clarify an actual way to combine two sub-
algorithms, namely, Biased-(∗∗) Search and the biased-
PPSZ part of HKZZ Biased-PPSZ. Though intuitively
Biased-(∗∗) Search (resp., the biased-PPSZ part) works bet-
ter if |D| ≤ γn (resp., |D| > γn) for some γ, we simply
run both sub-algorithms to avoid determining the threshold
parameter γ in the algorithm. Clearly, the whole algorithm
runs in subexponential-time, and its success probability is
determined by the larger success probability of two sub-
algorithms.

In the following analysis (of each sub-algorithm), we
fix as before an input formula F that has a unique sat. as-
signment α, and let D denote the obtained disjoint clause set
from F. Then we define γ := |D|/n, and use it as a size pa-
rameter of D (instead of the size threshold parameter). We
consider the situation where the weight vector (here we will
use its fractional version) w = (w1,w2,w3) is chosen cor-
rectly for D.

5.1 The Analysis of the Biased-PPSZ Part

We first consider the execution of the biased-PPSZ part
of HKZZ Biased-PPSZ. We focus on the execution of
Inner Loop with a given time threshold t, assuming that,
for simplicity†, the biases are all set to the best ones defined
by (4). Assume as before that all clauses of D consist of
only nonnegated variables. We follow the analysis and ex-
planation of Generic Biased-PPSZ and HKZZ Bias of the
previous section. For each prefix P, and under a given ran-
dom placement π, type P is given to a variable x in VD if and
only if π(x) ≤ t and x appears in PPSZ process with prefix
P. Let VP(π) denote the set of variables of type P under π.
We also use V⊥(π) and VD to denote sets of variables that are
not of these types; V⊥(π) is the set of variables x ∈ VD such
that π(x) > t, and VD is the set of variables not in VD. We
use β⊥ and βD to denote the trivial bias used for variables in
V⊥(π) and VD respectively.

From the way to define best biases (4), for each type P,
we have

βP = g0
P/gP, where

gb
P := π

[
Gb

P(π)/|VD|
]

and gP := g0
P + g1

P.

Recall (see the explanation after (3)) that Gb
P(π) is the num-

ber of guessed variables x of type P such that α(x) = b.
From a technical reason, we use here its fraction over |VD|
to define gb

P. (Similarly, we use g⊥ to denote the expected
fraction of guessed variables x such that π(x) > t.)

Following the discussion deriving (6), we define

Δt(F,D) := S 3 −
⎛⎜⎜⎜⎜⎜⎝∑

P

gP · H(βP) + g⊥

⎞⎟⎟⎟⎟⎟⎠
as the “gain per variable” on VD. (We simplified the expres-
sion a bit by using the fact that H(β⊥) = 1.) We analyze
below its lower bound numerically.

Our plan here is to give a lower bound of Δt(F,D) in
terms of only (besides t) the weight vector w := (w1,w2,w3).
Note first g⊥, the expected fraction of guessed variables x
with π(x) > t, is upper bounded by S 3−t+

∫ t

0
p2/(1−p)2dp+

o(1) (Corollary A.1 of [3]). Hence, we have

Δt(F,D) ≥ t−
∫ t

0

p2

(1 − p)2
dp−

∑
P

gPH(βP)−o(1). (8)

Thus, we focus on
∑

P gPH(βP). Consider any gb
P. Note that

it is the expected fraction of x ∈ VD such that (i) π(x) ≤ t,
(ii) α(x) = b, and (iii) x appears as a guessed variable with
prefix P in PPSZ process. While this gb

P depends on F, we
can express a similar fraction by only using w. Define vb

P be
the expected fraction of x ∈ VD such that (i) π(x) ≤ t, (ii)
α(x) = b, and (iii’) x appears with prefix P. Then v0

∅ and v1
1

†Precisely, what we could assume is that the biases are 1/e(n)-
close to the best ones; but as discussed in the previous section, the
difference can be ignored asymptotically.

QIN and WATANABE: AN IMPROVEMENT OF THE BIASED-PPSZ ALGORITHM FOR THE 3SAT PROBLEM
487

are, for example, estimated as follows. (We omit explaining
vb

P for all P and b.)

v0
∅ =

(
2
3

w1 +
1
3

w2

) ∫ t

0
(1 − p)2dp, and

v1
1 =

(
1
3

w2 + w3

) ∫ t

0
2p(1 − p)dp.

Here is a reason, e.g., for the second estimate for v1
1. The

factor
∫ t

0
2p(1− p)dp is the probability, for any given x ∈ VD

(letting C be the clause of D that contains x), that π(x) =
p ≤ t and exactly one of the other two variables of C has
appeared before time p. On the other hand, (w2/3+w3) is the
expected fraction of clauses in D with assignment pattern
11 under the condition that two of its variables are assigned.
Hence, by multiplying them, we get the expected fraction vb

P
of x ∈ VD that satisfies the conditions (i), (ii), and (iii’) for
P = 1 and b = 1. Clearly, the difference between gb

P and vb
P

is due to the conditions (iii) and (iii’); then we can see that
gb

P = vb
P − f b

P , where f b
P is the expected fraction of variable

x ∈ VD satisfying (i), (ii), (iii’), and forced. Then we have∑
P

gP · H(βP)

= −
∑

P

⎛⎜⎜⎜⎜⎝g0
P log

⎛⎜⎜⎜⎜⎝g0
P

gP

⎞⎟⎟⎟⎟⎠ + g1
P log

⎛⎜⎜⎜⎜⎝g1
P

gP

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

=
∑

P

h(g0
P, g

1
P)

=
∑

P

h(v0
P − f 0

P , v
1
P − f 1

P) = Σh(f),

where we define h(x, y) := −x log(x/(x + y)) − y log(y/(x +
y)), Σh(f) :=

∑
P h(v0

P − f 0
P , v

1
P − f 1

P), and f :=
(f 0
∅ , f 1

∅ , . . . , f 0
11, f 1

11). Then for expressing a lower bound of
Δt(F,D) in terms of w, we might want f wst that maximizes
Σh(f) among all possible f that may correspond to some
(F,D) with w. On the other hand, it seems difficult to obtain
the “real” optimal one; thus, we numerically search for f opt
that gives a reasonably close upper bound of f wst by which
we can still derive a lower bound of Δt(F,D).

Here is a brief idea for computing f opt; see Appendix
A for more explanation. Clearly, we have 0 ≤ f b

P ≤ vb
P. It is

easy to see that Σh(f) is monotonically decreasing w.r.t. its
each component. On the other hand, since

∑
P,b f b

P is the ex-
pected fraction of forced variables x with π(x) ≤ t, by essen-
tially the same analysis of g⊥ (Corollary A.1 of [3]), we have∑

P,b f b
P ≥

∫ t

0
p2/(1−p)2dp−o(1)†. Hence, we search for f opt

from the zero vector by increasing some of its components
gradually until the condition (∗) ∑P,b f b

P ≥
∫ t

0
p2/(1 − p)2dp

is satisfied. We also use some bound on f b
P to restrict the

range of f , which helps to get a more accurate estimate of
Σh(f opt) (by avoiding to estimate it unnecessarily large).

By using this obtained f opt, we define
†This o(1) difference can be omitted by assuming that n is large

enough so that o(1) difference does not affect within the precision
of our numerical analysis.

Δt,w := t −
∫ t

0

p2

(1 − p)2
dp − Σh(f opt).

Then from (8) it follows that Δt(F,D) ≥ Δt,w − o(1) for all
(F,D) with w.

Now we conclude this subsection by deriving a lower
bound of the success probability of the biased-PPSZ part of
HKZZ Biased-PPSZ when running it on any F having D of
size γn with w. We first give a lower bound of the exponent
(5), that is, −∑T GT · H(βT) based on the above discussion.
Starting from its definition, we derive the lower bound as
follows.

−
∑

T

GT · H(βT)

= −
⎛⎜⎜⎜⎜⎜⎝∑

P

gP|VD| · H(βP) + g⊥|VD|
⎞⎟⎟⎟⎟⎟⎠ −GD

= −
⎛⎜⎜⎜⎜⎜⎝∑

P

gP · H(βP) + g⊥

⎞⎟⎟⎟⎟⎟⎠ |VD| −GD

= −(S 3 − Δt(F,D))|VD| −GD

≥ −(S 3 − Δt,w − o(1))|VD| − (S 3 + o(1))(n − |VD|)
= −(S 3 − 3γΔt,w + o(1))n (∵ |VD| = 3|D| = 3γn)

Here we use GD to denote the expected number of guessed
variables not in VD, which is bounded by (S 3+o(1))(n−|VD|)
by Theorem 2.1. Finally, define Δw := maxt∈TH Δt,w. Then
ignoring the o(1) term, we have

−(S 3 − 3γΔw)n (9)

as a lower bound of the success probability exponent of the
biased-PPSZ part when running it on any F having D of size
γn with w.

5.2 The analysis of the search part (∗∗) and putting two
analyses together

Consider the search part (∗∗) of our algorithm QW-PPSZ,
i.e., Biased-(∗∗) Search. Note that a weight vector w de-
termines the success probability of this part as (7), from
which its exponent is derived as follows. (Recall that M =
W1 +W2 +W3 = |D| = γn and Wi = wi|D|.)

log of (7)

= −M log M +
3∑

i=1

Wi log Wi − (W1 +W2) log 3

= −|D|
⎛⎜⎜⎜⎜⎜⎜⎝−

3∑
i=1

wi log wi + (w1 + w2) log 3

⎞⎟⎟⎟⎟⎟⎟⎠
= −γswn, (10)

where sw := (w1 + w2) log 3 −∑3
i=1 wi log wi.

Then the worst-case is the situation where two bounds
(9) and (10) are balanced, from which we can derive the
worst-case size parameter γw as follows.

γw :=
S 3

sw + 3Δw
(11)

488
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

That is, (9) = (10) holds with γ = γw. Therefore, the
exponential coefficient εQW-PPSZ is obtained as an upper
bound of

S 3 − 3γwΔw = γwsw. (12)

For estimating this upper bound, our task is to compute
the worst-case weight vector wwst maximizing the above.
Clearly, we cannot go through all weight vectors. Here is
what we did first. We searched for the worst-case candi-
date in a finite set VW of weight vectors (w1,w2,w3) where
each weight takes a value from 0 to 1 at intervals of εwstep :=
1.0 × 10−3 (under the condition that w1 + w2 + w3 = 1).
That is, for each w ∈ VW and each t ∈ TH, we followed
the method explained in the previous subsection to com-
pute Δw as maxt∈TH Δt,w (by which we also get tw). From
this computation, we found that (12) takes the largest value
0.38624046 · · · at wmax := (0.663, 0.160, 0.177) among all
vectors in VW and that twmax = 0.17 for this wmax.

While we believe that the obtained wmax is close to the
worst-case weight vector wwst there are two obvious prob-
lems. Firstly, we do not know how much (12) gets larger
by wwst even if wwst is close to wmax. Secondly, it may
be the case where wwst is located far from wmax. While
the second problem is open, we could solve the first prob-
lem by deriving a way to estimate the largest value of (12)
in an area close to wmax, e.g., a neighborhood N of wmax

within component-wise distance 0.005 (= 5εwstep). Within
this neighborhood, we can give an expression of (12) explic-
itly (see† Appendix B), by which we can estimate its largest
value with reasonable precision, from which we can con-
clude that it is less than 0.386241, which is the exponential
coefficient εQW-PPSZ we claim for our algorithm under the
condition that our VW of weight vectors is dense enough to
guarantee that the worst-case weight vector exists near the
obtained wmax. (We confirmed that the weight vector giving
the largest value in N is within εwstep distance from wmax,
which is regarded as an evidence that the interval εwstep is
fine enough.)

Acknowledgements

The authors would like to thank to the anonymous referees
for their careful reading and valuable comments.

References

[1] S. Baumer and R. Schuler, “Improving a probabilistic 3-SAT algo-
rithm by dynamic search and independent clause pairs,” Proc. 6th
Int’l Conference on Theory and Applications of Satisfiability Test-
ing, LNCS, vol.2919, pp.150–161, 2003.

[2] T.D. Hansen, H. Kaplan, O. Zamir, and U. Zwick, “Faster k-SAT
algorithms using biased-PPSZ,” Proc. 51st Annual ACM Sympos.
on Theory of Computing, ACM Press, pp.578–589, 2019.

[3] T. Hertli, “Breaking the PPSZ barrier for Unique 3-SAT,” Proc. Int’l

†We also recommend to the interested reader to refer to the first
author’s doctoral thesis [7] for a detailed explanation of the deriva-
tion of this exponential coefficient including a program source code
for the numerical analysis.

Colloquium on Automata, Languages, and Programming, LNCS,
vol.8572, pp.600–611, 2014.

[4] T. Hertli, “3-SAT faster and simpler—Unique-SAT bounds for PPSZ
hold in general,” SIAM J. Comput., vol.43, no.2, pp.718–729, 2014.

[5] T. Hofmeister, U. Schoning, R. Schuler, and O. Watanabe, “Ran-
domized algorithms for 3-SAT,” Theory of Computing Systems,
vol.40, pp.249–262, 2007.

[6] R. Paturi, P. Pudlák, M.E. Saks, and F. Zane, “An improved expo-
nential-time algorithm for k-SAT,” Journal of the ACM, vol.52, no.3,
pp.337–364, 2005.

[7] T. Qin, Doctoral Thesis, available by searching “Tong Qin” at
https://t2r2.star.titech.ac.jp/index en.html (from 2022).

[8] T. Qin and O. Watanabe, “An improvement of the algorithm of
Hertli for the Unique 3SAT problem,” Theoretical Computer Sci-
ence, vol.806, pp.70–80, 2020.

[9] D. Scheder and J.P. Steinberger, “PPSZ for general k-SAT — Mak-
ing Hertli’s analysis simpler and 3-SAT faster,” Proc. 32nd Compu-
tational Complexity Conference, 2017.

[10] O. Zamir, “Breaking Barriers for the Satisfiability and Coloring
Problems,” PhD Thesis, Tel Aviv University, 2020.

Appendix A: Computation of f opt

We explain our numerical method for computing f opt. Here
we say that a vector f = (f 0

∅ , f 1
∅ , . . . , f 1

11) is realizable if
there is some (F,D) with weight w such that each compo-
nent f b

P is the expected fraction of variables x such that (i)
π(x) < t, (ii) α(x) = b, and (iii) x appears as a forced vari-
able of type P. Among all realizable f , define f wst be the
one that maximizes Σh(f). We want to compute f opt such
that Σh(f opt) ≥ Σh(f wst) holds and Σh(f opt) − Σh(f wst) is
small.

Recall the discussion of Sect. 5.1. For any realizable
vector f , we clearly have 0 ≤ f b

P ≤ vb
P; in the following

we assume this condition for all vectors. Furthermore, (∗)∑
P,b f b

P ≥
∫ t

0
p2/(1 − p)2dp holds. On the other hand, it

is easy to see that Σh(f) is component wise monotonically
decreasing. Thus, our basic strategy for searching f opt is
as follows: start from all 0 vector f = (0, 0, . . . , 0), and
repeatedly increase some of its component by a certain small
amount within its upper bound, until (∗) is satisfied. Then
we regard the one obtained before the last one as f opt. Note
that all vectors f computed in this process except the last
one f last are not realizable because they do not satisfy (∗).
(Even the last one f last that satisfies (∗) may not be realizable
either.) It is easy to show (from facts shown below) that
we have Σh(f) ≥ Σh(f wst) for all vectors f computed in
this process except f last. (From a technical reason explained
below, we may have

∑
P,b f b

last,P >
∫ t

0
p2/(1− p)2dp, in which

case we may have Σh(f last) < Σh(f wst). That is why we do
not use f last for f opt.) Thus, the obtained f opt gives an upper
bound for Σh(f wst).

We give some facts for explaining our search method
in more detail. Consider any vector f . Let βP := (v0

P −
f 0
P)/((v0

P − f 0
P)+ (v1

P − f 1
P)) (which is the same expression as

the bias for type P). We use ε to denote any positive value
that is small enough in each context. For type P, assigned
value b, and ε, we use f +(P,b) ε to denote a vector with the
same component as f except that the (P, b)th component is

http://dx.doi.org/10.1007/978-3-540-24605-3_12
http://dx.doi.org/10.1145/3313276.3316359
http://dx.doi.org/10.1007/978-3-662-43948-7_50
http://dx.doi.org/10.1007/978-3-662-43948-7_50
http://dx.doi.org/10.1137/120868177
http://dx.doi.org/10.1007/s00224-005-1275-6
http://dx.doi.org/10.1145/1066100.1066101
http://dx.doi.org/10.1016/j.tcs.2018.11.023
http://dx.doi.org/10.15420/aer.2018.21.2

QIN and WATANABE: AN IMPROVEMENT OF THE BIASED-PPSZ ALGORITHM FOR THE 3SAT PROBLEM
489

f b
P + ε.)

The following fact is shown by simple calculus.

Fact A.1 (1) If v0
P − f 0

P > v1
P − f 1

P (hence, βP > 1/2), then
Σh(f +(P,0) ε) > Σh(f +(P,1) ε). (Thus, for increasing ε at
the components of type P, we should increase only the
(P, 0)th component. The corresponding relation holds for
the case when βP < 1/2.)

(2) If |βP1 − 1/2| > |βP2 − 1/2|, then Σh(f +(P1,b1) ε) >
Σh(f +(P2,b2) ε), where bi = 0 if βPi > 1/2, and bi = 1
otherwise. (Thus, for increasing ε at some component,
we should increase the (P, 0)th (resp., (P, 1)th) component
corresponding to the type P with the largest (resp., the
smallest) βP.)

(3) If |βP1 −1/2| = |βP2 −1/2|, then we have Σh(f +(P1,b1) ε) =
Σh(f +(P2,b2) ε), where bi = 0 if βPi > 1/2, and bi = 1
otherwise. (Thus, there is no priority among all types with
the same bias; in particular, the case where βP = 1/2 for
all P.)

This fact gives us the following concrete way of in-
creasing some component of a vector f : Choose P with the
largest |βP − 1/2| (let us assume for our explanation that
βP > 1/2 for this P); then increase f 0

P so that βP gets de-
creased by εbstep, where εbstep is some small constant, e.g.,
εbstep := 1.0 × 10−5 in our actual computation. (The use of
this fixed decrement step size is the reason why the last vec-
tor f last might become large to have Σh(f last) < Σh(f wst).)

Here we remark on two exceptional situations. First,
it may occur that there are some components f b

P that reach
their upper bounds. In this case, do not change the value of
these components. Second, it may occur that βP = 1/2 holds
for all types P. In this case, choose any P and increase both
f 0
P and f 1

P by the same amount (which keeps βP = 1/2) until
either one of them reaches its upper bound, or (∗) holds.
Increase component values at several types if one type is not
enough.

The following lemma helps us to give upper bounds for
f b
P ’s, which helps us to reduce the search space, thereby ob-

taining a closer upper bound of Σh(f wst). More specifically,
for example, the value of the component f 1

11 is not increased

in our process if it reaches to f̂ 1
11. (We state the lemma only

for a pair of P = 11 and b = 1; but similar bounds hold for
P ∈ {10, 01, 11} and b ∈ {0, 1}.)

Lemma A.1 ([10, Theorem 2.10.5])

f 1
11 ≤ f̂ 1

11

:= v1
11 −

2
3

w3

∫ t

0
max

⎛⎜⎜⎜⎜⎜⎝2p2 − p3 −
(

p
1 − p

)2
, 0

⎞⎟⎟⎟⎟⎟⎠ dp.

As a final comment, we report that the above process
has been always terminated in all our actual computations
(although we do not know whether the process always ter-
minates).

Appendix B: Analysis of (12) around wmax

We analyze (12) in a component-wise 0.005-close neigh-
borhood N of wmax = (wmax,1,wmax,2,wmax,3). (Recall
that 0.005 = 5εwstep.) That is, N := {w(x, y) | x, y ∈
[−5εwstep, 5εwstep]}, where we use w(x, y) to denote the
weight vector (wmax,1+ x,wmax,2+ y,wmax,3− (x+ y)). We fix
t := twmax (= 0.17). (Based on our analysis below, we also
confirmed that twmax is the best in TH for all weight vectors
in N.)

By restricting this neighborhood N, we can verify that
the process of computing f opt (of Appendix A) is the same
for any w(x, y) ∈ N. More precisely, it runs essentially as
follows: Starting from f = (0, 0, . . . , 0), First both f 0

01 and

f 0
10 are increased up to f̂ 0

01 and f̂ 0
10 because β01−1/2 (= β10−

1/2) is the largest until f 0
01 (= f 1

10) becomes its upper bound

f̂ 0
01 (= f̂ 1

10). Next f 1
11 is increased up to f̂ 1

11 because again
1/2 − β11 is the largest among the remaining types. Then
f 1
0 and f 0

1 are increased while keeping 1/2 − β0 = β1 − 1/2

until the condition (∗) ∑P,b f b
P ≥

∫ t

0
p2/(1 − p)2dp (in fact,∑

P,b f b
P =

∫ t

0
p2/(1 − p)2dp) is satisfied. (The condition is

satisfied before them reaching to their upper bounds.) The
other components are not changed (i.e., kept 0).

From this observation, we can give an explicit expres-
sion of f opt(x, y) (i.e., f opt at w(x, y)) in terms of (x, y). For

example, from the expression of f̂ 1
11 stated in Lemma A.1,

we have

f 1
opt,11(x, y) = v1

11(x, y)

− 2
3
(
wmax,3 − (x + y)

) ∫ t

0
2p2 − p3 −

(
p

1 − p

)2
dp,

v1
11(x, y) =

(
wmax,3 − (x + y)

) ∫ t

0
p2dp.

Then by using this expression for f opt(x, y), we can express
Δw(x,y) (which is in fact Δt,w(x,y) since we fix t) as an ex-
plicit formula of (x, y). On the other hand, it is easy to
express sw(x,y) in terms of (x, y). From these, we can de-
rive a relatively simple formula for (12). Then analyzing
it by Mathematica, we can show that it takes the maximum
0.38624055 · · · at (x0, y0) = (−3.0637×10−4, 1.5844×10−4),
from which we claim εQW-PPSZ := 0.386241 is an upper
bound of (12) in the neighborhood N of wmax. (Note also
that w(x0, y0) is within εwstep distance from wmax, which is re-
garded as an evidence that the interval εwstep is fine enough.)

490
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

Tong Qin received BSc from The Uni-
versity of Science and Technology of China in
2015, and MSc. degrees in Information Science
from Tokyo Institute of Technology in 2017. He
is currently with Makino Milling Machine Co.,
Ltd.

Osamu Watanabe received BSc and MSc
degrees in Information Sciences from Tokyo In-
stitute of Technology in 1980 and 1982, respec-
tively. Received Dr. of Engineering from Tokyo
Institute of Technology in 1987. He has been
with Tokyo Institute of Technology since 1983,
and he is currently an Executive Vice President
of Tokyo Institute of Technology.

