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Weakly Byzantine Gathering with a Strong Team∗
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SUMMARY We study the gathering problem requiring a team of mo-
bile agents to gather at a single node in arbitrary networks. The team con-
sists of k agents with unique identifiers (IDs), and f of them are weakly
Byzantine agents, which behave arbitrarily except falsifying their identi-
fiers. The agents move in synchronous rounds and cannot leave any infor-
mation on nodes. If the number of nodes n is given to agents, the exist-
ing fastest algorithm tolerates any number of weakly Byzantine agents and
achieves gathering with simultaneous termination in O(n4 · |Λgood | · X(n))
rounds, where |Λgood | is the length of the maximum ID of non-Byzantine
agents and X(n) is the number of rounds required to explore any network
composed of n nodes. In this paper, we ask the question of whether we
can reduce the time complexity if we have a strong team, i.e., a team with
a few Byzantine agents, because not so many agents are subject to faults
in practice. We give a positive answer to this question by proposing two
algorithms in the case where at least 4 f 2 + 9 f + 4 agents exist. Both the
algorithms assume that the upper bound N of n is given to agents. The
first algorithm achieves gathering with non-simultaneous termination in
O(( f + |Λgood |) · X(N)) rounds. The second algorithm achieves gathering
with simultaneous termination in O(( f + |Λall |) · X(N)) rounds, where |Λall |
is the length of the maximum ID of all agents. The second algorithm sig-
nificantly reduces the time complexity compared to the existing one if n is
given to agents and |Λall | = O(|Λgood |) holds.
key words: distributed algorithm, deterministic algorithm, mobile agents,
gathering, Byzantine faults

1. Introduction

1.1 Background

Mobile agents (in short, agents) are software programs that
move autonomously and perform various tasks in a dis-
tributed system. A problem of collecting multiple agents
at the same node without previous agreement is called a
gathering, and this problem has been widely studied from
the theoretical aspect of distributed systems [1]. By solving
this problem, the agents can exchange information with each
other more efficiently and easily carry out future cooperative
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behaviors.
In operations of large-scale distributed systems, we

cannot avoid facing faults of agents. Among them, Byzan-
tine faults are known to be the worst faults because Byzan-
tine faults do not make any assumption about the behav-
ior of faulty agents (called Byzantine agents). For example,
Byzantine agents can stop and move at any time apart from
their algorithm, and tell arbitrary wrong information to other
agents.

In this paper, we consider the gathering problem
with Byzantine agents and propose two deterministic syn-
chronous gathering algorithms for the problem.

1.2 Related Works

The gathering problem has been studied for the first time
by Schelling [5]. In that paper, the author studied the gath-
ering problem of exactly two agents, called the rendezvous
problem. After that, the rendezvous problem and its gen-
eralization, the gathering problem, have been widely stud-
ied in various environments that combine the assumptions
on agent synchronization, anonymity, presence/absence of
memory on a node (called whiteboard), presence/absence of
randomization, topology, etc. [1]. The purpose of these stud-
ies is to clarify the solvability of the gathering problem and
its costs (e.g., time, the number of moves, memory space,
etc.) if solvable. The rest of this section describes the exist-
ing results for the deterministic gathering problem in arbi-
trary networks, on which we focus in this paper.

Many of the papers dealing with the rendezvous prob-
lem assume that agents move synchronously in a network
and that agents cannot leave any information on nodes, that
is, whiteboards do not exist [1]. These works have studied
the solvability of the rendezvous and, if solvable, the time
required to solve the problem. If agents are anonymous (i.e.,
do not have IDs), the deterministic rendezvous cannot be
achieved in some symmetric graphs because the symmetry
cannot be broken. In the literature [6]–[9], rendezvous al-
gorithms have been proposed in any graph by assuming a
unique ID for each agent. Dessmark et al. [6] have proposed
an algorithm to achieve the rendezvous in polynomial time
of n, λ, and τ, where n is the number of nodes, λ is the
smallest ID among agents, and τ is the difference between
the startup times of agents. Kowalski et al. [7] and Ta-shma
et al. [9] have improved the time complexity by proposing
algorithms that achieve the rendezvous in time independent
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Table 1 A summary of synchronous Byzantine gathering algorithms with unique IDs. Here, input is
the information that an agent has at the start of an algorithm, n is the number of nodes, N is the upper
bound of n, |λgood | is the length of the smallest ID among non-Byzantine agents, |Λgood | is the length of
the largest ID among non-Byzantine agents, |Λall | is the length of the largest ID among agents, k is the
number of agents, f is the number of Byzantine agents, and F is the upper bound of f .

Input Byzantine
Condition of

#Byzantine agents
Simultaneous
termination

Time complexity

[2] n Weak f + 1 ≤ k Possible O(n4 · |Λgood | · X(n))
[2] F Weak 2F + 2 ≤ k Possible Poly. of n & |Λgood |
[2] n, F Strong 3F + 1 ≤ k Possible Exp. of n & |Λgood |
[2] F Strong 5F + 2 ≤ k Possible Exp. of n & |Λgood |
[3] n, F Strong 2F + 1 ≤ k Possible Exp. of n & |Λgood |
[3] F Strong 2F + 2 ≤ k Possible Exp. of n & |Λgood |
[4] �log log n� Strong 5 f 2 + 7 f + 2 ≤ k Possible Poly. of n & |λgood |

Proposed Algorithm 1 N Weak 4 f 2 + 9 f + 4 ≤ k Impossible O(( f + |Λgood |) · X(N))
Proposed Algorithm 2 N Weak 4 f 2 + 9 f + 4 ≤ k Possible O(( f + |Λall |) · X(N))

of τ. In addition, Millar et al. [8] have analyzed the trade-off
between the time required for rendezvous and the number
of moves. On the other hand, some papers [10]–[12] have
investigated the memory space, the time, and the number
of moves required to achieve the deterministic rendezvous
without assuming a unique ID of each agent. Since the ren-
dezvous cannot be accomplished for some initial arrange-
ments of agents and graphs without unique IDs, they have
proposed algorithms for limited graphs and initial arrange-
ments. Fraigniaud et al. [11], [12] have proposed algorithms
for trees, and Czyzowicz et al. [10] have proposed an al-
gorithm for arbitrary graphs when initial arrangements of
agents are not symmetric.

While many papers deal with the rendezvous problem
in synchronous environments, some papers assume asyn-
chronous environments where different agents move at dif-
ferent constant speeds or move asynchronously. In the latter
case, speeds of agents in each time are always determined
by the adversary. For more details, please refer to the liter-
ature [13]–[16] for a finite graph and the literature [17]–[19]
for an infinite graph.

Recently some papers [2]–[4], [20], [21] have studied
the gathering problem in the presence of Byzantine agents,
which we also address in this study. Table 1 shows this
research and the related researches that are closest to this
research. These studies assume agents with unique IDs
and consider two types of Byzantine agents depending on
whether they can falsify their own IDs. Weakly Byzantine
agents perform arbitrary behaviors except falsifying their
own IDs, and strongly Byzantine agents perform arbitrary
behaviors, including falsifying their own IDs.

Dieudonné et al. [2] have studied the gathering prob-
lem in synchronous environments where k agents exist in
an n-node arbitrary network and at most F of them are
Byzantine. They have proposed the two gathering algo-
rithms for weakly Byzantine agents. The first gathering al-
gorithm achieves the time complexity of O(n4 · |Λgood | ·X(n))
if n is given to agents. The second gathering algorithm
achieves the time complexity that is polynomial of n and
|Λgood | if F is given to agents. Here, |Λgood | is the length
of the largest ID among non-Byzantine agents, and X(n) is
the number of rounds required to explore any network com-

posed of n nodes. The former algorithm and the latter algo-
rithm work if at least one and at least F + 2 non-Byzantine
agents exist, respectively. These algorithms are optimal in
terms of the number of tolerable Byzantine agents because
they match the number of non-Byzantine agents required
to solve the gathering problem under the conditions. For
strongly Byzantine agents, two gathering algorithms have
been proposed. The first algorithm achieves the gathering
with 2F + 1 non-Byzantine agents under the condition that
n and F are given to agents. The second algorithm achieves
the gathering with 4F + 2 non-Byzantine agents under the
condition that F is given to agents. On the other hand, the
lower bounds of the numbers of non-Byzantine agents re-
quired to solve the gathering problem under the former con-
dition and the latter condition are F + 1 and F + 2, respec-
tively. Bouchard et al. [3] have proposed algorithms with the
number of non-Byzantine agents that matches these lower
bounds in the presence of strongly Byzantine agents. How-
ever, the time complexities of all the above algorithms for
strongly Byzantine agents are exponential of n and |Λgood |.
Bouchard et al. [4] have proposed the gathering algorithm
with polynomial time complexity for the first time in the
presence of strongly Byzantine agents in synchronous en-
vironments. The gathering algorithm operates under the
assumption that �log log n� is given to agents and at least
5 f 2 + 6 f + 2 non-Byzantine agents exist in the network,
where f is the number of Byzantine agents.

In synchronous environments with strongly Byzantine
agents, Miller et al. [22] have reduced the time complexity
of gathering by an additional assumption. They give an al-
gorithm with the time complexity of O(kn2) for k ≥ 2 f + 1
on the assumption that an agent can observe the subgraph in-
duced by nodes within distance Dr from its current node and
the states of agents in the subgraph, where f is the number
of Byzantine agents and Dr is the radius of the graph.

Tsuchida et al. [20] have studied the gathering algo-
rithm in synchronous environments with weakly Byzantine
agents under the assumption that each node is equipped with
an authenticated whiteboard, where each agent can leave
information on its dedicated area but every agent can read
all information. If the upper bound F of the number of
weakly Byzantine agents is given to agents, the gathering
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algorithm with the time complexity of O(Fm) has been pro-
posed, where m is the number of edges. Tsuchida et al. [21]
have proposed the gathering algorithms in asynchronous en-
vironments in the presence of weakly Byzantine agents un-
der the same assumption of authenticated whiteboards.

1.3 Our Contributions

We seek an algorithm that achieves the gathering with small
time complexity in synchronous environments with weakly
Byzantine agents. When agents cannot leave any informa-
tion on nodes and cannot get information on nodes other
than the current one, the existing fastest algorithm is the
one proposed by Dieudonné et al. [2]. The algorithm tol-
erates any number of weakly Byzantine agents and achieves
the gathering with simultaneous termination, and its time
complexity is O(n4 · |Λgood | · X(n)), where n is the num-
ber of nodes, |Λgood | is the length of the largest ID among
non-Byzantine agents, and X(n) is the number of rounds re-
quired to explore any network composed of n nodes. Miller
et al. [22] and Tsuchida et al. [21] have proposed faster al-
gorithms with the assumptions of ability to observe distant
nodes and authenticated whiteboards, respectively, but these
assumptions are strong and greatly restrict the behavior of
Byzantine agents.

In this paper, we reduce the time complexity by tak-
ing advantage of a strong team, that is, a team (collection
of agents) with a few Byzantine agents. Since not so many
agents are subject to faults in practice, the assumption of a
strong team is reasonable. We propose two gathering algo-
rithms that tolerate f weakly Byzantine agents in the case
where a strong team composed of at least 4 f 2 + 9 f + 4
agents exist (see Table 1). Both the algorithms take the up-
per bound N of n as input. The first algorithm achieves the
gathering with non-simultaneous termination and its time
complexity is O(( f + |Λgood |) · X(N)), where |Λgood | is the
length of the maximum ID of non-Byzantine agents. The
second algorithm achieves the gathering with simultaneous
termination and its time complexity is O(( f + |Λall|) · X(N)),
where |Λall| is the length of the maximum ID of all agents.
If n is given to agents, the second algorithm significantly re-
duces the time complexity compared to that of Dieudonné
et al. in case of |Λall| = O(|Λgood |).

2. Preliminaries

(1) Distributed systems

A distributed system is modeled by a connected undirected
graph G = (V, E), where V is a set of n nodes, and E is
a set of edges. If an edge {u, v} ∈ E exists between the
nodes u, v ∈ V , u and v are said to be adjacent. A set of
adjacent nodes of node v is denoted by Nv = {u | {v, u} ∈
E}. The degree of node v is defined as d(v) = |Nv|. Each
edge incident to node v is locally and uniquely labeled by
function Pv : {{v, u} | u ∈ Nv} → {1, 2, . . . , d(v)} that satisfies
Pv({v, u}) � Pv({v, w}) for edges {v, u} and {v, w} (u � w).

Pv({v, u}) is called the port number of an edge {v, u} on node
v. Nodes have neither ID nor memory. Time is discretized,
and each discretized time is called a round.

(2) Mobile agents

There are k agents a1, a2, . . . , ak in the system. Agents can-
not mark visited nodes or traversed edges in any way. Each
agent ai has a unique ID denoted by ai.ID ∈ N, but does not
know a priori the IDs of other agents. Also, agents know
the upper bound N of the number of nodes, but they do not
know k, the topology of the graph, or n. The amount of
agent memory is unlimited, and the contents of memory are
not changed during a move through an edge.

The adversary wakes up at least one agent at the first
round. We call an agent that did not start at the first round
dormant. A dormant agent is woken up when the adversary
wakes up the agent at some round or an agent visits the start-
ing node of the dormant agent. Note that the adversary can
awake dormant agents at different rounds.

An agent is modeled as a state machine (S , δ). Here, S
is a set of agent states, and a state is represented by a tuple
of the values of all the variables that an agent has. The state
transition function δ outputs the next agent state, whether
the agent stays or leaves, and the outgoing port number if
the agent leaves. The outputs are determined from the cur-
rent agent state, the states of other agents at the same node,
the degree of the current node, and the entry port. An agent
has a special state representing the termination of an algo-
rithm. After reaching the state, the agent never executes the
algorithm. If several agents are at node v, the agents can
read all the information that they have (even if some of them
have terminated). However, if two agents traverse the same
edge simultaneously in different directions, the agents do
not notice this fact. When an agent enters a node v via an
edge {u, v}, it learns the degree d(v) of v and the port num-
ber Pv({v, u}). Agents execute the algorithm synchronously.
That is, at the beginning of a round, each agent reads states
of all agents at the current node, executes the state transition.
If an agent decides to move, it arrives at the destination node
before the beginning of the next round. Note that, in each
round, all agents at a single node obtain the same informa-
tion of states of the agents.

(3) Byzantine agents

There are f weakly Byzantine agents among k agents.
Weakly Byzantine agents act arbitrarily without following
an algorithm, but except changing their IDs. All agents ex-
cept weakly Byzantine agents are called good. Good agents
know neither the actual value nor the upper bound of f . The
adversary wakes up at least one good agent at the first round.

(4) The gathering problems

We consider the following two problems. The gathering
problem with non-simultaneous termination requires agents
to satisfy the following conditions: (1) every good agent ter-
minates an algorithm, and (2) when all the good agents ter-
minate an algorithm, they are at the same node. The gather-
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ing problem with simultaneous termination requires all the
good agents to terminate an algorithm at the same round at
the same node.

We measure the time complexity of a gathering algo-
rithm by the number of rounds from beginning (i.e., the first
good agent wakes up) to the round in which all the good
agents terminate.

(5) Procedures

In the proposed algorithms, we use the graph exploration
procedure and the extended label proposed in the literature.

The exploration procedure, called EXPLO(N), allows an
agent to visit all nodes of any graph composed of at most N
nodes, starting from any node of the graph. An implemen-
tation of this procedure is based on universal exploration
sequences (UXS) and is a corollary of the result by Rein-
gold [23]. The number of moves of EXPLO(N) is fixed not
depending at the node where an agent starts this procedure.
Hence, the number of moves of EXPLO(N), denoted by XN ,
can be calculated locally with N.

Let b1b2 · · · b� be the binary representation of ai.ID,
where � = 
log(ai.ID)� + 1. The extended label of ai is
defined as ai.ID∗ = 10b1b1b2b2 · · · b�b� 10b1b1b2b2 · · ·
b�b� · · · . We have the following lemma about the extended
label ai.ID∗, which is used to prove the correctness of the
proposed algorithms.

Lemma 2.1. [6] For two different agents ai and a j, assume
that ai.ID∗ = x1x2 · · · and a j.ID∗ = y1y2 · · · hold. Then, for
some k ≤ 2
log(min(ai.ID, a j.ID))� + 6, xk � yk holds.

3. A Gathering Algorithm with Non-Simultaneous Ter-
mination

In this section, we propose an algorithm for the gathering
problem with non-simultaneous termination by assuming a
strong team composed of 4 f 2 + 9 f + 4 agents. That is, at
least (4 f +4)( f +1) good agents exist in the network. Recall
that agents know N, but do not know n, k, or f .

3.1 Overview

The proposed algorithm aims to gather all good agents at
a single node. The algorithm achieves this goal by three
stages: CollectID, MakeGroup, and Gather stages. In the
CollectID stage, agents collect IDs of all good agents and
estimate the number of Byzantine agents at the end of the
stage. In the MakeGroup stage, agents make a reliable
group, which is composed of at least 4 f + 4 agents. In
the Gather stage, all good agents gather at a single node
and achieve the gathering. Each stage consists of multiple
phases, and each phase consists of PN ≥ XN rounds. We
will discuss the actual value of PN later, and here just note
that the duration of each phase is sufficient for an agent to
explore the network by EXPLO(N). For simplicity, we first
explain the overview under the assumption that agents know
f and awake at the same round. Under this assumption, all

good agents start each phase at the same round.
In the CollectID stage, agents collect IDs of all good

agents. To do this, in the x-th phase of the CollectID stage,
each agent ai reads the x-th bit of ai.ID∗ and decides the
behavior. If the bit is 1, ai executes EXPLO(N) during the
phase. If the bit is 0, ai waits during the phase. Agent ai

has variable ai.L to store a set of IDs, and if ai finds another
agent at the same node while exploring or waiting, it records
the agent’s ID in ai.L. Agent ai executes this procedure until
the (2
log(ai.ID)� + 6)-th phase, and then finishes the Col-
lectID stage. From Lemma 2.1, ai can meet all other good
agents and hence obtain IDs of all good agents.

In the MakeGroup stage, agents make a reliable group
composed of at least 4 f + 4 agents. To do this, agents with
small IDs keep waiting, and the other agents search for the
agents with small IDs. More concretely, if the f + 1 small-
est IDs in ai.L contains ai.ID, ai keeps waiting during this
stage. Otherwise, ai assigns the smallest ID in ai.L to vari-
able ai.target, and searches for the agent with ID ai.target,
say atarget, by executing EXPLO(N) in a phase. If ai finds
atarget at some node, it ends the search and waits at the node.
If ai does not find atarget even after completing EXPLO(N), it
regards atarget as a Byzantine agent. In this case, ai assigns
the second smallest ID in ai.L to ai.target, and searches for
the agent with ID ai.target in the next phase. Agent ai con-
tinues this behavior until it finds a target agent. Since there
are at most f Byzantine agents, the good agent with the
smallest ID, say amin, keeps waiting during the MakeGroup
stage. This means that agents always find amin if they search
for amin, and consequently, the number of agents searched
for by good agents is at most f + 1 (including amin and f
Byzantine agents). Since at least (4 f +4)( f +1) good agents
exist, even if the good agents are distributed to f + 1 nodes
evenly, at least 4 f +4 agents gather in one node according to
the pigeonhole principle. In other words, agents can make a
reliable group. The ID of the target agent in a reliable group
is used as the group ID. For Gather stage, a reliable group
is divided into two groups, an exploring group and a waiting
group, so that each of which contains at least 2 f + 2 agents.

In the Gather stage, agents achieve the gathering after
at least one reliable group is created. The Gather stage con-
sists of two phases, and agents collect group IDs of all reli-
able groups in the first phase of the Gather stage. More con-
cretely, while agents in a waiting group keep waiting, other
agents (in an exploring group or not in a reliable group)
explore the network by EXPLO(N). When ai finds a reli-
able group, it records the group ID. Note that, since each
of an exploring group and a waiting group contains at least
2 f + 2 agents when it is created, it contains at least f + 2
good agents. Therefore, when an agent meets an explor-
ing or waiting group in which at least f + 2 agents present
the same group ID, the agent can understand that this group
contains at least two good agents, and hence it is trustwor-
thy. Note that, as we explain later, the proposed algorithm
makes the group include at least two good agents because
agent must actually use estimated values of f and the esti-
mated values of f differ by at most one among good agents.
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In the second phase of the Gather stage, agents move to the
node where the waiting group of the smallest group ID stays.
That is, while agents in the waiting group of the smallest
group ID keep waiting, other agents search for the group by
EXPLO(N).

However, there are three problems to implement the
above behavior.

The first problem is that agents not in a reliable group
cannot instantly know the fact that a reliable group has been
created, and so they do not know when to transition to the
Gather stage. To solve this problem, we make agents exe-
cute the MakeGroup stage and the Gather stage alternately.
Here, we design the two stages so that (1) agents achieve the
gathering in the Gather stage if a reliable group is created
in the MakeGroup stage, and (2) otherwise behaviors in the
Gather stage do not affect the MakeGroup stage.

The second problem is that agents do not know f . To
solve this problem, at the end of the CollectID stage, agents
estimate the number of Byzantine agents, say f̃ , from the
fact that their ID lists include IDs of all good agents, at least
(4 f + 4)( f + 1) good agents exist, and the number of Byzan-
tine agents is at most f . Specifically, good agents calculate
the value of f̃ that satisfies k ≥ (4 f̃ + 4)( f̃ + 1) and f ≤ f̃ .
With these constraints, we ensure that good agents make at
least one reliable group. However, values of f̃ differ by at
most one among good agents, because some good agents
may meet some Byzantine agents but others may not in the
CollectID stage. Therefore, we design a method to make
a reliable group such that each of the waiting group and the
exploring group includes at least f̃ ′ + 1 good agents, where
f̃ ′ is the largest value of f̃ among all good agents.

The third problem is that some agents may be dormant.
To solve this problem, we make agents first explore the net-
work by EXPLO(N) to wake up dormant agents. As a re-
sult, we guarantee that all good agents start the algorithm
within XN rounds, but there still exists a problem. Good
agents execute different phases at the same round because
these agents woke up at different rounds. So, we adjust the
number of rounds of each phase to guarantee that all the
good agents execute the same phase at the same time for
sufficient rounds.

3.2 Details

Algorithm 1 is the pseudocode of the proposed algorithm.
The proposed algorithm realizes the gathering using three
stages: The CollectID stage makes agents collect IDs of all
good agents and estimate the number of Byzantine agents,
the MakeGroup stage creates a reliable group, and the
Gather stage gathers all good agents.

The overall flow of the algorithm is shown in Fig. 1.
After starting the algorithm, agent ai first explores the net-
work with EXPLO(N) to wake up all dormant agents (line 6
of Algorithm 1). By this behavior, after the first good agent
wakes up, all good agents wake up within XN rounds. After
that, ai executes phases of the CollectID, MakeGroup, and
Gather stages. Here we define one phase as PN = 3XN + 1

Algorithm 1 Procedure ByzantineGathering(N) for an
agent ai whose ai.ID = b1b2 · · · b� where � = 
log(ai.ID)� +
1
1: ai.state← CorrectID
2: ai.L← {ai.ID}, ai.BL← ∅, ai.GL← ∅
3: ai.GID← NULL
4: ai.EndCI← False
5: ai.x← 1
6: Explore the network by EXPLO(N)
7: while True do
8: if ai.EndCI = False then
9: Execute ai.x-th phase of the CollectID stage

10: else
11: Execute the MakeGroup stage
12: end if
13: ai.x← ai.x + 1
14: Execute the Gather stage
15: end while

Fig. 1 The stage flow.

rounds. Since all good agents wake up within XN rounds,
the (XN + 1)-th to 2XN-th rounds of the x-th phase of good
agent ai overlap with the first 3XN rounds of the x-th phases
of all other good agents. Hence, we have the following ob-
servation.

Observation 3.1. Let ai and a j be good agents. Assume that
ai explores the network with EXPLO(N) from the (XN + 1)-th
round to the 2XN-th round of its x-th phase, and a j waits
during the first 3XN rounds of its x-th phase. In this case, ai

meets a j during the exploration.

After the initial exploration, ai alternately executes one
phase of the CollectID stage and two phases of the Gather
stage (lines 9 and 14). Because ai cannot calculate the value
of f̃ until it finishes the CollectID stage, ai takes no action
in the Gather stage. After ai finishes the CollectID stage, it
alternately executes one phase of the MakeGroup stage (in-
stead of the CollectID stage) and two phases of the Gather
stage (lines 11 and 14). The Gather stage interrupts the
CollectID and MakeGroup stages, but, as described later,
the behaviors of the Gather stage do not affect the behav-
iors of the CollectID and MakeGroup stages if no reliable
group exists. Therefore, we do not consider the behaviors
of the Gather stage until a reliable group is created in the
MakeGroup stage.
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Fig. 2 An example execution of the algorithm by good agents ai, a j, and
ak.

An example execution of the algorithm by some good
agents ai, a j, and ak is shown in Fig. 2. Capitals C, M, and
G represent one phase of the CollectID stage, one phase of
the MakeGroup stage, and two phases of the Gather stage,
respectively. Recall that agents need to execute multiple
phases of the CollectID stage (resp., the MakeGroup stage)
to achieve the purpose of the CollectID stage (resp., the
MakeGroup stage) and that agents alternately execute one
phase of the CollectID stage (resp., the MakeGroup stage)
and two phases of the Gather stage. Let r1 be the round
when a reliable group with ai is created, and r2 be the round
when ak finished the CollectID stage. Agents ai and a j

terminate at the end of the Gather stage immediately after
round r1 since they have finished the CollectID stage and
a reliable group exists in the network. On the other hand,
agent ak cannot determine whether a reliable group exists at
the same node since it has not finished the CollectID stage.
Thus, agent ak keeps executing. Afterward, agent ak termi-
nates at the end of the Gather stage immediately after round
r2 because a reliable group already exists in the network and
ak meets the reliable group by the end of the Gather stage.

Table 2 summarizes the variables used in the algorithm.
Agent ai stores the current state of ai in variable ai.state. Ini-
tially, ai.state = CorrectID holds. Initially, ai stores False
in variable ai.EndCI because it has not finished the Collec-
tID stage. Also, ai stores the number of rounds from the
beginning in variable ai.count. By variable ai.count, ai de-
termines which round of a phase it executes, and so, when
ai waits, it can obtain how many rounds it has waited for.
Agent ai increments ai.count for every round, but this be-
havior is omitted from the following description.

3.2.1 The CollectID Stage

Algorithm 2 is the pseudocode of the CollectID stage. In
the CollectID stage, agents collect IDs of all good agents.
The CollectID stage of ai consists of 2
log(ai.ID)� + 6
phases. Note that the lengths of CollectID stages differ
among agents. Agent ai uses variable ai.L to store a set
of IDs, and initially, it records ai.ID in ai.L (line 2 of Al-
gorithm 1). Agent ai determines the behavior of the x-th
phase depending on the x-th bit of ai.ID∗. If the x-th bit is
0, ai waits for 3XN rounds in the x-th phase (lines 1–2 of
Algorithm 2). If the x-th bit is 1, ai waits for XN rounds,
explores the network by EXPLO(N), and then waits for XN

Table 2 Variables of agents.

Variable Explanation

state

The current state of an agent. This variable takes one
of the following values.

• CorrectID (has not yet finished the CollectID
stage)

• SearchAgent (works as a search agent in the
MakeGroup stage)

• TargetAgent (works as a target agent in the
MakeGroup stage)

• ExploringGroup (belongs to an exploring group
in the Gather stage)

• WaitingGroup (belongs to a waiting group in
the Gather stage)

EndCI The variable that indicates whether an agent has fin-
ished the CollectID stage.

count The number of rounds from the beginning.

x The number of phases in the CollectID or
MakeGroup stage

f̃ The estimated number of Byzantine agents.
L A set of agent IDs collected in the CollectID stage.

BL A set of agent IDs that the search agent regards as
Byzantine agents.

target Search agents: The ID the agent searches for.
Target agents: Its own ID.

F The consensus of f̃ among agents at the same node.

GID The group ID of the reliable group that the agent be-
longs to.

GL A set of group IDs collected in the Gather stage.

Algorithm 2 The ai.x-th phase of CollectID stage for an
agent ai

1: if the ai.x-th bit of ai.ID∗ is 0 then
2: Wait for 3XN rounds at the current node
3: ai.L← ai.L ∪ {IDs of agents ai met while waiting}
4: else
5: Wait for XN rounds at the current node
6: Explore the network by EXPLO(N)
7: Wait for XN rounds at the current node
8: ai.L← ai.L ∪ {IDs of agents ai met while exploring}
9: end if

10: // The (3XN + 1)-th round
11: if ai.x = 2
log(ai.ID)� + 6 then
12: ai. f̃ ← max{y | (4y + 4)(y + 1) ≤ |ai.L|}
13: ai.x← 1
14: ai.EndCI← True
15: end if
16: Wait for one round

rounds in the x-th phase (lines 4–7). During these behav-
iors, if ai finds another agent a j at the same node, it records
a j.ID in ai.L (lines 3 and 8). Note that, from Lemma 2.1
and Observation 3.1, ai meets all good agents and records
IDs of all good agents during the CollectID stage.

In the last round of the last phase of the CollectID
stage, ai estimates the number of Byzantine agents f̃ as
ai. f̃ ← max{y | (4y + 4)(y + 1) ≤ |ai.L|} (line 12). As
we prove later, ai. f̃ ≥ f holds in Lemmas 3.2 and 3.3, and
|ai. f̃ − a j. f̃ | ≤ 1 holds for any good agent a j. Also, ai stores
True in ai.EndCI (line 14).
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Algorithm 3 MakeGroup stage for an agent ai

1: if ai.x = 1 then
2: if the smallest ai. f̃ + 1 IDs in ai.L contain ai.ID then
3: ai.state← TargetAgent
4: else
5: ai.state← SearchAgent
6: end if
7: end if
8: if ai.state = TargetAgent then
9: //ai is a target agent

10: ai.target← ai.ID
11: Wait for one phase at the current node
12: and
13: While waiting, execute consensus() every round
14: else
15: //ai is a search agent
16: ai.target← min(ai.L \ ai.BL)
17: Wait for XN rounds at the current node
18: Search for an agent atarget with ID ai.target by EXPLO(N)
19: and
20: if ai meets atarget while searching then
21: Stop EXPLO(N)
22: Wait until the end of the phase
23: and
24: While waiting, execute consensus() every round
25: and
26: if ai finds atarget Byzantine while waiting then
27: // This is true if, during the (XN + 1)-th round to
28: // the 2XN -th round, atarget moved to another
29: // node or atarget.target � atarget.ID holds
30: ai.BL← ai.BL ∪ {ai.target}
31: end if
32: else
33: // ai does not meet atarget and hence atarget is Byzantine
34: ai.BL← ai.BL ∪ {ai.target}
35: Wait until the end of the phase
36: end if
37: end if

Algorithm 4 consensus() for an agent ai (Compute the
consensus of f̃ and create a reliable group if possible)
1: if ai.GID = NULL and the number of agents in the MakeGroup stage

at the current node is at least 4 · ai. f̃ then
2: ai.F ← the most frequent value of f̃ of agents at the same node (if

more than one most frequent value exists, choose the smallest one)
3: Let GC be a set of agents at the same node whose target is ai.target

and who execute the MakeGroup stage
4: if |GC| ≥ 4 · ai.F + 4 and there exists atarget with atarget.target =

atarget.ID = ai.target then
5: ai.GID← atarget.ID
6: if the 2 · ai.F + 2 smallest IDs in GC contain ai.ID then
7: ai.state← ExploringGroup
8: else
9: ai.state← WaitingGroup

10: end if
11: end if
12: end if

3.2.2 The MakeGroup Stage

Algorithm 3 is the pseudocode of the MakeGroup stage. In
the pseudo code, for simplicity we use and operation, which
means that an agent executes the operations before and after

the and operation at the same time.
In the MakeGroup stage, agents create a reliable group.

To store a group ID of the reliable group, agent ai has vari-
able ai.GID. Initially ai.GID is NULL, and, when ai be-
comes a member of a reliable group, it assigns its group ID
to ai.GID. Let f̃min be the smallest value of f̃ among all
good agents at the time when all good agents finish the Col-
lectID stage. We define a reliable group formally to present
the MakeGroup stage clearly.

Definition 3.1 (Reliable group). A set of agents R is a re-
liable group with group ID gid if and only if R includes at
least 3 f̃min + 4 good agents and ai.GID = gid holds for any
ai ∈ R

At the beginning of the MakeGroup stage, if the small-
est ai. f̃ + 1 IDs in ai.L contain ai.ID, agent ai becomes a
target agent (line 3 of Algorithm 3). Otherwise, ai becomes
a search agent (line 5). Hereinafter, the good agent with
the smallest ID is denoted by amin. As we prove later, amin

always becomes a target agent.
If ai is a target agent, it executes ai.target ← ai.ID

(line 10) and waits for one phase at the current node (line
11). While waiting, ai executes procedure consensus() to
create a reliable group if possible (line 13). We will explain
the details of consensus() later.

Let us consider the case where ai is a search agent.
Here, to ensure making a reliable group, ai stores IDs of
agents that ai regards as Byzantine agents in the blacklist
ai.BL (initially ai.BL is empty). In the first round of each
phase, ai chooses the agent with the smallest ID, excluding
Byzantine agents in ai.BL (line 16). After that, ai waits for
XN rounds and then searches for the agent with ID ai.target,
say atarget, by executing EXPLO(N) (lines 17 and 18). If
ai finds atarget at the same node during the exploration, ai

ends EXPLO(N) and waits at the node until the end of the
phase (lines 21–22). We can show that, if atarget is good,
atarget keeps waiting as a target agent, and consequently, ai

finds atarget and waits with atarget. Hence, if one of the fol-
lowing conditions holds, ai regards atarget as a Byzantine
agent: (1) ai did not find atarget during the exploration (lines
33–34), or (2) after ai found atarget, during the (XN + 1)-th
round to the 2XN-th round, atarget moved to another node or
atarget.target � atarget.ID holds (lines 26–30). In this case, ai

adds atarget.ID to ai.BL, and never searches for atarget in the
later phases of the MakeGroup stage (lines 30 and 34). If
ai did not find atarget, it waits until the end of the phase (line
35).

To determine whether agents can create a reliable
group, search agents (resp., target agents) execute pro-
cedure consensus() in Algorithm 4 after they find their
target agent (resp., from the beginning). In procedure
consensus(), agent ai first calculates the consensus ai.F
of the estimated number of Byzantine agents as follows. If
the number of agents in the MakeGroup stage at the cur-
rent node is at least 4 · ai. f̃ , agent ai checks values of f̃ of
all agents at the current node and assigns the most frequent
value to ai.F (line 2 of Algorithm 4). At this time, if mul-
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tiple values are the most frequent, ai chooses the smallest
one.

After that, ai determines whether the agent can create
a reliable group. Agent ai observes states of all agents at
the same node, and regards the set of agents whose target is
ai.target and who execute the MakeGroup stage as the group
candidate (line 3). If the group candidate contains at least
4 · ai.F + 4 agents and there exists atarget with atarget.target =
atarget.ID = ai.target, ai recognizes that the group candidate
includes 3 f̃min + 4 good agents since ai.F ≥ f̃min ≥ f holds
(Lemmas 3.2 and 3.6) (line 4). In that case, ai is ready to
make a reliable group. Agent ai regards the group candidate
as a reliable group and stores atarget.ID in variable ai.GID
as the group ID of the reliable group (line 5). Note that,
as we prove later, all other good agents in the reliable group
also understand that they are in the reliable group and assign
atarget.ID to their variable GID at the same round. Therefore,
when ai assigns a group ID gid to ai.GID, a reliable group
with gid is indeed created. If ai meets another agent a j, ai

can identify whether a j is a member of a reliable group by
observing variable a j.GID. When a reliable group is created,
the group is divided into two groups, an exploring group
and a waiting group, for the Gather stage as follows. If
the 2 · ai.F + 2 smallest IDs among agents in ai’s reliable
group contain ai.ID, ai belongs to an exploring group (line
7); otherwise, it belongs to a waiting group (line 9). Note
that each of an exploring group and a waiting group contains
at least 2 · ai.F + 2 ≥ 2 f̃min + 2 agents. Because f̃ of every
good agent that finished the CollectID stage satisfies f̃ ≤
f̃min+1, all good agents understand that these groups contain
at least one good agent (Lemma 3.3). Hence, these groups
are trustworthy.

Once ai has determined that a reliable group is created,
it never calculates ai.F and checks the condition to create
a reliable group again in subsequent rounds of this phase.
Note that some good agent a j with a j.target = atarget.ID
may visit the current node after ai creates a reliable group.
In this case, a j can become a member of the reliable group
(i.e., a j.GID ← atarget.ID = ai.GID). This just increases the
size of the reliable group and does not harm the algorithm.

3.2.3 The Gather Stage

Algorithm 5 is the pseudocode of the Gather stage. In the
Gather stage, agents achieve the gathering if at least one
reliable group exists in the network. Note that two phases
of the Gather stage interrupt phases of the CollectID and
MakeGroup stages. However, while executing the Gather
stage, agents never update variables used in the CollectID
and MakeGroup stages. Also, recall that the behaviors of
the CollectID and MakeGroup stages do not depend on the
initial positions of agents in each phase. Hence, the behav-
iors of the Gather stage do not affect the behaviors of the
CollectID and MakeGroup stages. If agents have not fin-
ished the CollectID stage, they wait for two phases (lines
1–2 of Algorithm 5). In the following, we describe the be-
haviors of agents that have finished the CollectID stage.

Algorithm 5 Gather stage for an agent ai

1: if ai.EndCI = False then
2: Wait for two phases at the current node
3: else
4: // The first phase
5: if ai.state = WaitingGroup then
6: Wait for one phase at the current node
7: and
8: While waiting, whenever ai meets a j with a j.GID � NULL,

execute ai.GL← ai.GL ∪ {(a j.GID, a j.ID)}
9: else

10: Wait for XN rounds at the current node
11: Explore the network by EXPLO(N)
12: and
13: While exploring, whenever ai meets a j with a j.GID � NULL,

execute ai.GL← ai.GL ∪ {(a j.GID, a j.ID)}
14: Wait for XN + 1 rounds at the current node
15: end if
16: // The second phase
17: //MemberID(gid) = {id | (gid, id) ∈ ai.GL}
18: //ReliableGID() = {gid | |MemberID(gid)| ≥ ai. f̃ + 1}
19: if ReliableGID() = ∅ then
20: Wait for one phase at the current node
21: else if ai.state = WaitingGroup and ai.GID = min(ReliableGID())

then
22: Wait for 3XN rounds at the current node
23: Terminate the algorithm
24: else
25: Wait for XN rounds at the current node
26: By executing EXPLO(N), search for the node with a reliable

waiting group whose group ID is min(ReliableGID())
27: Wait at the node until the last round of the phase
28: Terminate the algorithm at the last round of the phase
29: end if
30: end if

If agents have finished the CollectID stage, they try to
achieve the gathering in two phases of the Gather stage. In
the first phase of the two phases, agents collect group IDs of
all reliable groups (lines 4–15). To do this, agents in waiting
groups keep waiting for the phase, and other agents (agents
in exploring groups and agents not in reliable groups) ex-
plore the network during the (XN +1)-th round to the 2XN-th
round. During this behavior, when an agent finds a waiting
or exploring group, it records the group ID. After that, in
the second phase, they gather at the node where the reliable
group with the smallest group ID exists (lines 16–29).

Here, we explain how agents find exploring or wait-
ing groups. Since agents enter the Gather stage at different
rounds, agents in a reliable group do not move together. This
implies that agent ai meets agents in a reliable group at dif-
ferent rounds. For this reason, whenever agent ai meets a j

with a j.GID � NULL (i.e., a j says it is in a reliable group),
ai adds a pair (a j.GID, a j.ID) in a set ai.GL. Then, at the be-
ginning of the second phase, ai checks ai.GL and computes
group IDs of reliable groups. More concretely, ai determines
that gid is a group ID of a reliable group if there exist at least
ai. f̃ + 1 different IDs id1, id2, . . . such that (gid, idk) ∈ ai.GL
for any k, that is, the number of agents that conveyed gid as
their group IDs is at least ai. f̃ + 1. In the rest of this para-
graph, we explain why this threshold ai. f̃ + 1 allows agent
ai to recognize a reliable group correctly. Assume that agent
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ai finds the exploring or waiting group of a reliable group.
Recall that the exploring or waiting group initially contains
at least 2 f̃min + 2 agents. From this fact, even if f ≤ f̃min

of them are Byzantine, at least f̃min + 2 good agents con-
vey their group ID to ai. Consequently, when ai finds the
group, ai can determine that at least one good agent exists
in this group because |ai. f̃ − f̃min| ≤ 1 holds (as shown in
Lemmas 3.3 and 3.6). Therefore, if ai finds an exploring or
waiting group (i.e., agents with the same GID) composed of
at least ai. f̃ + 1 agents, ai can correctly recognize the group
as an exploring or waiting group of a reliable group.

In the following, we explain the detailed behavior of
agent ai in the two continuous phases of the Gather stage.

In the first phase, to collect all group IDs, agents in
waiting groups keep waiting, and other agents (agents in ex-
ploring groups and agents not in reliable groups) explore the
network. To be more precise, if agent ai belongs to a wait-
ing group, ai collects pairs of a group ID and an agent ID
in variable ai.GL by waiting and observing visiting agents.
That is, ai waits for one phase, and if ai finds agent a j with
a j.GID � NULL while waiting, it adds (a j.GID, a j.ID) to
ai.GL (lines 6–8). If agent ai belongs to a exploring group
or does not belong to a reliable group, ai collects pairs of
a group ID and an agent ID in variable ai.GL by explor-
ing the network. That is, ai waits for XN rounds, explores
the network, and then waits for XN + 1 rounds. If ai finds
agent a j with a j.GID � NULL during the exploration, it
adds (a j.GID, a j.ID) to ai.GL (lines 10–14).

In the second phase, all agents gather at the node where
the reliable group with the smallest group ID exists. Ini-
tially, ai calculates the set ReliableGID() of group IDs of
all reliable groups as follows: (1) ai makes, for each group
ID gid in ai.GL, a list of agent IDs that conveyed gid as its
group ID (i.e., MemberID(gid) = {id | (gid, id) ∈ ai.GL}),
and (2) ai checks up group IDs such that at least ai. f̃ + 1
agents conveyed the group ID (i.e., ReliableGID() = {gid |
|MemberID(gid)| ≥ ai. f̃ + 1}). Note that, if ai belongs to
a exploring (resp., waiting) group, ai.GID ∈ ReliableGID()
holds because ai meets members of its own waiting (resp.,
exploring) group during the first phase. If ai belongs to a
waiting group and satisfies ai.GID = min(ReliableGID()),
it waits for 3XN rounds and terminates the algorithm (lines
21–23). Otherwise, ai waits for XN rounds and searches
for the node with the waiting group whose group ID is
min(ReliableGID()) by executing EXPLO(N) (lines 25–26).
After that, ai waits until the last round of this phase and ter-
minates the algorithm at the node (lines 27–28).

3.3 Correctness and Complexity

In this subsection, we prove correctness and complexity of
the proposed algorithm.

Lemma 3.1. Let ai be a good agent. When ai finishes the
CollectID stage, ai.L contains IDs of all good agents.

Proof. By Lemma 2.1 and Observation 3.1, ai meets all
good agents before the end of the CollectID stage, and

records their IDs in ai.L. Therefore, ai.L contains IDs of
all good agents at the end of the CollectID stage. �

Lemma 3.2. After good agent ai finishes the CollectID
stage, ai. f̃ ≥ f and k ≥ (4ai. f̃ + 4)(ai. f̃ + 1) hold.

Proof. By Lemma 3.1, ai contains IDs of all good agents in
ai.L at the end of CollectID stage, and so |ai.L| ≥ (4 f +
4)( f + 1) holds. Therefore, we have ai. f̃ = max{y | (4y +
4)(y + 1) ≤ |ai.L|} ≥ max{y | (4y + 4)(y + 1) ≤ (4 f +
4)( f + 1)} = f . Also, by the algorithm, we clearly have
k ≥ (4ai. f̃ + 4)(ai. f̃ + 1). �

Lemma 3.3. After good agents ai and a j finish the Collec-
tID stage, |ai. f̃ − a j. f̃ | ≤ 1 holds.

Proof. We prove this lemma by contradiction. Without loss
of generality, we assume ai. f̃ = p and a j. f̃ ≥ p+2. We have
(4(p+1)+4)((p+1)+1) > |ai.L| by ai. f̃ < p+1, and we have
(4(p+2)+4)((p+2)+1) ≤ |a j.L| by a j. f̃ ≥ p+2. Therefore,
since p ≥ f holds by Lemma 3.2, |a j.L|−|ai.L| > 8p+20 > f
holds. On the other hand, since ai.L and a j.L include IDs of
all good agents by Lemma 3.1, we have |a j.L| − |ai.L| ≤ f ,
which contradicts the assumption. �

Let f̃max be the largest value of f̃ among all good agents
at the time when all good agents finish the CollectID stage.

Lemma 3.4. The followings hold in the MakeGroup stage:
(1) amin is a target agent, and (2) the number of good target
agents is at most f̃max + 1.

Proof. First, we prove proposition (1). By Lemma 3.2,
amin. f̃ ≥ f holds; thus, the amin. f̃ + 1 (≥ f + 1) smallest
IDs in amin.L contain amin.ID. Therefore, amin is a target
agent.

Next, we prove proposition (2) by contradiction. Let
us assume that proposition (2) does not hold. That is, at
least f̃max + 2 good agents become target agents. Let amax be
the agent with the largest ID among the good target agents.
Since amax.L contains IDs of other f̃max + 1 good agents that
have smaller IDs than amax, amax does not become a target
agent. This is a contradiction. Hence, the lemma holds. �

Lemma 3.5. Let ai be a good agent. Variable ai.BL does
not contain any ID of good agents.

Proof. We prove by induction. Recall that ai adds ai.target
to ai.BL in a phase of the MakeGroup stage only when one
of the following conditions holds. Let atarget be the agent
such that ai.target = atarget.ID holds.

1. Agent ai did not find atarget during the phase (line 34 of
Alg. 3).

2. After ai found atarget, during the (XN + 1)-th round to
the 2XN-th round of the phase, atarget moved to an-
other node or atarget.target � atarget.ID holds (line 30
of Alg. 3).

For the base case, we consider the first phase of the
MakeGroup stage of ai. By Lemma 3.1, ai.L contains IDs
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of all good agents. Since ai.BL is empty at the beginning
of the first phase, ai.target (= min(ai.L)) is amin.ID or an
ID of a Byzantine agent. But, here, it is sufficient to con-
sider only the former case. Since amin has the smallest ID
among good agents, the duration of the CollectID stage
is the shortest among good agents. Hence, amin starts the
MakeGroup stage before ai starts the (XN + 1)-th round of
the first phase of the MakeGroup stage. Since amin is a tar-
get agent by Lemma 3.4, amin continues to wait during the
MakeGroup stage. This implies that the above conditions
to update ai.BL are not satisfied. Hence, ai does not update
ai.BL, and the lemma holds in the first phase.

For the induction, assume that ai.BL does not con-
tain IDs of good agents at the end of the t-th phase of the
MakeGroup stage of ai. We consider the (t + 1)-th phase
of the MakeGroup stage of ai. Since ai.BL does not con-
tain IDs of the good agents at the beginning of the (t + 1)-th
phase, ai.target = min(ai.L \ ai.BL) is amin.ID or an ID of
a Byzantine agent. By the same discussion as in the first
phase, we can prove that IDs of good agents are not added
to ai.BL in the (t + 1)-th phase. Therefore, this lemma holds
in the (t + 1)-th phase. Hence, the lemma holds. �

In the following lemmas, we show the property of a
reliable group.

Lemma 3.6. When good agent ai executes ai.F ← f̃ ′ in
consensus(), there exists good agent a j with a j. f̃ = f̃ ′

Proof. Assume that ai executes ai.F ← f̃ ′ at node v in round
r. By the algorithm, in round r, there exist at least 4 · ai. f̃
agents executing the MakeGroup stage at node v. Since
ai. f̃ ≥ f holds by Lemma 3.2, there exist at least 4·ai. f̃− f ≥
4 f − f = 3 f good agents executing the MakeGroup stage at
v in round r. Also, since variable f̃ of good agents takes at
most two possible values by Lemma 3.3, at least �3 f /2� > f
good agents at v have the same value of f̃ . Therefore, in
round r, ai stores the value of variable f̃ of some good agent
in ai.F. Hence, the lemma holds. �

Lemma 3.7. If good agent ai executes ai.GID ← gid (line
5 of Algorithm 4) at node v in round r, (1) a reliable group
with group ID gid is created in round r, and (2) an exploring
and waiting group of the reliable group is created in round
r and each of them contains at least f̃min + 2 good agents.

Proof. Assume that good agent ai executes ai.GID← gid at
v in round r. Let A′ be a set of agents such that, iff a j ∈ A′
holds, a j stays at v in round r and a j.target = ai.target holds.

Firstly, we prove that A′ satisfies the following condi-
tions.

• Set A′ contains at least 4 · ai.F + 4 agents.
• Any good agent a j in A′ executes a j.GID ← gid at

node v in round r.

Since ai executes ai.GID← gid, A′ contains at least 4·ai.F+
4 agents. Also, A′ contains agent atarget with atarget.ID =
ai.target. Fix an agent a j ∈ A′. By Lemmas 3.3 and 3.6,
a j. f̃ ≤ ai.F + 1 holds, and hence, 4 · ai.F + 4 ≥ 4 · a j. f̃

holds. This implies that the number of agents at v satisfies
the condition that a j calculates a j.F (line 1 of Algorithm 4).
Since the situation of v is the same for both ai and a j, a j.F =
ai.F holds. In addition, a j also observes agents in A′; then,
a j executes a j.GID← gid at v in round r.

Secondly, we prove (1). By Lemmas 3.2, 3.3 and 3.6,
A′ contains at least 4 · ai.F + 4− f ≥ 4 f̃min + 4− f ≥ 4 f̃min +

4 − f̃min = 3 f̃min + 4 good agents. Also, for any ai ∈ A′,
ai.GID = gid holds. Therefore, A′ is a reliable group with
group ID gid from Definition 3.1.

Lastly, we prove (2). Each agent a j ∈ A′ (including
ai) also decides an exploring or wating group of the reliable
group with group ID gid at node v in round r. Since A′
contains at least 4 · ai.F + 4 ≥ 4 f̃min + 4 agents, each of
the exploring and waiting groups contains at least 2 f̃min + 2
agents. Therefore, each of the exploring and waiting groups
contains at least 2 f̃min + 2 − f ≥ f̃min + 2 good agents. �

In the following two lemmas, we prove that a reliable
group is created before all good agents finish the ( f + 1)-
th phase of the MakeGroup stage. Let alast be the good
agent that finishes the CollectID stage last, and let phasex
be the x-th phase of the MakeGroup stage of alast. Since all
agents wake up within XN rounds and each phase consists
of 3XN + 1 rounds, any good agent ai has exactly one phase
phasei

x that overlaps phasex for at least 2XN + 1 rounds. For
simplicity, when agent ai behaves in phasei

x, we say that ai

behaves in the x-th phase (of the MakeGroup stage) of alast.

Lemma 3.8. Let Byz1, Byz2, . . . , Byz f ′ (Byzl.ID<Byzl+1.ID
for 1 ≤ l ≤ f ′ − 1) be Byzantine agents whose IDs are
smaller than amin. Assume that, when alast finishes the f ′-th
phase of the MakeGroup stage, a reliable group does not
exist. Then, in the ( f ′ + 1)-th phase of the MakeGroup
stage of alast, at most (4 f̃max + 2) f ′ good agents assign
bid ∈ {Byz1.ID, Byz2.ID, . . . , Byz f ′ .ID} to their variable
target.

Proof. Assume that a reliable group does not exist when
alast finishes the f ′-th phase of the MakeGroup stage. Un-
der this assumption, we prove by induction that, in the
(x + 1)-th phase of the MakeGroup stage (1 ≤ x ≤ f ′)
of alast, at most (4 f̃max + 2)x good agents assign bid ∈
{Byz1.ID, Byz2.ID, . . . , Byzx.ID} to their variable target.
Hereinafter, the x-th phase of the MakeGroup stage of alast

is simply called the x-th phase.
For the base case, we consider the case of x = 1.

Let A1 be a set of good agents that assign Byz1.ID to their
variable target in the second phase. For contradiction, as-
sume |A1| > 4 f̃max + 2. Since good agents monotonically
increase target, agents in A1 also assign Byz1.ID to target
in the first phase. Also, since the agents do not regard
Byz1 as a Byzantine agent in the first phase, they find Byz1

in the first phase and, after that, Byz1 does not move and
Byz1.target = Byz1.ID holds until the 2XN-th round of the
first phase. In addition, they start the first phase within at
most XN round and wait during the (2XN +1)-th round to the
(3XN + 1)-th round of the first phase. This implies that all
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agents in A1 exist at the same node as Byz1 before the 2XN-
th round of the first phase, and at that time the number of
agents at the node is at least |A1 ∪ {Byz1}| ≥ 4 f̃max + 4. Fur-
thermore, since those agents have stored Byz1.ID in their
target, they assign Byz1.ID to their GID (execute line 5
of Algorithm 4). By Lemma 3.7, since a reliable group is
created by the algorithm, this contradicts the assumption.
Therefore, |A1| ≤ 4 f̃max + 2 holds.

For induction step, assume that, in the (x + 1)-th phase
(1 ≤ x < f ′), at most (4 f̃max + 2)x good agents assign bid ∈
{Byz1.ID, Byz2.ID, . . . , Byzx.ID} to their target. Let Ax be a
set of good agents that assign bid ∈ {Byz1.ID, Byz2.ID, . . . ,
Byzx+1.ID} to target in the (x + 2)-th phase. For contra-
diction, assume |Ax| > (4 f̃max + 2)(x + 1). Let Bx be a
set of good agents that assign Byzx+1.ID to target in the
(x + 1)-th phase, and let Cx be a set of good agents that as-
sign bid ∈ {Byz1.ID, Byz2.ID, . . . , Byzx.ID} to target in the
(x + 1)-th phase. Since good agents monotonically increase
target, Ax ⊆ Bx ∪ Cx holds. Since |Cx| ≤ (4 f̃max + 2)x holds
by the assumption of induction, |Bx ∩ Ax| ≥ |Ax| − |Cx| >
4 f̃max + 2 holds. Since good agents in Bx ∩ Ax do not re-
gard Byzx+1 as a Byzantine agent in the (x + 1)-th phase,
they find Byzx+1, and, after that, Byzx+1 does not move and
Byzx+1.target = Byzx+1.ID holds until the 2XN-th round of
the (x + 1)-th phase. Similarly to the base case, this im-
plies that all agents in Bx ∩ Ax exist at the same node as
Byzx+1, and at that time, the number of agents at the node
is at least 4 f̃max + 4. Furthermore, since those agents have
stored Byzx+1.ID in their target, they assign Byzx+1.ID to
their GID (execute line 5 of Algorithm 4). By Lemma 3.7,
since a reliable group is created by the algorithm, this con-
tradicts the assumption. Therefore, |Ax| ≤ (4 f̃max + 2)(x + 1)
holds.

Hence, the lemma holds. �

Lemma 3.9. Before alast finishes the ( f + 1)-th phase of the
MakeGroup stage, a reliable group is created.

Proof. Let f ′(≤ f ) be the number of Byzantine agents
whose IDs are smaller than amin.ID. By Lemma 3.8, if a
reliable group is not created before alast finishes the f ′-th
phase of the MakeGroup stage, at most (4 f̃max + 2) f ′ good
agents assign an ID of a Byzantine agent with a smaller
ID than amin to target in the ( f ′ + 1)-th phase of alast.
Also, by Lemma 3.4, the number of good target agents
is at most f̃max + 1. This implies that, in the ( f ′ + 1)-th
phase of alast, at least (k − f ) − ( f̃max + 1) − (4 f̃max + 2) f ′
good search agents assign amin.ID to target (because amin.ID
is not in variable BL of agents by Lemma 3.5). Since
they can successfully find amin, by Lemma 3.2, at least
(k − f ) − ( f̃max + 1) − (4 f̃max + 2) f ′ ≥ (4 f̃max + 4)( f̃max +

1) − f̃max − ( f̃max + 1) − (4 f̃max + 2) f̃max = 4 f̃max + 3 search
agents stay with target agent amin before the 2XN-th rounds
of the ( f ′ + 1)-th phase of alast. This implies that at least
4 f̃max +4 agents with target = amin.ID exist at the node with
amin. Therefore, they assign amin.ID to their GID (execute
line 5 of Algorithm 4). By Lemma 3.7, a reliable group is
created. Hence, the lemma holds. �

The following two lemmas show that agents can
achieve the gathering if at least one reliable group is cre-
ated and they finish the CollectID stage. Let aini be the
good agent that wakes up earliest. Since all agents wake up
within XN rounds, if aini starts two consecutive phases of the
Gather stage in round r, all good agents start two consec-
utive phases of the Gather stage before round r + XN . We
define Rel(r) as a set of reliable groups that exist in round
r + XN . If Rel(r) is not empty, we define gidmin(r) as the
smallest group ID of reliable groups in Rel(r), Gmin(r) as the
group with group ID gidmin(r), and vmin(r) as the node where
Gmin(r) is created.

Lemma 3.10. Consider the following situation: (1) aini

starts two consecutive phases of the Gather stage in round
r, (2) ai (possibly aini) starts two consecutive phases of the
Gather stage in round r′ such that r ≤ r′ ≤ r + XN holds,
and (3) ai has completed the CollectID stage before round
r′. Let Listi be the output of ReliableGID() for ai in the two
consecutive phases. Then, Listi is a set of all group IDs of
Rel(r).

Proof. By the algorithm, since all good agents wake up
within XN rounds, all good agents start two consecutive
phases of the Gather stage during rounds r to r + XN and
hence, no new reliable group is created during rounds r+XN

to r + 2XN .
If ai belongs to a waiting group, it waits during rounds

r′(≤ r + XN) to r′ + 3XN(≥ r + 3XN). Since all good agents
in exploring groups of Rel(r) explore the network during
rounds r + XN to r + 3XN , all of them meet ai. Therefore,
for each good agent a in a exploring group of Rel(r), ai.GL
contains (a.GID, a.ID).

If ai does not belong to a waiting group, it explores the
network during rounds r′ + XN(≥ r + XN) to r′ + 2XN(≤
r + 3XN). Since all good agents in waiting groups of Rel(r)
wait during rounds r + XN to r + 3XN , all of them meet
ai. Therefore, for each good agent a in a waiting group of
Rel(r), ai.GL contains (a.GID, a.ID).

Let G be an arbitrary group in Rel(r). By Lemma 3.7,
each of the exploring group and the waiting group of G con-
tains at least f̃min + 2 good agents. By Lemma 3.3, since
ai. f̃ + 1 ≤ f̃max + 1 ≤ f̃min + 2 holds, ai.GL contains at least
ai. f̃ + 1 pairs for group G. Hence, Listi contains all group
IDs of Rel(r). In addition, since there exist only f < ai. f̃ +1
Byzantine agents, Listi does not contain a fake group ID that
was conveyed by Byzantine agents. Hence, Listi is a set of
all group IDs of Rel(r). �

Lemma 3.11. Let r be the first round such that (a) aini starts
two consecutive phases of the Gather stage in round r and
(b) there exists a reliable group in round r + XN. Assume
that ai (possibly aini) starts two consecutive phases of the
Gather stage in round r′ such that r ≤ r′ ≤ r + XN. Then,
the following propositions hold: (1) If ai has finished the
CollectID stage before round r′, it terminates the algorithm
at vmin(r) during the two consecutive phases of the Gather
stage after round r′. (2) If ai has not finished the CollectID
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stage in round r′, it terminates the algorithm at vmin(r) in
the first two consecutive phases of the Gather stage after it
finishes the CollectID stage.

Proof. First, we prove proposition (1). We focus on the
first two consecutive phases of the Gather stage after round
r′. From Lemma 3.10, ai obtains the set of all group
IDs of Rel(r) as the output of ReliableGID() and hence,
min(ReliableGID()) is gidmin(r). Hence, if ai belongs to a
waiting group of Gmin(r), it terminates at its current node
vmin(r) at the (3XN + 1)-th round of the second phase after
round r′. Otherwise, ai searches for the waiting group of
Gmin(r) in the second phase after round r′. More concretely,
ai explores the network during the (XN + 1)-th round to the
2XN-th round in the second phase. Recall that agents in a
waiting group of Gmin(r) wait for 3XN rounds before termi-
nating at vmin(r) in their second phases, and the difference of
starting times of the phases is at most XN . Hence, ai meets
agents in a waiting group of Gmin(r) at vmin(r) during the ex-
ploration, and then, it terminates at vmin(r).

Next, we prove proposition (2). Consider the case that
ai is the first agent that finishes the CollectID stage af-
ter r′. Assume that, in round r′′, ai finishes the Collec-
tID stage. Since all agents that have finished the Collec-
tID stage before round r′ have terminated from proposition
(1), no agent executes the MakeGroup stage between r′ and
r′′, and so the set of reliable groups is Rel(r). Since all
agents that belong to groups in Rel(r) have terminated from
proposition (1), ai meets all of them in the first phase of the
Gather stage after round r′′. Hence, in the second phase,
gidmin(r) = min(ReliableGID()) holds, and consequently ai

terminates the algorithm at vmin(r) during the second phase.
Consider the case that ai is not the first agent that finishes
the CollectID stage after r′. Similarly to the above case,
no agent executes the MakeGroup stage after r′, and conse-
quently the set of reliable groups is still Rel(r). Hence, we
can prove this case similarly to the above case. �

Finally, we prove the complexity of the proposed algo-
rithm.

Theorem 3.1. Let n be the number of nodes, k be the num-
ber of agents, f be the number of weakly Byzantine agents,
and Λgood be the largest ID among good agents. If the up-
per bound N of n is given to agents and 4 f 2 + 9 f + 4 ≤ k
holds, the proposed algorithm solves the gathering prob-
lem with non-simultaneous termination in at most XN +

3(2
log(Λgood)� + f + 7)(3XN + 1) rounds.

Proof. Let alast be the good agent that finishes the Col-
lectID stage last. Since alast wakes up within XN rounds
(after the first agent wakes up) and executes at most
2
log(Λgood)� + 6 phases of the CollectID stage, alast fin-
ishes the CollectID stage in XN + (2
log(Λgood)� + 6) ·
3(3XN + 1) = XN + 3(2
log(Λgood)� + 6)(3XN + 1) rounds.
By Lemma 3.9, a reliable group is created before alast fin-
ishes the ( f + 1)-th phase of the MakeGroup stage. By
Lemma 3.11, if at least one reliable group is created and

all good agents finish the CollectID stage, agents achieve
the gathering during the next two phases of the Gather
stage. Therefore, agents achieve the gathering in at most
XN + 3(2
log(Λgood)�+ 6)(3XN + 1)+ ( f + 1) · 3(3XN + 1) =
XN + 3(2
log(Λgood)� + f + 7)(3XN + 1) rounds. �

4. A Gathering Algorithm with Simultaneous Termi-
nation

In this section, we propose an algorithm for the gathering
problem with simultaneous termination by modifying the al-
gorithm in the previous section. The underlying assumption
is the same as that of the previous section. In the following,
we refer to the proposed algorithm in the previous section as
the previous algorithm. In the previous algorithm, all good
agents gather at a single node but can terminate at different
rounds. Therefore, the purpose of this section is to change
the termination condition of the previous algorithm so that
all good agents terminate at the same round.

By Lemma 3.11, after all good agents finish the Col-
lectID stage and at least one reliable group is created, all
good agents gather at a single node during the next two
consecutive phases of the Gather stage. Hence, after good
agents move to the gathering node in the Gather stage,
they can terminate at the same round if they wait until all
good agents finish the CollectID stage (and the next Gather
stage). To do this, we can use the fact that, when good agent
ai finishes the CollectID stage, ai.L contains IDs of all good
agents. That is, max(ai.L) is the upper bound of IDs of
good agents and hence, ai can compute the upper bound of
rounds required for all good agents to finish the CollectID
stage. However, for two good agents ai and a j, max(ai.L)
can be different from max(a j.L) because it is possible that
either ai or a j meets a Byzantine agent with an ID larger
than the largest ID among good agents. Also, if agents share
their variable L and take the maximum ID, Byzantine agents
may share a very large ID such that no agent has the ID. To
overcome this problem, each agent ai selects the largest ID
among IDs that ai.F + 1 agents have in their variable L, and
computes when to terminate. Note that, in order that all
good agents agree on the largest ID, they should have the
same value of F. For this reason, each agent ai updates ai.F
similarly to the MakeGroup stage after it completes the pre-
vious algorithm. Since all good agents in a reliable group
exist at a single node, ai can correctly update ai.F.

Lastly, to terminate at the same round, good agents
make a consensus on termination. To do this, each agent ai

prepares a flag ai. f lagt (initially, ai. f lagt ← False). Agent
ai executes ai. f lagt ← True if it is ready to terminate, i.e., it
understands that all good agents gather at the current node.
After ai completes the previous algorithm, it also checks
f lagt of all agents at the current node every round. If f lagt

of at least ai.F+1 agents are true, ai terminates the algorithm
because at least one good agent understands that all good
agents gather at the current node. Since all good agents stay
at the same node and make the decision based on the same
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information, they can terminate at the same round.
In the rest of this section, we describe the detailed be-

havior of ai in the algorithm. First, ai executes the previ-
ous algorithm until just before it terminates, but it does not
terminate. Let round ri be the round immediately after ai

completes the previous algorithm. After round ri, ai waits
at the gathering node of the previous algorithm, say v, and
always checks whether it can terminate. More concretely,
ai executes the following operations every round after round
ri.

1. Agent ai updates ai.F in the same way as in the
MakeGroup stage of the previous algorithm, that is, ai

assigns the most frequent value of f̃ to ai.F. If multi-
ple values are the most frequent, ai chooses the smallest
one.

2. Agent ai checks f lagt of agents at v, and, if f lagt of
at least ai.F + 1 agents are true, ai terminates the algo-
rithm.

3. Agent ai checks variable L of agents at v and computes
the maximum ID among agents. That is, letting Lg be a
set of IDs that at least ai.F + 1 agents at v have in their
variable L, ai executes ai.IDmax ← max(Lg).

4. Agent ai checks whether all good agents gather at v.
If all good agents have completed the CollectID stage
before round ri, all good agents gather at v before round
ri + XN because all agents wake up within XN rounds.
Consider the case that some good agent has not yet
completed the CollectID stage in round ri. Since a re-
liable group has already been created, if the agent with
ID ai.IDmax has finished the CollectID stage and its
next two phases of the Gather stage, ai understands
that all good agents gather at v. Note that the agent
with ID ai.IDmax completes the CollectID stage and
its next two phases of the Gather stage in at most
T = XN +XN +3(2
log(ai.IDmax)�+6)(3XN +1) rounds
after ai starts the algorithm. For this reason, ai sets
ai. f lagt ← True if (a) XN rounds have elapsed after
round ri and (b) T rounds have elapsed after it started
the algorithm.

Theorem 4.1. Let n be the number of nodes, k be the num-
ber of agents, f be the number of Byzantine agents, and Λall

be the largest ID among all agents. If the upper bound N of n
is given to agents and 4 f 2+9 f+4 ≤ k holds, the proposed al-
gorithm solves the gathering problem with simultaneous ter-
mination in at most 3XN+3(2
log(Λall)�+ f +7)(3XN+1)+1
rounds.

Proof. Let aini be the agent that starts the algorithm earliest.
Let r be the first round such that (a) aini starts two consecu-
tive phases of the Gather stage in round r and (b) there ex-
ists a reliable group in round r+XN , and let Rel(r) be a set of
reliable groups that exist in round r+ XN . Let Gmin(r) be the
group with the smallest group ID in Rel(r), and let vmin(r) be
the node where Gmin(r) is created. From Lemma 3.11, each
good agent exists at vmin(r) when it completes the previous
algorithm.

Let a f be the agent that executes f lagt ← True earliest,
and assume that a f executes a f . f lagt ← True in round r∗.

First, we prove that all good agents complete the pre-
vious algorithm before round r∗. Assume that a f completes
the previous algorithm in round r f . If all good agents com-
plete the CollectID stage before round r f , all good agents
gather at v before round r f +XN . Since r∗ ≥ r f +XN holds, all
good agents complete the previous algorithm before round
r∗. Consider the case that some good agent has not yet com-
pleted the CollectID stage in round r f . Since all agents
wake up within XN rounds and agents do not move during
the last XN rounds of the previous algorithm, good agents
in a reliable group in Rel(r) exist at vmin(r) after round r f .
Hence, at least 4 · af .F + 4 − f ≥ 3 f good agents exist at
vmin(r) after round r f . Hence, similarly to Lemma 3.6, a f

assigns f̃ of some good agent to a f .F after round r f . This
implies that a f assigns an ID of some agent to a f .IDmax.
Note that the assigned ID is at least Λgood, where Λgood is
the largest ID among all good agents. Hence, since af exe-
cutes f lagt ← True only when T rounds have elapsed from
the beginning, all good agents complete the CollectID stage
and the next two consecutive phases of the Gather stage in
round r∗. Since a reliable group has already been created, all
good agents complete the previous algorithm before round
r∗.

Next, we prove that all good agents terminate at vmin(r)
at the same round. From the above discussion, all good
agents wait at vmin(r) in round r∗. Since all good agents
obtain the same information at vmin(r), they decide the same
value on F. Hence, they can terminate at the same round im-
mediately after at least F + 1 agents execute f lagt ← True.

Lastly, we prove that good agents terminate in at most
3XN + 3(2
log(Λall)� + f + 7) (3XN + 1) + 1 rounds. Sim-
ilarly to Theorem 3.1, all good agents complete the previ-
ous algorithm and gather at vmin(r) in at most T1 = XN +

3(2
log(Λgood)�+ f + 7)(3XN + 1) rounds. In addition, since
IDmax is an ID of some agent, good agents wait until at
most T2 = 2XN + 3(2
log(Λall)� + 6)(3XN + 1) rounds have
passed. Note that good agents execute f lagt ← True if
(a) XN rounds have passed after they completed the previ-
ous algorithm and (b) T (≤ T2) rounds have passed after
the beginning of the algorithm. Hence, good agents exe-
cute f lagt ← True in at most T3 = max{T1 + XN ,T2} ≤
2XN + 3(2
log(Λall)� + f + 7)(3XN + 1) rounds after they
start the algorithm. Since all good agents start the algorithm
within XN rounds and they terminate after at least F + 1
agents execute f lagt ← True, they terminate in at most
XN + T3 + 1 = 3XN + 3(2
log(Λall)� + f + 7)(3XN + 1) + 1
rounds after the first good agent wakes up. �

5. Conclusion

In this paper, we have developed two algorithms that achieve
the gathering in weakly Byzantine environments. We pro-
posed two algorithms that reduce the time complexity com-
pared to the existing algorithm by assuming a strong team
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of agents. The proposed algorithms operate under the as-
sumption that the upper bound N of the number of nodes
is given to agents, and at least (4 f + 4)( f + 1) good agents
exist in the network, where f is the number of Byzantine
agents. The first algorithm achieves the gathering with non-
simultaneous termination in O(( f + |Λgood |) · X(N)) rounds,
where |Λgood | is the length of the largest ID among good
agents and X(N) is the number of rounds required to explore
any network composed of at most N nodes. The second al-
gorithm achieves the gathering with simultaneous termina-
tion in O(( f + |Λall|) ·X(N)) rounds, where |Λall| is the length
of the largest ID among agents. As a future work, it would
be interesting to study the trade-off between the time com-
plexity and the ratio of good and Byzantine agents.
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