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Finite Automata with Colored Accepting States and Their
Unmixedness Problems

Yoshiaki TAKAHASHI†a) and Akira ITO††b), Members

SUMMARY Some textbooks of formal languages and automata theory
implicitly state the structural equality of the binary n-dimensional de Bruijn
graph and the state diagram of minimum state deterministic finite automa-
ton which accepts regular language (0 + 1)∗1(0 + 1)n−1. By introducing
special finite automata whose accepting states are refined with two or more
colors, we extend this fact to both k-ary versions. That is, we prove that k-
ary n-dimensional de Brujin graph and the state diagram for minimum state
deterministic colored finite automaton which accepts the (k−1)-tuple of the
regular languages (0+1+ · · ·+k−1)∗1(0+1+ · · ·+k−1)n−1, . . . , and (0+1+
· · ·+k−1)∗(k−1)(0+1+· · ·+k−1)n−1 are isomorphic for arbitrary k more than
or equal to 2. We also investigate the properties of colored finite automata
themselves and give computational complexity results on three decision
problems concerning color unmixedness of nondeterminisitic ones.
key words: de Bruijn graphs, finite automata, state-minimization, NLOG-
completeness, NP-completeness, independent set

1. Introduction

de Bruijn graphs (and their associated sequences) have been
used widely in areas of application, such as coding theory,
computer network design, and genome assembly in recent
years [1]–[12].

One purpose of this paper is to characterize de Bruijn
graphs by some regular languages. Here, the characteriza-
tion of digraphs by languages means that a specific fam-
ily of graphs is coincident to the graph structure of transi-
tion diagrams of finite automata accepting a specific fam-
ily of regular languages. This claim is validated by the
fact [13]–[15] that all state-minimized deterministic finite
automata accepting a certain regular language are isomor-
phic. As an example, Moriya [15] implicitly states that n-
dimensional directed hypercube Hn is characterized by the
language L(n)

e = {x ∈ {0, 1, . . . , n − 1}∗ | the number of sym-
bols i’s in x is even for each i = 0, 1, · · · , n − 1}. That is, Hn

and the transition diagram of the minimum state determinis-
tic finite automaton accepting L(n)

e are isomorphic up to edge
labeling.

Another implicit example is the isomorphism be-
tween binary n-dimensional de Bruijn graph of DB2,n
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and the transition diagram of minimum state determinis-
tic finite automaton Dn accepting Ln = {x ∈ {0, 1}∗ |
the nth symbol from the right end of x is 1} [16]. The non-
deterministic finite automaton Nn used to produce Dn can be
easily extended to higher radix k from binary one. However,
the correspondent deterministic automaton turns out to be
not minimal and shrinks to the binary automaton Dn once we
use the well-known minimization algorithm. To get around
the situation, we make automata have classifying function
of features of input strings into two or more languages in
addition to the conventional function of either accepting or
non-accepting. We call such a automaton a colored automa-
ton. Colored finite automaton is just a special kind of Moore
machines, i.e., finite automata with outputs [5], [17], [18].
While they are input-output transducers, our colored finite
automaton remains to be a classifier of input strings into two
or more languages and is the least extension of conventional
acceptor model. Nondeterministic Moore automaton intro-
duced in [17] by Castiglione et al. is essentially the same
acceptor model as ours, although their formalism is based
on the sequential machine theory. The relations of ours to
their works and others are detailed in the end of Sect. 3.

Based on these preliminaries in Sect. 3, we show in
Sect. 4 that k-ary de Bruijn graphs DBk,n and the transi-
tion diagram of minimum state deterministic colored finite
automaton Dk,n accepting the (k − 1)-tuple of regular lan-
guages (L(1)

k,n, . . . , L
(k−1)
k,n ) are isomorphic, where L(i)

k,n = {x ∈{0, 1, . . . , k − 1}∗ | the ith symbol from the right end of x is
i}.

Secondly in Sect. 5, we investigate the complexity of
unmixedness property possibly involved in nondeterminis-
tic colored finite automaton (NCFA). This condition might
be matter for practitioners who are willing to use colored
automata because they should want to obtain unmixed ones
unless it is intended. Of course, once we transform the
NCFA to deterministic one, the unmixedness becomes ap-
parent. It is well-known that the task of nondeterministic to
deterministic transformation of finite automaton, however,
consumes exponential time in the worst case. We show that
the unmixedness of a given NCFA can be checked in poly-
nomial time. More precisely, it is shown that this problem
is NLOG-complete. Other problems considered concern to
changing an ordinary NFA to an unmixed NCFA. In the case
of division problem of accepting states of NFA to k unmixed
colors, it is also solved in polynomial time. In the case of
extension problem of accepting states of NFA from a single
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Fig. 1 de Bruijn graph DB2,2.

color to k unmixed colors, it is shown to be NP-complete via
the reduction from independent set problem of undirected
graphs [13], [14], [19].

Readers might doubt that the product of many automata
can carry out the same work as colored automata. This is es-
sentially true but an example is shown in Sect. 3 demonstrat-
ing that the difference of descriptional complexities is huge.
A possible usage of colored automaton is to fully utilize the
natural redundancy of a given nondeterministic automaton
while keeping the functionality of its product automaton.

2. Definitions and Notations

In this section, we give preliminary definitions and nota-
tions [3], [6], [8], [9], [13], [14], [14], [20].

Definition 1: A 5-tuple M = (Q,Σ, δ, q0, F) defined as fol-
lows is called nondeterministic finite automaton and abbre-
viated NFA.

1. Q is a finite set of states,
2. Σ is a finite set of input symbols,
3. δ is the transition function from Q × Σ to 2Q,
4. q0 ∈ Q is the initial state,
5. F ⊆ Q is the set of accepting states.

If each δ(q, a) is a set with exactly one element, M is
called deterministic and abbreviated DFA. When M starts
from the initial state q0 and finishes after it reads the input
string x, we say that x is accepted by M if its final state is in
F. We define the language accepted by M as L(M)

�
= {x ∈

Σ∗ | x is accepted by M}†.
Fact 1 (Subset construction method): For an NFA M =

(Q,Σ, δ, q0, F), let DFA M′ = (2Q,Σ, δ′, {q0}, {S ⊆ Q |
S ∩ F � ∅}), where δ′(S , a) =

⋃
p∈S δ(p, a) for each

S ⊆ Q, a ∈ Σ, then L(M′) = L(M).

Definition 2: Directed graph defined as follows is called
k-ary n-dimensional de Bruijn graph and abbreviated DBk,n.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V = {b1b2 · · · bn | bi ∈ {0, 1, . . . , k − 1}, i = 1, . . . , n},
E = {(b1b2 · · · bn, b′1b′2 · · · b′n) |

bi, b′i ∈ {0, 1, . . . , k − 1}, i = 1, . . . , n,
b2 = b′1, b3 = b′2, . . . , bn = b′n−1}.

†X �
= Y means that X is defined as Y.

Fig. 2 NFA N2 accepting L2.

Fig. 3 DFA D2 accepting L2.

DB2,2 is shown in Fig. 1. In the figure, edge labels of
binary digits indicate their starting nodes and end nodes.

We consider the language Ln = {x ∈ {0, 1}∗ | the nth
symbol from the end of x is 1 }, i.e., the set of strings over
{0,1} whose nth symbols from their right ends are 1’s. An
NFA Nn accepting Ln is as follows.
For each i = 1, . . . , n − 1 and a ∈ {0, 1},

Nn = ({r0, r1, . . . , rn}, {0, 1}, δ, r0, {rn}),
δ(r0, 0) = {r0}, δ(r0, 1) = {r0, r1}, δ(ri, a) = {ri+1},
i = 1, . . . , n − 1, a ∈ {0, 1}.

Figure 2 is the transition diagrams of N2. Furthermore,
D2 obtained from N2 using subset construction method is
shown in Fig. 3.

3. Colored Finite Automata

In this section, we introduce colored finite automata and in-
vestigate their fundamental properties.

Definition 3: Let Li be a language over some alphabet
Σ for i = 1, . . . , k, k ≥ 1. (1) k-tuple (L1, L2, · · · , Lk)
of languages is called colored language (vector) of k
colors over Σ. (2) If a language L is expressed with
the direct sum††

∑k
i=1 Li of these languages, L is called

distinctly colored language of k colors over Σ.

The above terminology language vector or tuple of lan-
guages may sound strange but the same concept is implicitly
used in some field of formal grammars [15], [21], [22]. For
example, during the derivation process of a terminal string
for a multiple context-free grammar [21], which is a slight
extension of context-free grammar, a multi-dimensional
††For sets X and Y, direct sum X + Y is the union X ∪ Y sat-

isfying the disjointness X ∩ Y = ∅. Notice that we use the regular
expression r + s to denote language L1 ∪ L2, where L1 and L2 are
the languages expressed by the regular expressions r and s, respec-
tively.
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Fig. 4 An example M0 of NCFA.

vector of sentential forms is rewritten to another one of a
different dimensionality.

In our case of colored automaton, its input strings are
vectorized or classified with colors just after it enters the
accepting states with the corresponding colors.

Definition 4: A 5-tuple M = (Q,Σ, δ, q0,
∑k

i=1 Fi) as fol-
lows is called nondeterministic colored f inite automaton
and abbreviated NCFA.

1. Q is a finite set of states,
2. Σ is a finite set of input symbols,
3. δ is the transition function from Q × Σ to 2Q,
4. q0 ∈ Q is the initial state,
5.
∑k

i=1 Fi ⊆ Q is the set of colored accepting states,
where Fi is the set of accepting states with ith color.

The following example is intended to make it easy to
understand the concepts introduced here and demonstrate
usefulness of our results. Readers confused by the non-
triviality are recommended to apply the concepts of this pa-
per to other familiar NFA examples found in standard text-
books [13], [14], [23].

Example 1: An example M0 = (Q,Σ, δ, q0,Σ
3
i=1Fi) of

NCFA is shown in Fig. 4, where

Q = {0, 1R, 2, 3G, 4, 5B},
Σ = {0, 1},
q0 = 0,

ΣFi=FR + FG + FB, FR = {1R}, FG = {3G}, FB = {5B}.
�

If each δ(q, a) is a set with exactly one element, M is
called deterministic and abbreviated DCFA.

We denote as δ̂(q, x) the set of reachable states when M
starts from state q and finishes after it reads the input string
x. If δ̂(q, x)∩ Fi � ∅, we say that M accepts x with ith color.

Li(M)
�
= {x ∈ Σ∗ ∣∣∣ δ̂(q0, x) ∩ Fi � ∅}

is called the language accepted by M with ith color and

L(M)
�
=

k⋃
i=1

Li(M)

is called the (unified) language accepted by M. Especially,

if it holds that

L(M) =
k∑

i=1

Li(M),

we say that L(M) is unmixed and that M color-distinctly
accepts L(M). Note that when M is deterministic or k = 1,
it is inherently unmixed.

Example 2: Consider the same NCFA as in Example 1.
Then, for examples,

LR(M0) = (00 + (01 + 0 + 10)(0000 + 0011)∗0010)∗

· ((01 + 0 + 10)(000 + 0011)∗001 + 0),
...

L(M0) = LR(M0) ∪ LG(M0) ∪ LB(M0)

= (00 + (01 + 0 + 10(0000 + 0011)∗0010)∗

· ((01 + 0 + 10)(0000 + 0011)∗

· (00 + 0 + 001) + 0 + 1).

These are obtained by using well-known translation method
from NFAs to regular expressions, taking M0 as separated
ordinary NFAs MR

0 ,M
G
0 ,M

B
0 , and MRGB

0 whose accepting
states are FR, FG, FB, and FR ∪ FG ∪ FB, respectively. �

For any x ∈ Σ∗, there exists a unique I ⊆ {1, . . . , k} such
that x ∈ Li(M), i ∈ I, x � Lj(M), j � I. In other words,

I(x)
�
= {i ∈ {1, . . . , k} | δ̂(q0, x) ∩ Fi � ∅}

is a mapping I : Σ∗ → 2{1,...,k}.
The following fact is obvious from the definitions.

Fact 2: (1) x ∈ Li(M) ⇔ i ∈ I(x).
(2) x ∈ L(M) ⇔ ∃i ∈ {1, . . . , k}[i ∈ I(x)]⇔ I(x) � ∅.

Proposition 1: L(M) is unmixed ⇔ For any x ∈ Σ∗,∣∣∣I(x)
∣∣∣ ≤ 1.

(Proof)

L(M) is mixed

⇔ ∃i, j, i � j∃x ∈ Σ∗[x ∈ Li(M) ∩ Lj(M)]

⇔ ∃i, j∃x ∈ Σ∗[i, j ∈ I(x), i � j]

⇔ ∃x ∈ Σ∗[∣∣∣I(x)
∣∣∣ ≥ 2].

�
For each I ⊆ {1, . . . , k}, define

F′I
�
= {S ⊆ Q | S ∩ Fi � ∅, i ∈ I, S ∩ F j = ∅, j � I}.

That is, F′I is the set of state subsets each of which contains
accepting states with ith color belonging to I but does not
contain accepting states with jth color not belonging to I.

Proposition 2: (1) If I � J, F′I ∩ F′J = ∅.
(2)

⋃
I⊆{1,...,k},I�∅

F′I =
k⋃

i=1

{S ⊆ Q | S ∩ Fi � ∅}.



494
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

(Proof)

(1) Suppose S ∈ F′I ∩ F′J to the contrary. Without loss of
generality, let i0 ∈ I, i0 � J, then

S ∈ F′I , S ∈ F′J
⇔ S ∩ Fi � ∅, i ∈ I, S ∩ F j = ∅, j � I,

S ∩ F j � ∅, j ∈ J, S ∩ Fi = ∅, i � J

⇒ S ∩ Fi0 � ∅, S ∩ Fi0 = ∅.
This is a contradiction.

(2) For any S ⊆ Q, there exists a unique I ⊆ {1, . . . , k} such
that S ∩ Fi � ∅, i ∈ I, S ∩ F j = ∅, j � I. In other words,

I(S )
�
= {i ∈ {1, . . . , k} | S ∩ Fi � ∅}

is a mapping I : 2Q → 2{1,··· ,k}. From

F′I = {S ⊆ Q | I(S ) = I},
we have

∪k
i=1{S ⊆ Q | S ∩ Fi � ∅}
= {S ⊆ Q | ∃i ∈ {1, . . . , k}[S ∩ Fi � ∅]}
= {S ⊆ Q | ∃I ⊆ {1, . . . , k}I � ∅, [I(S ) = I]}
= ∪I⊆{1,...,k},I�∅F′I .

�

Example 3: Consider the same NCFA M0 as in Example
1. It is easily verified that

G,B ∈ I(0000), so |I(0000)| ≥ 2.

Thus, L(M0) is mixed. From

F′∅ = {S ⊆ Q | S ∩ FR = ∅, S ∩ FG = ∅, S ∩ FB = ∅}
= {{0}, {2}, {4}, ∅, {0, 2}, {0, 4}, {2, 4}, {0, 2, 4}},

F′{R} = {S ⊆ Q | S ∩ FR � ∅, S ∩ FG = ∅, S ∩ FB = ∅}
= {{1R}, {1R, 0}, {1R, 2}, {1R, 4}, {1R, 0, 2},
{1R, 0, 4}, {1R, 2, 4}, {1R, 0, 2, 4}},
...

F′{RG}= {S ⊆ Q | S ∩ FR � ∅, S ∩ FG � ∅, S ∩ FB=∅}
= {{1R, 3G}, {1R, 3G, 0}, {1R, 3G, 2}, {1R, 3G, 4},
{1R, 3G, 0, 2}, {1R, 3G, 0, 4}, {1R, 3G, 2, 4},
{1R, 3G, 0, 2, 4}},
...

F′{RGB} = {S ⊆Q | S ∩FR�∅, S ∩FG�∅, S ∩FB�∅}
= {{1,R , 3G, 5B}, {1R, 3G, 5B, 0}, {1R, 3G, 5B, 2},
{1R, 3G, 5B, 4}, {1R, 3G, 5B, 0, 2},
{1R, 3G, 5B, 0, 4}, {1R, 3G, 5B, 2, 4},
{1R, 3G, 5B, 0, 2, 4}},

we have⋃
I⊆{R,G,B},I�∅

F′I =
∑

I⊆{R,G,B},I�∅
F′I

= F′{R} + F′{G} + F′{B} + F′{RG} + F′{RB}
+ F′{GB} + F′{RGB}. �

Theorem 1 (Subset construction method for NCFA):

For an NCFA

M = (Q,Σ, δ, q0,

k∑
i=1

Fi),

let DCFA

M′ = (2Q,Σ, δ′, {q0},
∑

I⊆{1,...,k},I�∅
F′I),

where

δ′(S , a) =
⋃
p∈S
δ(p, a), S ⊆ Q, a ∈ Σ.

Then, by defining LI(M′) �
= {x ∈ Σ∗ | δ̂′({q0}, x) ∈ F′I}

and F′[{q0}] �
= {S ⊆ Q | ∃x ∈ Σ∗[S = δ̂′({q0}, x), S ∈∑

I⊆{1,...,k},I�∅ F′I]}, we have the following.

(1) LI(M′) =
⋂
i∈I

Li(M) −
⋃
j�I

L j(M), I ⊆ {1, . . . , k},
i.e., each individual language of M′ truly reflects the
mixedness situation of M.

(2) L(M′) =
∑

I⊆{1,...,k},I�∅
LI(M′) = L(M),

i.e., the unified languages accepted by both M and M′
coincide as a whole.

(3) L(M) is unmixed

⇔ Li(M) = L{i}(M′) for each i ∈ {1, . . . , k},

⇔ F′[{q0}] ⊆
k∑

i=1

F′{i},

i.e., in the unmixed case the number of colors and col-
ored languages of M′ are the same as M.

(Proof)

(1) x ∈ ∩i∈I Li(M) − ∪ j�I L j(M)

⇔ x ∈ Li(M), i ∈ I, x � Lj(M), j � I

⇔ δ̂(q0, x) ∩ Fi � ∅, i ∈ I, δ̂(q0, x) ∩ F j = ∅, j � I.

Now, it holds that δ̂(q0, x) = δ̂′({q0}, x) because the
NCFA version of subset construction method is the
same as ordinary NFA version except its accepting
states. Note that the left part of the equation represents
a set of NFA’s states and the right part represents one
of DFA’s states. Thus,

the above predicate

⇔ δ̂′({q0}, x) ∩ Fi � ∅, i ∈ I,

δ̂′({q0}, x) ∩ F j = ∅, j � I
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⇔ δ̂′({q0}, x) ∈ F′I
⇔ x ∈ LI(M′).

(2) Supposing x ∈ LI(M′) ∩ LJ(M′), I � J to the contrary,
we have δ̂′({q0}, x) ∈ F′I ∩ F′J , I � J, which contradicts⋃

FI =
∑

FI . Therefore,
⋃

LI(M′) =
∑

LI(M′).

x ∈ L(M′)
⇔ ∃I ⊆ {1, . . . , k}, I � ∅[x ∈ LI(M′)]
⇔ x � L∅(M′)
⇔ δ̂′({q0}, x) � F′∅

⇔ ∀ j ∈ {1, . . . , k}[δ̂′({q0}, x) ∩ F j = ∅]
⇔ ∃ j ∈ {1, . . . , k}[δ̂′({q0}, x) ∩ F j � ∅]
⇔ ∃ j ∈ {1, . . . , k}[x ∈ Lj(M)]

⇔ x ∈ L(M),

where P denotes the negation of predicate P.

(3) From the part (1) of this Theorem,

L(M) is unmixed

⇔ Li(M) ∩ Lj(M) = ∅ for any i, j, i � j

⇔ L{i}(M′) = Li(M) − ∪ j�iL j(M)

= Li(M) − ∪ j�i(Li(M) ∩ Lj(M))

= Li(M) for any i.

For the last equivalence,

L(M) is mixed

⇔ ∃x ∈ Σ∗[|I(x)| ≥ 2]

⇔ ∃x ∈ Σ∗∃I ⊆ {1, . . . , k}, |I| ≥ 2

[δ̂(q0, x) ∩ Fi � ∅, i ∈ I, δ̂(q0, x)∩
F j = ∅, j � I]

⇔ ∃x ∈ Σ∗∃I ⊆ {1, . . . , k},
|I| ≥ 2[δ̂′({q0}, x) ∈ F′I]

⇔ ∃I ⊆ {1, . . . , k},
|I| ≥ 2∃x ∈ Σ∗[δ̂′({q0}, x) ∈ F′I].

Thus,

L(M) is unmixed

⇔ ∀I ⊆ {1, . . . , k}, |I| ≥ 2,

∀x ∈ Σ∗[δ̂′({q0}, x) � F′I]
⇔ any accepting state of M′ reachable from

the initial state {q0} belongs to F′I such that

|I| ≤ 1.

⇔ F′[{q0}] ⊆ Σk
i=1F′{i} ⊆ ΣI⊆{1,...,k},I�∅F′I .

�
Note that in addition to the exponential blow-up of the size
of states, the number of colors of M′ could blow up expo-
nentially too, i.e., from k to 2k − 1.

Example 4: Figure 5 shows the DCFA M1 converted from

Fig. 5 DCFA M1 constructed from NCFA M0.

NCFA M0 by using subset construction method for NCFA,
where

M1 = (Q,Σ, δ, q0,ΣI⊆{RGB},I�∅F′I),
Q = {A, BR,CG,DR, EGB, FB,G,HG, I, JR,K},
Σ = {0, 1},
q0 = A,

ΣF′I = F′{R} + F′{G} + F′{B} + F′{GB}, F
′
{R} = {BR,DR, JR},

F′{G} = {CG,HG}, F′{B} = {FB}, F′{GB} = {EGB}.
Note that M1 has four different colors, increased by one
combination color GB from the original three colors R, G,
and B of M0. �

As the final remark of this section, we refer the re-
lationship of colored finite automata to other formalisms.
In [17], the authors introduced the same concept of un-
mixedness, so-called semi-coherency. Their treatment of
semi-coherent finite automata is different from ours in the
following sense: (1) Output color of each accepting state
of deterministic finite automaton converted by subset con-
struction from nondeterministic finite automaton is defined
only if it is semi-coherent (otherwise it is undefined). Note
that the resulting DCFA converted by our naive subset con-
struction reflects the mixedness of the original NCFA liter-
ally. (2) Coherency of nondeterministic finite automaton can
be checked only after the conversion to deterministic one,
which consumes exponential time in the worst case, sharply
contrasted with our polynomial time algorithm shown in
Sect. 5.

Unmixedness is a prerequisite of self-verifying finite
automata [24], which cannot enter a Yes-colored accepting
state and a No-colored (rejecting) state simultaneously. A
measure to avoid the mixedness situation is to give a certain
order structure to the set of colors, such as a lattice [25],
semi-ring [26], [27], etc. and automatically select a unique
color of highest priority among accepting colors.

Our approach is to admit the mixedness of colors and
the multi-dimensionality of languages but wish to decrease
them as much as possible.
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4. Equivalence of DBk,n and State-Minimized and Col-
ored Finite Automaton Dk,n

In this section, we show that the graph structure of a certain
deterministic colored finite automaton is isomorphic to k-
ary de Bruijn graph of n-dimensional DBk,n.

Define

Nk,n = (Q, {0, 1, . . . , k − 1}, δ, r0,

k−1∑
i=1

Fi),

where

Q = {r0, r11, . . . , r1n, · · · , r(k−1)1, . . . , r(k−1)n},
δ(r0, 0) = {r0},
δ(r0, a) = {r0, ra1} for each a ∈ {0, 1, . . . , k − 1},
δ(ri j, a) = {ri j+1} for each i = 1, . . . , k − 1,

a ∈ {0, 1, . . . , k − 1},
Fi = {rin} for each i = 1, . . . , k − 1.

Figure 6 illustrates the transition diagram of general Nk,n. It
is clear that Nk,n is unmixed and

L(Nk,n) = {x ∈ {0, 1, . . . , k − 1}∗ | the nth symbol

from the end of x is either 1, . . . , or k − 1}
= (0 + 1 + · · · + k − 1)∗(1 + · · · + k − 1)

(0 + 1 + · · · + k − 1)n−1

=

k−1∑
i=1

Li(Nk,n),

where

Li(Nk,n) = {x ∈ {0, 1, . . . , k − 1} | the nth symbol

from the end of x is i}
= (0 + 1 + · · · + k − 1)∗i

(0 + 1 + · · · + k − 1)n−1,

for each i = 1, . . . , k − 1. In the following, we abbreviate

Lk,n
�
= L(Nk,n) and L(i)

k,n
�
= Li(Nk,n)

for each i = 1, . . . , k − 1.

Fig. 6 NCFA Nk,n accepting Lk,n.

Theorem 2: DCFA Dk,n constructed from Nk,n by using
subset construction method for NCFA isomorphic to DBk,n

for any k ≥ 2, n ≥ 1 .

(Proof) In the following, we denote

B(k) = {0, 11, 12, . . . , 1k−1},
where

0 = [
←k−1→
00 · · · 0]T , 1i =

← i−1 →
[0 · · · 0

← k−i →
100 · · · 0]T , i = 1, . . . , k−1.

Applying the NCFA version of subset construction
method to Nk,n, we get the following DCFA Dk,n.

Dk,n = (Q′, {0, 1, . . . , k − 1}, δ′, q′0,
k−1∑
i=1

F′{i}),

where

Q′ = {[1x1 · · · xn] | x j ∈ B(k), j = 1, . . . , n},
q′0 = [10 · · · 0],

F′{i} = {[1x1 · · · xn−11i] | x j ∈ B(k),

j = 1, . . . , n − 1}.
For each b1, . . . ,bn ∈ B(k), a ∈ {0, 1, . . . , k − 1},
δ′([1b1 · · · bn], a)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[10b1 · · · bn−1], if a = 0,
[111b1 · · ·bn−1], if a = 1,

...
[11k−1b1 · · ·bn−1], if a = k − 1,

where [1b1 · · ·bn] denotes 0-1 sequence (characteris-
tic function) which represents a subset of Q =

{r0, r11, . . . , r(k−1)1, . . . , r1n, . . . , r(k−1)n}.
Note that the state transition of Dk,n corresponds to k−1

vertically connected n-stage shift registers whose input is
k − 1 bits unary expression of symbol 0, 1, · · · , or k − 1.

The above derivation is clearly seen by the following
claim.

Claim 1: At the j-step of subset construction method
based on the breadth-first search, which begins to search
from the initial state and searches states with smaller dis-
tances from the initial state earlier than longer ones, the state
vector is expressed with

[1b1 · · · b j0 · · · 0], j = 0, 1, . . . , n.

(Proof) The initial state q′0 = {q0} = [10 · · · 0] is obvi-
ous. If the state set vector of M′ generated in the j-step
is [1b1 · · ·b j0 · · · 0], then from

δ′([1b1 · · · b j0 · · · 0], a)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[10b1 · · · b j0 · · · 0], if a = 0,
[111b1 · · ·b j0 · · · 0], if a = 1,

...
[11k−1b1 · · ·b j0 · · · 0], if a = k − 1,
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for each a ∈ {0, 1, . . . , k − 1}, the vector of ( j + 1)-step is
expressed with [1b′1b′2 · · · b′j+10 · · · 0], where b′1 ∈ B(k),b′2 =
b1, . . . ,b′j+1 = b j. Especially, when j = n, it is expressed
with [1b1b2 · · · bn]. �

(The proof of Theorem 2 continued) By the left / right
inversion of b1 · · · bn and omission of the left most 1, we
can rewrite the description of Dk,n to the following,

Q′ = {[xn · · · x1 | x j ∈ B(k), j = 1, . . . , n},
q′0 = [0 · · · 0],

F′{i} = {[1ixn−1 · · · x1] | x j ∈ B(k), j = 1, . . . , n − 1},

δ′([bn · · ·b1], a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[bn−1 · · ·b10], if a = 0,
[bn−1 · · ·b111], if a = 1,

...
[bn−1 · · ·b11k−1], if a = k − 1.

Furthermore, regarding vertical vectors 0, 11, 12, . . . , and
1k−1 as 0, 1, 2, . . . , and k − 1 in k-ary numeral, respectively,
we can rewrite the description of Dk,n to the following.

Q′ = {[xn · · · x1]k | 0 ≤ x j < k, j = 1, . . . , n}
= {q0, . . . , qkn−1},

q′0 = q0 = [0 · · · 0]k.

For each i = 1, . . . , k − 1,

F′{i} = {[ixn−1 · · · x1]k | 0 ≤ x j < k, j = 1, · · · , n − 1}
= {qikn−1 , · · · , q(i+1)kn−1−1}.

For each i = 0, . . . , kn − 1, a ∈ {0, 1, . . . , k − 1},

δ′(qi, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

qki mod kn , if a = 0,
q(ki+1) mod kn , if a = 1,

...
q(ki+k−1) mod kn , if a = k − 1.

The above description of Dk,n is identical to the description
of DBk,n in Definition 2:
{

V = {0, 1, . . . , kn − 1},
E = {(x, (kx + i) mod kn) | x ∈ V, i = 0, . . . , k − 1}.

�
Figure 7 shows the transition diagrams of D3,2.

Note that the number of states of nondeterministic fi-
nite automaton Nk,n increases from |Q| = (k − 1)n + 1 to
|Q′| = kn of deterministic finite automaton Dk,n and the num-
ber of states of the product automaton of k − 1 noncolored
DFAs D2,n’s is (2n)k−1 = 2(k−1)n, which is an exponential
function concerning k.

The following fact shows that the set of states of DCFA
Dk,n constructed by subset construction method cannot be
reduced any more.

Fact 3: Any DCFA which color-distinctly accepts the dis-
tinctly colored language Lk,n =

∑k
i=1 L(i)

k,n requires more than
or equal to kn states, where for each i = 1, . . . , k − 1,

Fig. 7 DFA D3,2 accepting L3,2.

L(i)
k,n = {x ∈ {0, 1, · · · , k − 1}∗ | the nth symbol of x from its

right end is i }.
(Proof) The proof is a straightforward extension of binary
case [13] to k-ary one. Suppose to the contrary that there
is a DCFA M color-distinctly accepting Lk,n whose number
of states is less than kn. Then, for two different strings of
length n

x = a1a2 · · · an, y = b1b2 · · · bn,

M will get into the same state, say q just after reading the
right end symbols of them, because the number of different
strings of length n over {0, 1, . . . , k − 1} is kn. Without loss
of generality, for some i = 1, . . . , n, it holds that

(1) ai = 0, bi = j, j � 0,

or

(2) ai = j1, bi = j2, j1 � j2, j1 � 0, j2 � 0.

Now, let

x′ = x0i−1, y′ = y0i−1.

Since M is deterministic, it will get into the same state, say
q′ for both x′ and y′. In the case of (1), from

x′ � Lk,n, y′ ∈ Lk,n,

M must get into a non-accepting state for x′ and gets into an
accepting state of some color for y′. In the case of (2), from

x′ ∈ L( j1)
k,n , y′ ∈ L( j2)

k,n , j1 � j2,

M must get into accepting states of different colors for x′
and y′. Both cases of (1) and (2) contradict the assumption.
�

Fortunately, the colored finite automaton Nk,n defined
in the beginning of Sect. 4 was unmixed. On the other hands,
M0 arbitrarily made in Example 1 was mixed as shown in



498
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.3 MARCH 2022

Example 3. In Sect. 6, we consider the designing problems
of unmixed NCFAs.

In order to claim that Theorem 2 is a language char-
acterization of de Bruijn graph, we need a more rigid con-
nection between automata and languages. That is, all state-
minimized colored deterministic finite automata accepting
a certain distinctly colored language are isomorphic. This
uniqueness of state minimized DCFA can be proved in the
same way as the case of noncolored ordinary DFA and is
shown in Appendix.

5. Complexity Problems Concerning NCFA

In this section, we investigate computational complexi-
ties [19], [28], [29] of some decision problems concerning
the unmixedness of nondeterministic colored finite automa-
ton NCFA.

Definition 5: Unmixedness verification problem of nonde-
terministic colored finite automaton (abbreviated UV) is de-
fined as follows.

{
Instance : An NCFA M = (Q,Σ, δ, q0,

∑k
i=1 Fi),

Question :
⋃k

i=1 Li(M) =
∑k

i=1 Li(M)?

Theorem 3: The problem UV can be computed in polyno-
mial time.

(Proof) We first show that under logarithmic cost criterion
the complement UV of the problem is in the nondeterminis-
tic logarithmic space complexity class NLOG. Note that

〈M〉 ∈ UV

⇔ ∪k
i=1Li(M) � Σk

i=1Li(M)

⇔ Li1 (M) ∩ Li2 (M) � ∅ for some i1 � i2
⇔ x ∈ Li1 (M), x ∈ Li2 (M) for some x ∈ Σ∗, i1 � i2
⇔ q f1 , q f2 ∈ δ̂(q0, x) for some

q f1 ∈ Fi1 , q f2 ∈ Fi2 , x ∈ Σ∗, i1 � i2,

where 〈M〉 denotes an appropriate coding of NCFA M.
Given 〈M〉 of M, a log space-bounded Turing machine M′
places two markers at the initial state q0. Then, while guess-
ing an input string x ∈ Σ∗, M′ nondeterministically selects
two adjacent states in accordance with the transition func-
tion δ and moves both markers to these next states. When M
finishes reading x, M′ enters an accepting state only if the
states q1 and q2 where the two markers are placed satisfies

q1 ∈ Fi1 , q2 ∈ Fi2 , i1 � i2.

From

UV ∈ NLOG,

we have

UV ∈ co−NLOG ⊆ co−P = P.

Next, we investigate under uniform cost criterion

Fig. 8 The direct product automaton M′0 of M0.

the practical complexity of UV problem. It is obvi-
ous that an instance of UV problem for an NCFA M =

(Q,Σ, δ, q0,
∑k

i=1 Fi) is equivalent to the instance of empti-
ness problem whether or not L(M′) = ∅ for the direct prod-
uct automaton M′ = (Q × Q,Σ, δ′, (q0, q0), F′) of M itself,
where

δ′((p, q), a)

= δ(p, a) × δ(q, a) for each (p, q) ∈ Q × Q, a ∈ Σ,
F′ = {(p, q) ∈ Q × Q | p ∈ Fi1 , q ∈ Fi2 , i1 � i2,

i1, i2 ∈ {1, 2, . . . , k}}.
Clearly, any instance of UV problem of size N can be

deterministically transformed to the instance of the empti-
ness problem of size O(N2). The emptiness question of M′
is to test whether no accepting state in F′ can be reached
from the initial state (q0, q0). This task can be done by using
ordinary linear-time graph search algorithm. �

Example 5: Figure 8 shows the state transition diagram of
the direct product automaton M′0 of M0 defined in Example
1. �

Corollary 1: The problem UV is NLOG-complete.

(Proof) It is known [28], [29] that NLOG is closed under
complementation. From this and the first part of the proof
of Theorem 4, we have

UV = UV ∈ co−NLOG = NLOG.

We next show that UV is NLOG-hard. We can point out
that any NFA emptiness problem instance L(M) = ∅? is re-
ducible to a UV problem instance 〈M′〉 as follows. Without
loss of generality, we assume that M has one and only one
accepting state q f . The only difference of M′ from M is that
q f is changed to a non-accepting state qn and two different
colored accepting states q f1 and q f2 are added both directly
reachable from qn by reading the same input symbol, say
a ∈ Σ. In short,

L(M) � ∅ ⇔ ∃x ∈ Σ∗[x ∈ L(M)]

⇔ ∃x ∈ Σ∗[q f ∈ δ(q0, x)]

⇔ ∃x ∈ Σ∗[q f1 , q f2 ∈ δ′(q′0, xa)]

⇔ ∃x ∈ Σ∗[|I(xa)| = 2]

⇔ M′ is mixed

⇔ 〈M′〉 ∈ UV,
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where q0, q′0 are the initial states of M,M′, respectively.
It is clear that the above modification of M to M′ can be

done by a deterministic logarithmic space-bounded Turing
machine. That is,

∀P ∈ NLOG[P ≤log UV]

⇔ ∀P ∈ co−NLOG = NLOG[P ≤log UV = UV]. �

Next, we investigate the potential capability of nonde-
terministic finite automata to be multi-colored and unmixed
accepting machines.

Definition 6: Unmixed partitioning problem of nondeter-
ministic finite automaton (abbreviated UP) is defined as fol-
lows.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Instance : An NFA M = (Q,Σ, δ, q0, F) and
an integer k ≥ 2,

Question : Is there an unmixed NCFA N = (Q,Σ, δ,
q0,
∑k

i=1 Fi) such that F =
∑k

i=1 Fi ?

Fact 4: An NCFA M = (Q,Σ, δ, q0,
∑k

i=1 Fi) is mixed

⇔ ∃i, j[Li(M) ∩ Lj(M) � ∅]
⇔ ∃i, j, x[x ∈ Li(M) ∩ Lj(M)]

⇔ ∃i, j, x[δ̂(q0, x) ∩ Fi � ∅, δ̂(q0, x) ∩ F j � ∅]
⇔ ∃i, j, x, p, q[p ∈ Fi, q ∈ F j, p, q ∈ δ̂(q0, x)].

Definition 7: Let M = (Q,Σ, δ, q0,
∑k

i=1 Fi) be an NCFA.
The undirected graph G = (V, E) obtained from the direct
product automaton M′ of M in the proof of Theorem 3 such
that ⎧⎪⎪⎪⎨⎪⎪⎪⎩

V=Q
E={(p, q) ∈ Q × Q | ∃x ∈ Σ∗[(p, q) ∈ δ̂′((q0, q0), x)]}
={(p, q) ∈ Q × Q | ∃x ∈ Σ∗[p, q ∈ δ̂(q0, x)]}

is called simultaneously reachable graph of M and denoted
Gsr(M).

Note that if M is deterministic, there is no edge in Gsr(M).
Simultaneously reachable graph of NFA will play crucial
role in the following discussion. Obviously, the following
holds.

Proposition 3: An NCFA M is mixed ⇔ there exist
(p, q) ∈ E of Gsr(M) such that p ∈ Fi, q ∈ F j, for some
i� j.

Example 6: Figure 9 shows the simultaneously reachable
graph Gsr(M0) of M0 defined in Example 1. There exists an
edge (3G, 5B) in the graph, where 3G ∈ FG, 5B ∈ FB, which
means that M0 is mixed. �

Lemma 1: An instance (M, k) of the UP problem is true if
and only if the induced subgraph Gsr(M)[F] of Gsr(M) from
the vertex subset F of Q, where F is the set of accepting
states of M, has k or more connected components.

(Proof) If Gsr(M)[F] has k or more connected components,

Fig. 9 The simultaneously reachable graph Gsr(M0) of M0.

then we can color the states of some k components among
them with each different color. This never cause color col-
lisions because two states in different components are never
reached simultaneously from the initial state of M.

Conversely, if Gsr[F](M) has less than k connected
components, we cannot color them with k colors because
we must color the all states of any component with the same
color to avoid color collisions. �

Example 7: Let M
′′
0 = (Q,Σ, δ, q0, F) be an ordinary NFA

modified from M0 in Example 3, where Q = {0, 1, 2, 3, 4, 5}
and F = {1, 3, 5}. As seen in Fig. 9, the UP instance (M

′′
0 , 3)

is false since Gsr(M
′′
0 )[F] has just two connected compo-

nents. �

Theorem 4: The problem UP can be computed in polyno-
mial time.

(Proof) As shown in the proof of Theorem 3, direct product
automaton of an NCFA M can be constructed in polynomial
time. By using a linear search of this automaton, we can get
the simultaneously reachable graph Gsr(M) and the induced
graph Gsr(M)[F]. Connected components enumeration that
adopts Lemma 1 can be done with an ordinary graph search
algorithm in linear time. �

Next, we consider the problem whether we can select k
unmixed state sets F1, . . . , Fk from nonaccepting states of M
other than the original accepting states set F0. In this case,
these k additional colors no more mean accepting situations
but give us supplemental (e.g., error-related) informations
of input when it halts in nonaccepting states.

Definition 8: Unmixed extension problem of nondeter-
ministic finite automaton (abbreviated UE) is defined as fol-
lows.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Instance : An NFA M = (Q,Σ, δ, q0, F0) and
an integer k ≥ 1,

Question : Is there an unmixed NCFA N = (Q,Σ, δ,
q0,
∑k

i=0 Fi) ?

Definition 9: For a graph G = (V, E), if ∀u, v ∈ I[(u, v) �
E], then I ⊆ V is called an independent set of G [8], [30],
[31].

Definition 10: Independent set problem of undirected
graph (abbreviated IS) is defined as follows.{

Instance : A graph G and an integer k ≥ 2,
Question : Is there an independent set of size k in G ?
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Lemma 2: An instance (M, k) of the UE problem is true if
and only if the instance (Gsr(M)[F0 ∪ N(F0)], k) of the IS
problem is true, where Gsr(M)[F0 ∪ N(F0)] is the induced
subgraph of Gsr(M) from the complement set Q − (F0 ∪
N(F0)) of the union of F0 and its neighborhood vertex set
N(F0) in Gsr(M).

(Proof) Suppose the simultaneously reachable graph of M
which the vertices of F0 and their neighboring vertices
N(F0) have been removed from the original Gsr(M) has k
independent vertices, which means that they are not direct
neighbors with each other and also with the vertices in F0.
Thus, without color collisions we can color these k states
with k different colors and the states in F0 with one other
color.

Conversely, when we select sets F1+· · ·+Fk besides F0

from the vertices of Gsr(M), any p ∈ Fi and any q ∈ F j must
not be neighbors for i � j. Thus, Gsr(M) which F0 vertices
and their neighbors are removed must have an independent
set consisting of at least k elements. �

Theorem 5: The problem UE is NP-complete.

(Proof) We first show the NP-hardness of the problem by
reducing the problem IS to this problem in polynomial time.

Let (G, k) be an instance of IS, where G =

({v1, · · · , vn}, E). We transform (G, k) to an instance (M, k +
1) of UE, where M = ({p0, q1, · · · , qn},Σ, δ, p0, ∅), Σ =
{a1, · · · , an} ∪ {ai j | (i, j) ∈ IE}, IE

�
= {(i, j) | (vi, v j) ∈ E},

δ(p0, ai) = {qi}, i = 1, . . . , n, and δ(p0, ai j) = {qi, q j}, (i, j) ∈
IE .

It is clear that Gsr(M) is the G added with the one iso-
lated vertex which corresponds to the initial state p0 of M
and the size of input alphabet of M is bounded by O(|G|),
where |G| is the size of G.

The nondeterministic polynomial-time solvability of
UE follows from Lemma 2. �

It will be a future work to make the input alphabet of
resulting NCFA of this polynomial reduction to be constant
size, such as {0, 1}.
Example 8: Figure 10 shows an example of the transfor-
mation from a graph G which has an independent set of size
2 to its corresponding NFA M. Note that the simultaneously
reachable graph Gsr(M) of M is the same as G except that

Fig. 10 The transformed NFA from a graph G.

the initial state vertex is added. �

6. Conclusion

In this paper, we first showed that general de Bruijn graph
DBk,n is isomorphic to the minimum state deterministic col-
ored finite automaton which accepts the colored language∑k−1

i=1 L(i)
k,n, where L(i)

k,n is the regular language of strings over
{0, 1, . . . , k − 1} whose ith symbols from the right ends are
all i’s.

We next investigated computational complexity prob-
lems concerning nondeterministic colored finite automata
and showed some problems are solvable in polynomial time
and another one is NP-complete. Simultaneously reachable
graph introduced in this paper is inherent in any nondeter-
ministic automaton not only in colored finite one and seems
interesting in its own right to be investigated.

Of course, colored versions of conventional concepts
such as regular expression or push-down automata remain
to be investigated.
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Appendix: Uniqueness of State Minimized DCFA

Here we give the proof of the uniqueness of deterministic
colored finite automaton whose number of states is mini-
mized.

Definition 11: Let M = (Q,Σ, δ, q0,
∑k

i=1 Fi) be a DCFA.
For any i = 1, · · · , k, q ∈ Q, define

Li(q)
�
= {x ∈ Σ∗ | δ̂(q, x) ∈ Fi},

i.e., the accepted language with ith color by M whose initial
state is q instead of the originally given q0.

Definition 12: Let M = (Q,Σ, δ, q0,
∑k

i=1 Fi) be a DCFA.
For any p, q ∈ Q, define

p ≡ q⇔ Li(p) = Li(q) for each i = 1, . . . , k,

and say p and q are equivalent (or indistinguishable).

Fact 5: For a DCFA M = (Q,Σ, δ, q0,
∑k

i=1 Fi),

p ≡ q⇔ (L1(p), L2(p), . . . , Lk(p)) =

(L1(q), L2(q), . . . , Lk(q))

⇔ (L0(p), L1(p), . . . , Lk(p)) =

(L0(q), L1(q), . . . , Lk(q)),

where L0(q)
�
= Σ∗ − ∑k

i=1 Li(M). Therefore, from∑k
i=0 Li(q) = Σ∗,

p � q⇔ Li(p) � Li(q), for some i = 0, 1, · · · , k
⇔ Li1 (p) � Li1 (q) and Li2 (p) � Li2 (q),

for some i1 � i2.

�

In the following discussion, we use a natural extension of
linear equation to represent NFA [20], [32].

Definition 13: Let M = (Q,Σ, δ, q0,
∑k

i=1 Fi) be a DCFA.
For any q ∈ Q, define the equation of state q:

q = a1q1 + a2q2 + · · · + aKqK [+ εi],

where δ(q, a j) = q j, j = 1, · · · ,K,K = |Σ| and the right most
term εi, i = 1, . . . , k is added if and only if q ∈ Fi.

Fact 6: Let M = (Q,Σ, δ, q0,
∑k

i=1) be a DCFA. The equa-
tion of q ∈ Q

q = a1q1 + a2q2 + · · · + aKqK + εi

is equivalent to the language equation

Lj(q) = a1Lj(q1) + a2Lj(q2) + · · · + aK Lj(qK),

for j = 1, . . . , k, j � i and

Li(q) = a1Li(q1) + a2Li(q2) + · · · + aK Li(qK) + ε.

Theorem 6: (Uniqueness of minimum states DCFA)
Given a distinctly colored language

∑
Li, the transition di-

agram of any minimum state DCFA which color-distinctly
accepts

∑
Li is isomorphic up to change of names, i.e., there

exists a bijection between each pair of states of such two
DCFAs.

(Proof) Suppose DCFAs M = (Q,Σ, δ, q0,
∑k

i=1 Fi) and
M′ = (Q′,Σ, δ′, p0,

∑k
i=1 F′i ) both accept

∑k
i=1 Li. From

L(M) = L(M′), it follows that Li(q0) = Li(p0) for each
i = 1, . . . , k, thus, q0 ≡ p0. Let the equations of q0 and
p0 be
{

q0 = a1q1 + a2q2 + · · · + aKqK [+ ε]
p0 = a1 p1 + a2 p2 + · · · + aK pK [+ ε],

which are equivalent to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Li(q0) = a1Li(q1) + · · · + aK Li(qK) [+ ε],
i = 1, . . . ,K

Li(p0) = a1Li(p1) + · · · + aK Li(pK) [+ ε],
i = 1, . . . ,K
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⇔ Li(q j) = Li(p j) for each i = 1, . . . , k, j = 1, . . . ,K

⇔ q j ≡ p j for each j = 1, . . . ,K.

In the same way, from the equations of qj and p j, we get
the next equivalences between some states of M and M′.
Continuing this process, we can finally conclude that any
q ∈ Q reachable from q0 ∈ Q is equivalent to some p ∈ Q′
reachable from p0 ∈ Q′ and vice versa.

On the other hand, if there exist q1, q2 ∈ Q, p ∈
Q′, q1 � q2 such that q1 ≡ p, q2 ≡ p, then we have q1 ≡ q2,
which implies M is not minimum state DCFA. Thus, there
must be no such state and the correspondence between Q
and Q′ must be one-to-one. �
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