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PAPER Special Section on Formal Approaches

Finite-Horizon Optimal Spatio-Temporal Pattern Control under
Spatio-Temporal Logic Specifications

Takuma KINUGAWA†, Nonmember and Toshimitsu USHIO†a), Fellow

SUMMARY In spatially distributed systems such as smart buildings
and intelligent transportation systems, control of spatio-temporal patterns
is an important issue. In this paper, we consider a finite-horizon optimal
spatio-temporal pattern control problem where the pattern is specified by a
signal spatio-temporal logic formula over finite traces, which will be called
an SSTL f formula. We give the syntax and Boolean semantics of SSTL f .
Then, we show linear encodings of the temporal and spatial operators used
in SSTL f and we convert the problem into a mixed integer programming
problem. We illustrate the effectiveness of this proposed approach through
an example of a heat system in a room.
key words: optimal control, spatio-temporal logic, spatially distributed
system

1. Introduction

Spatio-temporal logics can describe both spatial and tem-
poral properties formally [1] and have been studied for
spatially distributed systems in chemistry, biology, and
physics [2], [3]. With the recent IoT technologies and ICT,
the control of the spatially distributed systems has been paid
much attention to and spatio-temporal logics are used to
specify the properties of spatially distributed IoT and cyber-
physical systems [4]–[6].

Recently, many kinds of logics that specify spatio-
temporal properties have been proposed. Haghighi et al. [2]
introduced SpaTeL that is composed of the spatial com-
ponent based on Tree Spatial Superposition Logic [7] and
the temporal component based on Signal Temporal Logic
(STL) [8]. Nenzi et al. [9] proposed Signal Spatio-Temporal
Logic (SSTL) that integrates STL with the two spatial oper-
ators, called the somewhere operator and the bounded sur-
rounded operator. An SSTL formula is interpreted only on
a static graph. Bartocci et al. [6] proposed Spatio-Temporal
Reach and Escape Logic (STREL) that is an extension of
the STL with two spatial operators called the reach op-
erator and the escape operator. Li et al. [5] presented a
Spatio-Temporal Specification Language (STSL) by com-
bining STL with the spatial modal logic S 4u and considered
a falsification problem. Ma et al. [10] introduced Spatial ag-
gregation Signal Temporal Logic (SaSTL) which is suitable
to represent properties of aggregated data.

Formal approaches using temporal logics have been
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used not only for verification and monitoring problems but
also for control problems. Wolff et al. [11] proposed a con-
trol method of a nonlinear system with specifications de-
scribed by Linear Temporal Logic (LTL) formulas which
are encoded as mixed-integer linear constraints. Raman
et al. [12] presented a method to encode STL formulas into a
set of linear inequalities and convert a model predictive con-
trol problem with specifications described by STL formulas
into a mixed integer programming (MIP) problem. For the
controller synthesis of a multi-agent system, Sahin et al. [13]
introduced counting LTL to specify both individual and col-
lective behaviors of agents. Liu et al. [14] formulated a mo-
tion planning problem of a multi-robot system with the opti-
mization of the quality of service for communication among
the robots where the motion and communication constraints
are described by STL and STREL formulas, respectively.
Haghighi et al. [2] considered a parameter synthesis prob-
lem using SpaTeL and Bartocci et al. [15] considered both
a parameter synthesis problem and a pattern classification
problem. Penedo et al. [16] formulated a control problem
for systems modeled by partial differential equations under
control specifications described by STL formulas that are
constructed from predicates over spatio-temporal signals.

On the other hand, temporal logic specifications for
finite traces are often used in several engineering prob-
lems such as path planning [17]. Recently, Giacomo and
Vardi [18] proposed Linear Temporal Logic over finite
traces (LTL f ). He et al. [19] considered a reactive plan-
ning problem where tasks are described by LTL f formulas.
LTL f based synthesis is extended to probabilistic systems
and timed discrete event systems [20], [21].

In this paper, we consider a finite-horizon optimal
spatio-temporal pattern control problem of spatially dis-
tributed discrete-time systems where the specifications of
the patterns are described by Signal Spatio-Temporal Logic
over finite traces (SSTL f ). We convert the problem into
an MIP problem using linear encodings of the spatial and
the temporal operators. The rest of this paper is organized
as follows. In Sect. 2, we describe model of spatially dis-
tributed discrete-time systems. In Sect. 3, we give the syn-
tax and the semantics of SSTL f and formulate a finite hori-
zon optimal spatio-temporal pattern control problem under
SSTL f specifications. In Sect. 4, we introduce linear en-
codings of SSTL f formulas and convert the problem into an
MIP problem. In Sect. 5, as an example, we consider a tem-
perature control problem of a room under a spatio-temporal
constraints. In Sect. 6, we conclude the paper.
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2. Spatially Distributed Controlled System

Notation: For a set A, denoted by |A| is its cardinality.
We consider an N-dimensional Euclidean space di-

vided into a grid represented by an undirected graph G =
(L, E), where L is a set of locations, E ⊆ L × L is a set of
edges between adjacent locations with no direction.

For �, �′ ∈ L, a sequence σ = �0�1 . . . �Hσ−1�Hσ
of lo-

cations is called a path from � to �′, where Hσ is a non-
negative integer, if �0 = �, �Hσ

= �′, (� j, � j+1) ∈ E for
j ∈ {0, 1, . . . ,Hσ − 1}. Hσ is called the distance of the path
σ. We denote a set of all paths from � to �′ by Σ(�, �′).

Definition 1 (Shortest distance): For any � ∈ L, d(�, �) = 0
and, for any � and �′ ∈ L with � � �′, the shortest distance
d(�, �′) is defined as follows.

d(�, �′) � min
{
Hσ| σ ∈ Σ(�, �′)

}
.

Note that min ∅ = ∞. �

We denote the set of locations �′ whose distances from
� are between d1 and d2 by L�[d1,d2] = {�′| d1 ≤ d(�, �′) ≤ d2}.

Definition 2 (External boundary of A): Given a subset of
locations A ⊆ L, the external boundary of A is defined by

B+(A) � {�′ ∈ L| �′ � A ∧ ∃� ∈ A. (�′, �) ∈ E}. (1)

�

Note that B+({�}) = {�′| � � �′ ∧ (�′, �) ∈ E} represents
a set of adjacent locations of � ∈ L. We denote the state
of the location � ∈ L at the time t ∈ T by x(t, �) =
[x1(t, �), x2(t, �), . . . , xn(t, �)]T where T = {0, 1, . . . ,H} with
a finite horizon H ∈ N ∪ {0} is a set of time indices, and
xi(t, �) ∈ Di ⊆ R for each i ∈ {1, 2, . . . , n} is the i-th state.
Let D = D1 × D2 × . . . × Dn. Let L′ ⊆ L be a set of lo-
cations without control inputs. Then, we consider the fol-
lowing spatially distributed controlled discrete-time system
over the graph G.

⎧⎪⎪⎨⎪⎪⎩
x(t + 1, �) = g�

(
x(t, �), x(t, �1), . . . , x(t, �|B+({�})|),u(t, �)

)
,

x(t + 1, �′) = g�′
(
x (t, �′) , x(t, �′1), . . . , x(t, �′|B+({�′})|)

)
,

(2)

where � ∈ L \ L′, �′ ∈ L′,
{
�1, . . . , �|B+({�})|

}
= B+({�}),{

�′1, . . . , �
′
|B+({�′})|

}
= B+({�′}), u : T × L \ L′ → U is

an input function with a compact set U ⊆ Rnu , and g� :
D
|B+({�})|+1 × U → D and g�′ : D|B+({�′})|+1 → D are real-

valued continuos functions. Let SU be the set of all input
functions.

The function x : T× L→ D is called a spatio-temporal
trace or simply a trace over the system (2) if it satisfies (2)
for some input function u : T × L \ L′ → U.

3. Finite-Horizon Optimal Control

3.1 Spatio-Temporal Logic Specificaions

We consider optimal control under a spatio-temporal pat-
tern specification described by a spatio-tempral logic for-
mula. Since we deal with finite traces with real-valued sig-
nals, we leverage the same syntax of siganl spatio-temporal
logic (SSTL) defined in [9] and modifies its semantics and
call the modified logic SSTL f . Its syntax is defined over
a set of m atomic predicates M = {μ j(x1, . . . , xn)| j ∈
{1, . . . ,m}, μ j(x1, . . . , xn) ≡ ( f j(x1, . . . , xn) ≥ 0)} where
f j : D → R is a real-valued function. We introduce the
syntax and the Boolean semantics of SSTL f .

Definition 3 (Syntax of SSTL f ): An SSTL f formula is re-
cursively defined by the following grammar.

ϕ ::= True | μ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[t1,t2]ϕ2 | G[t1,t2]ϕ

| �[d1,d2]ϕ | ϕ1S[d1,d2]ϕ2,

where ϕ, ϕ1, and ϕ2 are SSTL f formulas, μ ∈ M, t1, t2 ∈ T
with t1 ≤ t2, and d1, d2 ∈ R≥0 with d1 ≤ d2. �

U[t1,t2] and G[t1,t2] are the temporal operators called the un-
til and the globally operator, respectively. Additionally, the
eventually operator, denoted by F[t1,t2], is given by F[t1,t2]ϕ =
TrueU[t1,t2]ϕ. Spatial operators in SSTL f are the somewhere
operator, denoted by �[d1,d2], and the bounded surrounded
operator, denoted by S[d1,d2]. The everywhere operator, de-
noted by [d1,d2], is given by [d1,d2]ϕ = ¬(�[d1,d2]¬ϕ).

Intuitively, �[d1,d2]ϕ is satisfied if and only if at least
one location whose shortest distance from � is between d1

and d2 satisfies ϕ at the time t, and ϕ1S[d1,d2]ϕ2 is satisfied if
and only if there is a set A (⊆ L�[0,d2]) including � such that
all locations in A satisfy ϕ1 and all locations in B+(A) (⊆
L�[d1,d2]) satisfy ϕ2. Then, the semantics of SSTL f is defined

as follows.

Definition 4 (Boolean semantics): Given a finite spatio-
temporal trace x, the satisfaction of an SSTL f formula φ
at the time t ∈ T and the location �, denoted by (x, t, �) |= φ,
is defined recursively as follows.

(x, t, �) |= μ j ⇔
(

f j(x1, . . . , xn) ≥ 0
)

(x, t, �) |= ¬ϕ ⇔ (x, t, �) �|= ϕ
(x, t, �) |= ϕ1 ∧ ϕ2 ⇔ (x, t, �) |= ϕ1 ∧ (x, t, �) |= ϕ2

(x, t, �) |= ϕ1U[t1,t2]ϕ2

⇔ t + t1 ≤ H

∧ (∃t′ ∈ {t + t1, . . . ,min{t + t2,H}}. (x, t′, �) |= ϕ2)

∧ (∀t′′ ∈ {t, . . . , t′ − 1}. (x, t′′, �) |= ϕ1)

(x, t, �) |= G[t1,t2]ϕ

⇔ t + t2 ≤ H

∧ (∀t′ ∈ {t + t1, . . . , t + t2}. (x, t′, �) |= ϕ)

(x, t, �) |= �[d1,d2]ϕ
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⇔ ∃�′ ∈ L. (d1 ≤ d(�, �′) ≤ d2) ∧ (x, t, �′) |= ϕ
(x, t, �) |= ϕ1S[d1,d2]ϕ2

⇔ ∃A ⊆ L�[0,d2]. � ∈ A ∧ (∀�′ ∈ A. (x, t, �′) |= ϕ1)

∧ B+(A) ⊆ L�[d1,d2] ∧ (∀�′′ ∈ B+(A). (x, t, �′′) |= ϕ2).

�

By the above definition, it is noted that (x,H, �) |=
ϕ1U[0,t2]ϕ2 if and only if (x,H, �) |= ϕ2. A spatio-temporal
trace x satisfies ϕ at the location �, denoted by (x, �) |= ϕ, if
and only if (x, 0, �) |= ϕ.

3.2 Problem Formulation

In this paper, we consider the following finite horizon opti-
mal spatio-temporal pattern control problem.

Problem 1: Given an undirected graph G = (V, L) with a
set L′ of locations without control inputs, a finite horizon
H, a spatially distributed controlled discrete-time system (2)
over G with the initial state x� ∈ D for each � ∈ L, an SSTL f

formula φ� for each � ∈ L, and immediate cost functions J :
D×U→ R and J′ : D→ R, find a control input u ∈ SU that
minimizes the following accumulated cost function subject
to (x, �) |= φ� and x(0, �) = x� for each � ∈ L, and (2).

H−1∑
t=0

⎛⎜⎜⎜⎜⎜⎜⎝
∑
�∈L\L′

J(x(t + 1, �),u(t, �)) +
∑
�∈L′

J′(x(t + 1, �′))

⎞⎟⎟⎟⎟⎟⎟⎠ .
(3)

We assume that the functions J and J′ are continuous.

In the next section, we will introduce linear encodings
of the temporal and spatial operators and convert Problem 1
into a mixed integer programming (MIP) problem.

4. Conversion Into an MIP Problem

We consider an undirected graph G = (L, E) where L =
{�1, . . . , �|L|}. We introduce |L| binary vectors v�i ∈ {0, 1}|L|
for �i ∈ L, where v�i,i = 1 (the i-th component of v�i is 1) and
v�i, j = 0 for i � j. Denoted by D ∈ R|L|×|L| is the distance
matrix whose (i, j)-th element Di, j is given by

Di, j =

⎧⎪⎪⎨⎪⎪⎩
d(�i, � j) if Σ(�i, � j) � ∅,
Md otherwise,

where Md is a sufficiently large positive number that satis-
fies Md > max{d(�i, � j)| �i, � j ∈ L,Σ(�i, � j) � ∅}. To encode
an SSTL f formula, we introduce the following binary vari-
able zϕ(t, �) for each t ∈ T and each � ∈ L, where ϕ is an
SSTL f formula. For a given spatio-temporal trace x,

zϕ(t, �) =

⎧⎪⎪⎨⎪⎪⎩
1 if(x, t, �) |= ϕ,
0 otherwise.

We describe a method of linear encodings of atomic

predicates, the Boolean operators, and the temporal opera-
tors, which is a slight modification of the method proposed
in [12], [22]. Then, we introduce linear encodings of the
three spatial operators based on their semantics given by
Definition 4.

4.1 Boolean and Temporal Operators

Atomic predicate: Let ϕ = μ j(x1, . . . , xn). Then, the satis-
faction of ϕ is encoded as

f j(x(t, �)) ≤ Mμ j zϕ(t, �) − ε,
− f j(x(t, �)) ≤ Mμ j (1 − zϕ(t, �)),

where Mμ j is a sufficiently large positive number compared
with the maximum value of f j for j ∈ {1, . . . ,m} and ε is
a sufficiently small number that represents the tolerance of
satisfaction of atomic predicates.

Negation: Let ϕ = ¬ψ. Then,

zϕ(t, �) = 1 − zψ(t, �).

Conjunction: Let ϕ =
∧K

k=1 ψk. Then,

zϕ(t, �) ≤ zψk (t, �), ∀k ∈ [1, K],

zϕ(t, �) ≥ 1 − K +
K∑

k=1

zψk (t, �).

Disjunction: Let ϕ =
∨K

k=1 ψk. Then,

zϕ(t, �) ≥ zψk (t, �), ∀k ∈ [1, K],

zϕ(t, �) ≤
K∑

k=1

zψk (t, �).

With a slight abuse of notation, Boolean operators are used
for binary variables. For example, when we consider ϕ =∧K

k=1 ψk, we write zϕ =
∧K

k=1 zψk . Then, we describe linear
encodings of the temporal operators for finite traces over T.

Globally: Let ϕ = G[t1,t2]ψ with t1 ≤ t2. Then,

zϕ(t, �) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t+t2∧
k=t+t1

zψ(k, �), if t ∈ {0, . . . ,H − t2},
0 otherwise.

Eventually: Let ϕ = F[t1,t2]ψ with t1 ≤ t2. Then,

zϕ(t, �) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

bH
t∨

k=t+t1

zψ(k, �), if t ∈ {0, . . . ,H − t1},
0 otherwise.

where bH
t = min(t + t2,H).

Until: Let ϕ = ψ1U[t1,t2]ψ2 with t1 ≤ t2. Then, for each
t ∈ {0, . . . ,H − 1},

zϕ(t, �)
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=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

zψ1 (t, �) ∧ zψ1U[t1−1,t2−1]ψ2 (t + 1, �) if t1 ≥ 1,
(zψ1 (t, �) ∧ zψ1U[0,t2−1]ψ2 (t + 1, �))
∨zψ2 (t, �) if t1 = 0 ∧ t2 ≥ 1,

zψ2 (t, �) if t1 = t2 = 0,

and

zϕ(H, �) =

{
zψ2 (H, �) if t1 = 0,
0 otherwise.

4.2 Spatial Operators

We introduce linear encodings of the somewhere operator,
the everywhere operator, and the bounded surrounded oper-
ator.

Somewhere operator: Let ϕ = �[d1,d2]ψ. Then, the sat-
isfaction of ϕ is encoded as

zϕ(t, �) =
∨

�′: d1≤vT
�

Dv�′ ≤d2

zψ(t, �′). (4)

Everywhere operator: Let ϕ = [d1,d2]ψ. Then,

zϕ(t, �) =
∧

�′: d1≤vT
�

Dv�′ ≤d2

zψ(t, �′). (5)

Before we introduce the linear encoding of the bounded
surrounded operator, we define a binary variable zd1 (�, �′) ∈
{0, 1} for �, �′ ∈ L such that zd1 (�, �′) = 1 if and only if d1 ≤
d(�, �′). Then, the variable zd1 (�, �′) satisfies the following
equation.

d1 − Md ≤ vT
� Dv�′ − Mdzd1 (�, �′) ≤ d1 − εd,

where εd is a sufficiently small positive number that rep-
resents the tolerance of satisfaction of this predicate. This
encoding is inspired by the method proposed in [13]. Then,
we have the following linear encoding of the bounded sur-
rounded operator with the variables zd1 (�, �′).

Bounded surrounded operator: Let ϕ = ψ1S[d1,d2]ψ2.
Then, the satisfaction of ϕ is encoded as

zϕ(t, �) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∧

�′∈
(
B+({�})∩L�[0,d2]

)
\{�}

z̃ϕ(t, �, �′)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∧ zψ1 (t, �), (6)

where, for each �′ ∈ L�[0,d2] \ {�},

z̃ϕ(t, �, �′) =
(
zψ2 (t, �′) ∧ zd1 (�, �′)

)
∨⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∧

�′′∈
(
B+({�′})∩L�[0,d2]

)
\{�}

z̃ϕ(t, �, �′′)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∧ zψ1 (t, �′)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (7)

and for each �† ∈ L \ L�[0,d2],

z̃ϕ(t, �, �†) = 0. (8)

In (7), �′ can be in B+(A) if the first term zψ2 (t, �′)∧ zd1 (�, �′)
is true, and �′ can be in A if the second term is true.

4.3 Overall MIP Problem

Let LE(φ�) be the linear encoding of an SSTL f formula φ�
using the method described above. Then, we convert Prob-
lem 1 into the following MIP problem.

Problem 2: Find an input function u ∈ SU that minimizes
(3) subject to LE(φ�), zφ� (0, �) = 1, and x(0, �) = x� for each
� ∈ L, and (2).

5. Simulation

In this section, we demonstrate the effectiveness of the
proposed approach by simulation. We consider a room
with six heaters and two windows on a 2-dimensional Eu-
clidean space and control the temperature distribution of
the room with specifications described by SSTL f formu-
las. The room is divided into a 10 × 10 grid and is
modeled by an undirected graph G = (L, E) where L =
{�i, j| i, j ∈ {0, . . . , 9}} and (�i, j, �i′, j′ ) ∈ E if and only if �i, j

and �i′, j′ are adjacent locations horizontally or vertically. Let
Lh = {�0,0, �0,9, �4,6, �6,4, �9,0, �9,9} be a set of locations where
heaters are placed. The windows are placed at the left side
and the front side of the room except the corners of the room,
that is, the set of locations with a window is denoted by
Lw = {�0,1, �0,2, . . . , �0,8, �1,0, �2,0, . . . , �8,0}. Note that L\Lh

is a set of locations without control inputs and Lw ⊂ L\Lh.
Moreover, let L̄ = {�3,6, �4,7, �5,5, �5,6, �5,7, �6,3, �6,5, �7,4} be a
set of locations where there are persons. Shown in Fig. 1 is
the settings of the room in this simulation.

At the time t ∈ T and the location � ∈ L, let T (t, �) ∈ R
and u(t, �) ∈ R be a temperature and a control input, respec-
tively. Then, the distribution of the temperature is modeled
by the following equations for �h ∈ Lh, � ∈ L \ Lh, and t ∈ T.

T (t + 1,�h) = (1 − V · A�h )T (t, �h) + Vu(t, �h)

Fig. 1 Grid model of the room. The left-top location is �0,0, the right-top
location is �0,9, the left-bottom location is �9,0 and the right-bottom location
is �9,9. Red, blue, yellow locations are in Lh, Lw, and L̄, respectively. The
green location is �4,5.
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Fig. 2 The values of T at t = 15, . . . , 18.

Fig. 3 The values of zφ′̄
�

for �̄ ∈ L̄. The horizon axes represent time t.

+W

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|B+({�h})|
∑

�′h∈B+({�h})
T (t, �′h) − T (t, �h)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
(9)

T (t + 1,�) = (1 − V · A�)T (t, �)

+W

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|B+({�})|
∑

�′∈B+({�})
T (t, �′) − T (t, �)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
(10)

where A�, V , and W are constant. These equations are
derived from the the discretization of the heat conduction
equation. For details, please see Appendix. The initial value
of T for each � ∈ L is given by

T (0, �) = 11.5 + uniform(0, 1),

where uniform(a, b) is a uniformly random number over the
interval from a to b (a, b ∈ R).

Let f1(x) = x − 13 and f2(x) = x − 18 for each x ∈ R,
and atomic predicates μi(x) (i = 1, 2) are given by μ1(x) ≡
( f1(x) ≥ 0) and μ2(x) ≡ ( f2(x) ≥ 0). In the time interval

Fig. 4 The values of zφ′
�4,5

. φ′
�4,5

is satisfied (resp. is not satisfied) at the

locations colored by white (resp. black).

[15, 18], we give two control specifications. The first is that
the temperature around a person at each �̄ ∈ L̄ is equal to or
more than 13 and the temperature of the locations close to a
person is less than 18. The second is that every location � in
L has at least one location in L�[0,2] where the temperature is
equal to or more than 13. These specifications are described
by the following SSTL f formulas.

(T, �̄) |= φ�̄ = G[15,18]
(
(μ1 ∧ ¬μ2)S[2,3]μ1

)
, �̄ ∈ L̄

(T, �4,5) |= φ�4,5 = [0,10]G[15,18]
(
�[0,2]μ1

)
,

(T, �′) |= True, �′ ∈ L \ (L̄ ∪ {�4,5}).
Note that L�4,5

[0,10] = L, and φ�4,5 represents the second
specification. The immediate cost functions are given by
J(T (t + 1, �), u(t, �)) = |u(t, �)|, and J′(T (t + 1, �)) = 0 with
L′ = L \ Lh.

Let H = 20, V = 1, W = 0.4, and

A� =

⎧⎪⎪⎨⎪⎪⎩
0.05 � ∈ Lw,

0 otherwise.

We assume that all control inputs lie in the interval [0, 25].
The simulation was run by a machine with AMD Ryzen9
5950X and 128GB memory, and the solver Gurobi† was
used to compute an optimal solution of the MIP problem.
It takes 4,403 seconds to encode all SSTL f formulas and
1,644 seconds to compute an optimal solution. Shown in
Fig. 2 is the spatio-temporal response of the temperature T .
Let φ′

�̄
= (μ1 ∧ ¬μ2)S[2,3]μ1 for �̄ ∈ L̄ and φ′�4,5

= �[0,2]μ1.

Figures 3 and 4 show that every �̄ ∈ L̄ satisfies φ′
�̄

and that
all locations in L satisfy φ′�4,5

in the time interval [15, 18],
respectively. Thus, the obtained optimal inputs satisfy the
control specifications.

†https://www.gurobi.com/
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6. Conclusion

In this paper, we considered a finite horizon optimal spatio-
temporal pattern control problem of spatially distributed
discrete-time systems where the specifications of the pat-
tern are described by SSTL f formulas. We introduce linear
encodings of the spatial operators of SSTL f based on their
Boolean semantics and convert the control problem into an
MIP problem.

SSTL f is useful for describing spatio-temporal pattern
specifications and it is future work to apply the proposed ap-
proach to real problems such as management of smart build-
ings.
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Appendix: Derivations of (9) and (10)

We consider the heat conduction equation of the air in a 2-
dimensional Euclidean space with the x-axis (horizontal di-
rection) and the y-axis (vertical direction). Let Tc(τ, x, y)
and q̇c(τ, x, y) be the temperature and the heating value per
unit area at the time τ ∈ R≥0 and the coordination (x, y).
We denote the heat conductivity of the air by α in the x-axis
and y-axis directions. Then, the two-dimensional heat con-
duction equation of the air is given by the following partial
differential equation.

ρc
∂Tc(τ, x, y)

∂τ
= α

∂2Tc(τ, x, y)
∂x2

+α
∂2Tc(τ, x, y)

∂y2
+q̇c(τ, x, y),

(A· 1)

where ρ is the specific heat of the air and c is the density
of the air. Consider a location � that is not adjacent to the
wall of the room and it’s coordinate denotes (x, y). Then,
discretizing (A· 1) for time with a time-step size Δt ∈ R>0

and a time index t ∈ Z≥0, and for the x-axis and y-axis with
a space step-size h ∈ R>0, we have
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ρc
Tc((t + 1)Δt, x, y) − Tc(tΔt, x, y)

Δt

= α
Tc(tΔt, x + h, y) + Tc(tΔt, x − h, y) − 2Tc(tΔt, x, y)

h2

+ α
Tc(tΔt, x, y + h) + Tc(tΔt, x, y − h) − 2Tc(tΔt, x, y)

h2

+ q̇c(tΔt, x, y).

Let V = Δt
ρc and W = 4Δtα

h2ρc , then

Tc((t + 1)Δt, x, y) = Tc(tΔt, x, y) + Vq̇c(tΔt, x, y)

+W

{
1
4

(
Tc(tΔt, x + h, y) + Tc(tΔt, x − h, y)

+ Tc(tΔt, x, y + h) + Tc(tΔt, x, y − h)

)

− Tc(tΔt, x, y)

}
. (A· 2)

Let h be the distance between adjacent locations. Let
T (t, �) = Tc(tΔt, x, y) and q̇(t, �) = q̇c(tΔt, x, y). If the
heater is located at �, (A· 2) becomes (9) with q̇(t, �) =
u(t, �) − A�T (t, �), otherwise it becomes (10) with q̇(t, �) =
−A�T (t, �). Similarly, it is shown that, for any location adja-
cent to the wall, (9) and (10) hold.
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