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Contextualized Language Generation on Visual-to-Language
Storytelling

Rizal Setya PERDANA†,††a), Nonmember and Yoshiteru ISHIDA†b), Member

SUMMARY This study presents a formulation for generating context-
aware natural language by machine from visual representation. Given an
image sequence input, the visual storytelling task (VST) aims to gener-
ate a coherent, object-focused, and contextualized sentence story. Previ-
ous works in this domain faced a problem in modeling an architecture that
works in temporal multi-modal data, which led to a low-quality output,
such as low lexical diversity, monotonous sentences, and inaccurate con-
text. This study introduces a further improvement, that is, an end-to-end
architecture, called cross-modal contextualize attention, optimized to ex-
tract visual-temporal features and generate a plausible story. Visual object
and non-visual concept features are encoded from the convolutional fea-
ture map, and object detection features are joined with language features.
Three scenarios are defined in decoding language generation by incorpo-
rating weights from a pre-trained language generation model. Extensive
experiments are conducted to confirm that the proposed model outperforms
other models in terms of automatic metrics and manual human evaluation.
key words: visual storytelling task (VST), natural language generation,
contextualized attention, artificial intelligence

1. Introduction

The recent issue of the machine-generated natural language
to explain the visual object and its relation has emerged with
more complex scenarios known as visual storytelling [1]–
[10]. VST involves visual-to-linguistic active machine
learning research with further advancement. Given the in-
put of a time-ordered image sequence, it aims to generate a
coherent sentence story. The grounding inline task known
as image captioning [11]–[13] aims to generate textual de-
scriptions from a single image with language generation in
simpler expectation results. Another related research ex-
ploits the key relations between the computer vision (CV)
and natural language generation (NLG) domains, such as
image paragraph captioning [14] and video captioning [15],
consequently bringing up various multimodal data process-
ing models.

In practice, an automatic VST system is used as a sup-
portive part of software applications. There are several in-
stances of the use case of the VST feature. First, it is used
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to help visually impaired people to grasp the photo album
by translating them into human language text and using a
text-to-speech system to generate audio output. Second, as
a part of a system application software, the automatic VST
system gives accessibility support to make a system have
the ability of assistive technology. It might be a part of op-
erating system accessibility support or as an extra feature of
specific application software. The last is including the au-
tomatic VST in the social media service which allows users
to upload multiple photos and automatically generate a cre-
ative story.

An encoder-decoder mechanism in describing image
neural image captioning (NIC) [13] is proposed. The re-
maining problem in utilizing NIC for VST is limited in de-
scribing literal objects with many details instead of focusing
on the main object. More advanced, visual attention was in-
troduced by [16] to focus only on the main object of visual
representation. This approach faced issues in generalizing
multiple inputs to obtain the global features of the visual se-
quence. Global local attention cascading (GLAC) Net [3]
attempted to compose global-local attention in a visual rep-
resentation that attends to the local and global features and
addresses the coherence difficulty. However, it faced a prob-
lem in generating monotonous stories with low lexical diver-
sities. Another study addressing the difficulty of generating
a story containing the non-visual concept was introduced by
CAAM [10] by correlating multi-modal features as semantic
features. The story generation by CAAM has the limitation
of generating a story with inaccurate context, leading to a
novel challenge.

To deal with the aforementioned drawbacks, we for-
mulate that the result’s bias on the machine-generated story
compared with the human-generated story considering the
model’s difficulty to obtain appropriate context. Therefore,
this research introduces an end-to-end model for a contex-
tualized language generation based on cross-modal atten-
tion, called cross-modal contextualize attention (CMCA).
Figure 1 depicts the brief idea of the CMCA. Generating a
coherent, object-focused, and contextualized sentence story
is the main objective of the CMCA. “Contextualized” means
that the generated story should be in a suitable context based
on multi-modal learning. The proposed architecture aimed
to train a context-aware model representing a join visual se-
quence with a sentence story.

To achieve the abovementioned objectives, the CMCA
is composed of two designated parts: (1) cross-modal at-
tention (a sub-layer of the encoder) responsible for acquir-
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Fig. 1 Visual storytelling task (VST) automatically generating the text
story output from the visual image sequence input. Instead of extract-
ing only the image feature map output by a convolutional neural network
(CNN), this research combines object-level features (blue triangle) with
CNN vector feature representation (red circle). The cross-modal contex-
tualize attention (CMCA) proposed to incorporate a pre-trained language
generation (green square) aims to contextualize the story.

ing representation in temporal multi-modal learning; and (2)
contextualized language story generator. An image is com-
posed of two components, namely visual object and non-
visual concept with its relation from the image sequence.
To obtain the features related to visual representation, the
visual object relies on object-related encoding, followed by
visual encoding, while the non-visual concept is obtained
by cross-modal attention learning from multiple modalities.
The main contributions of this study are as follows:

1. We introduce an end-to-end architecture of contextu-
alized visual to language story generation with an ex-
tended encoder decoder procedure. Cross-modal atten-
tion is proposed to extract a new feature representation
based on temporal image sequence, object-related vi-
sion, and language encoder to improve the extraction
capability of temporal multi-modal features.

2. The language generation decoder performs with
three defined scenarios: feature concatenation, self-
contained attention, and stacking attention.

3. Comprehensive experiments with analyzed evaluation
results are presented to confirm the outperformance of
the proposed model.

This research is organized as follows. In Sect. 2, we
reviewed related works of natural language generation tasks
based on visual representation. Section 3 we introduce the
proposed model with the detail of building blocks for each
function. Section 4 explains the conducted experiments.
Section 5 presents the experiment results. Section 6 pro-
vides the discussion based on the results. Section 7 con-
cludes and explains the summaries and the future works.

2. Related Work

2.1 Visual Sequence Encoding

In VST research, the encoder decoder architecture is widely
used in various emphases as the underlying architecture for
the sequence-to-sequence problem. Research in [17] used
a convolutional neural network (CNN) to extract visual fea-
tures in a two-dimensional setting. The independent pro-
cess led to the drawback of losing the core of the temporal
information. Another research by [6] extracted the visual
sequence to generate feature summarizes by averaging all
images in a sequence. Research in [5] extracted the object
from images using pre-trained Faster R-CNN and fed into
the Transformer-GRU as the term predictor. This approach
has the drawback of capturing the time frame information
and losing the sequence relation in the visual sequence.

Meanwhile, [8] attempted to capture the temporal se-
mantic relationship between images in sequence by incorpo-
rating a CNN to extract the image features, followed by the
GRU for learning sequence patterns. In line with Knowl-
edgeable Storyteller, [4] understood the visual representa-
tion by incorporating CNN-based pre-trained Inception V3
and LSTM to encode the sequence representation. In this
research, we try to overcome the problem of using RNN-
based sequence modeling using a self-attention mechanism,
known as a transformer, to deal with the length capacity of
the extracted visual features.

2.2 Textual Decoding Language Generation

AREL [1] generates sentences by multi-RNN decoders that
work in parallel and concatenate all results as a full story.
Similar to AREL, the decoder in [4] uses the information
extracted from the encoder as the context sequence input to
the decoder. This strategy continuously faces a problem in
the encoder’s limited context, which affects the monotonic
generated stories. GLAC Net [3] designs two-level decoders
based on different level information to acquire the overall
context of the image sequences. Intuitively, this approach
performs well with general objects without considering the
object relation and its context. [5] applied a transformer-
based [18] decoder architecture by extending the encoded
term into long stories. [5] used an intra-sentence repeti-
tion penalty to handle the story’s redundancy and enhance
the standard decoder. In this study, the decoding process
attempts to incorporate the large pre-trained language gen-
eration model as its vector source representation to enhance
the limited context quality.

2.3 Language Model Transfer Learning

The advancement of transfer learning [19] as an attempt to
exploit the knowledge learned from model training aims to
improve another learning model. For the image-to-text task
that uses the encoder decoder architecture, the pre-trained
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Fig. 2 The overall cross-modal attention encoder architecture performs encoding during the training
phase. Images sequence feature and text are transformed into embedding representation before proceed-
ing to the cross-attention layer to obtain the encoded visual features, cross-modal features, and language
features.

model as the feature extractor is applied on the encoder side.
The NLP domain commonly applies transfer knowledge by
sharing pre-trained word embedding on different tasks, such
as word2vec [20] and Glove [21].

The pre-trained model represents a semantic mean-
ing depending on its context. The recent works on the
transformer-based [18] NLP, which is a model architecture,
rely on attention mechanisms to effectively understand the
global relation between input and output sequences and fur-
ther improve language representation. Several powerful
pre-trained language models based on the transformer [18]
architecture have achieved universal language representa-
tions, such as OpenAI GPT [22], GPT-2 [23], XLNet [24],
XLM [25], BERT [26], and RoBERTa [27]. For the natural
language generation (NLG) tasks, GPT and GPT-2 are suit-
able because these pre-trained models are very similar to the
decoder-only transformer architecture.

2.4 Cross-Modality Pre-Trained Model

A task with multiple modalities, such as vision to language,
requires the combination of different data distributions from
arbitrary sources to enable learning the correlation between
input and output. For cross-modality, many types of re-
search have attempted to combine multi modalities by build-
ing a pre-training model, such as VideoBERT [28], ViL-
BERT [29], and LXMERT [30]. As the first work conducted
on pre-training cross-modality vision and language tasks,
VideoBERT works to generate language from videos by
joint visual linguistic learning. The model developed by
the pre-train Conceptual Caption [31] dataset aims to build
a pre-trained model for multiple vision-to-language tasks.

3. Proposed Model

3.1 Overview

The main contribution in this research is modeling the nat-
ural language story generation from an image sequence

by incorporating multimodal attention sequence analysis
named the “cross-modal contextualize attention (CMCA)”.
The novelty compared to the previous networks is the com-
bining of object-level features with the CNN feature repre-
sentation followed by the novel attention mechanism which
utilizes a pre-trained language generation. The novel strat-
egy aims to contextualize the generated story. This learn-
ing strategy is composed of a cross-modal attention encoder
(Fig. 2) and a contextual story generation decoder (Fig. 7).
The VST intends to generate an output coherent sentence
story y = (y1, . . . , y5) with the input of five ordered image
series v = (v1, . . . , v5), where yi and vi present the same in-
dex ith for the image input and the sentence output at the ith
order.

3.2 Input Embedding and Positional Encoding

As shown in Fig. 2, data are fed into the encoding process,
raw input data must be converted into fixed-length embed-
ding dimensions. Input embedding is a layer before the
encoder that converts raw visual and textual data into new
features as embedding representation (i.e., word-level from
sentence story and object-level from the visual sequence).

3.2.1 Object-Level Visual Embedding

A single input of the visual modality is a sequence of t or-
dered images Dv ∈ {v1, . . . , vt}, in which each image vi has n
different numbers of detected object o j ∈ {o1, . . . , on}. The
object features r j ∈ R2048×n×t represent a 2048-dimensional
region-of-interest (RoI), followed by the positional features
p j ∈ Rn×t as bounding box coordinates extracted by Faster
R-CNN [32]. The visual embedding layer learns g j to com-
bine the region of interest r̂ j = LN(WRrj + bR) and the po-
sition p̂ j = LN(WP pj + bP) features into a single output
by adding a matrix operation of the two normalized fully
connected layers presented in Eq. (1). The LN is the layer
normalization.

g j = (r̂ j + p̂ j)/2 (1)
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3.2.2 Word-level Sentence Story Embedding

A text story can be broken down into n-ordered sentences
Ds = {s1, . . . , sn}. Each sentence si is split into a sequence
of words w with length m, si = {w1, . . . , wm}. The direct
matrix addition of token embedding value ŵi and its abso-
lute token ID position ẑi as the final word-level story embed-
ding is performed to incorporate both features. As shown in
Eq. (2), the normalized layer LN of the addition operation ki

of the token vector values and the token position embedding
is presented to obtain word-level sentence story embedding.

ŵi = TokenEncode(si)

ẑi = TokenPosEmbed(wi)

ki = LN(ŵi + ẑi)

(2)

3.2.3 Positional Encoding

The model needs sequential data representation, interpret-
ing the order as the companion of the vector input known as
positional encoding. Three positional encoding vectors are
provided herein: word sentence story, visual sequence im-
ages, and detected visual objects. The positional encoding
vector value is added to the input embedding then fed to the
self-attention encoder.

3.3 Encoding Mechanism

This section describes the general technique used in en-
coding or extracts the sequential information into a fixed
value. This mechanism is inspired by the encoder part of
the transformer [18] with input adjustment by utilizing a
self-attention mechanism. Self-attention is a special case
of multi-head attention, in which the inputs (i.e., queries Q,
keys K, and values V) are based on the same hidden layer.
We explain the dot-product attention, multi-headed atten-
tion, and the composition of the encoder itself.

3.3.1 Dot-Product Attention

The following inputs are considered: a query qi, a set of
keys K = (k1, . . . , k j), and a set of values V = (v1, . . . , v j),
where j = 1, 2, . . . , J and qi, k j, v j ∈ Rd. The scaled dot-
product attention calculates the weighted sum of values v j,
which is the weight obtained by the dot-product operation
of each pair of rows of query q and keys k j. The dot-product
attention computes the matrix output presented in Eq. (3).

Att(qi,K,V) = softmax

(
qiKT

√
d

)
V (3)

3.3.2 Multi-Headed Attention

The multi-head attention comprises multiple scaled dot-
product attention that works independently in the parallel
mode. The “head” is a single scaled dot-product atten-
tion. “Multi-headed” is performed as an N-number of heads

Fig. 3 The basic encoder layers underlie the overall encoding process,
i.e., temporal visual encoding, object-related visual encoding, and sentence
sequence encoding.

shown in Eq. (4) with the weight WO ∈ Rd×d.

MultiAtt(qi,K,V) = WO

⎛⎜⎜⎜⎜⎜⎜⎜⎝
head1

. . .
headN

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (4)

head j = Att(Wq
j qi,W

K
j K,WV

j V) (5)

For each head, the following projection matrices with the
index j = 1, 2, . . .N has its parameters Wq

j ,W
K
j ,W

V
j ∈ R

d
N ×d

learned independently to jointly attend the information from
multiple subspaces from different representation and posi-
tions.

3.3.3 Encoder Building Blocks

General structure of encoding layer was used several times
in three specific encoders with M number of layers (i.e.,
temporal visual, object-related, and language encoder)
(Fig. 2). Each layer m processes the features set from ar-
bitrary inputs x j and produces a result as the internal rep-
resentation output y ∈ R. Both inputs and outputs from
the self-attention layer pass the normalization process [33]
in LN and preceded by residual connection [34] (Fig. 3).
Formally, the building block of the encoder is presented in
Eq. (6). From the previous explanation in Subsection En-
coding Block, self-attention has the same queries, keys, and
values (x j

m) that can acquire information from the previous
layer x j

m−1.

y j
m = x j

m +MultiAtt(x j
m, x

j
m, x

j
m)

x j
m+1 = y j

m + FeedForward(y j
m)

(6)

3.4 Multimodal Attention Mechanism

In this part, we elaborate on the details of the main contri-
bution to learn the visual-textual modality pair in sequen-
tial settings. A multimodal attention mechanism is a way
to focus to encode the two different modality sources. The
details are including temporal visual encoder, object-related
visual encoder, sentence sequence encoder, and cross-modal
encoder.

3.4.1 Temporal Visual Encoder

The visual modality input of the VST, as shown in Fig. 4, is
an array of t-ordered images Di = {i1, . . . , it} containing the
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Fig. 4 Temporal visual encoder takes an input of image sequence then
fed to pre-trained CNN visual extractor with vector embedding output. The
embedded visual feature is the input for the encoder layer to obtain sequen-
tial representation.

Fig. 5 The visual object-related encoder incorporated both the region of
interest feature and object coordinate position feature as the encoder’s in-
put.

information of the features from each image (spatial feature)
and their dynamics through time (temporal feature). For the
visual feature extractor, a pre-trained ConvNet(i j) is applied
as the transfer learning strategy by removing the last fully-
connected layer to avoid overfitting [13]. The output of the
visual features of a story sequence S is a set of fixed-length
vectors i j fed into the encoder layer Encoder([i1, . . . , it]).

3.4.2 Object-Related Visual Encoder

As presented in Eq. (1), the object-level embedding layer
ObjectEmbed has an output vector g j obtained by com-
bining the region of interest r j vector and the position
p j vector features fed to the transformer Encoder layer
(Eq. (6)) to learn the sequence representation of object-level
features (Fig. 5). A set of t-ordered object-related vec-
tor Dg = {g1, . . . gt} is fed as input to the encoding layer
Encoder([g1, . . . , gt]) with the output vector G.

3.4.3 Sentence Sequence Encoder

This research applies a self-attention encoder in order to ob-
tain the semantic information from the text story. As shown
in the Fig. 6, the input of this layer is the word-level sentence

Fig. 6 The sentence sequence encoder utilizes a self-attention encoding
mechanism by combining the token and positional encoding.

story embedding vector output ki as presented in Subsection
Word-level Sentence Story Embedding, i.e., the combina-
tion of token encoding ŵi and the positional token encoding
ẑi. The input for the WordLevelEmbed(S i) layer is the S i

the concatenation of n sentences story s1‖s2‖ . . . ‖sn. The
output of the word level embedding ki will be the input for
the Encoder([k1, . . . ,kt]) with the output of sentence encod-
ing vector T.

3.4.4 Cross-Modal Encoder

The cross-modal encoder’s objective is to simultaneously
find the optimal alignment between the visual sequence in-
put (Fig. 4 and Fig. 5) and the sentence story output (Fig. 6)
based on semantic correlations. In Fig. 2, the cross-modal
encoder inside the dashed block. The cross-attention sub-
layer learns the weight for different representations (i.e., vi-
sual to language and language to visual). Additionally, both
temporal visual S and object-related G features are added,
V = S + G, before passing through the cross-attention sub-
layer for the visual representation. The encoded language
modality T = {t1, . . . , tn} that represents the vector feature
from the story output will be paired with the encoded vi-
sual sequence V = {v1, . . . , vm} on bi-direction: V → T and
T → V. More details for the cross-attention sub-layers are
presented in Eq. (7):

v̂
j
m = MultiAttV→T(v j−1

m , v
j−1
m , {t j−1

1 , . . . , t
j−1
m })

t̂ j
n = MultiAttT→V(t

j−1
n , t

j−1
n , {v j−1

1 , . . . , v
j−1
n })

(7)

ṽ
j
m = v j

m +MultiAttV→V(v̂ j
m, v̂

j
m, {v̂ j

1, . . . , v̂
j
m})

e j
ṽ,m = ṽ

j
m + FeedForward(ṽ j

m)

t̃ j
n = t

j
n +MultiAttT→T(t̂ j

n, t̂
j
n, {t̂ j

1, . . . , t̂
j
n})

e j
t̃,n = t̃ j

n + FeedForward(t̃ j
n)

(8)

Later, the output vector from the cross-attention sub-
layer visual to textual v̂m and textual to visual t̂n passes
through the self-attention sub-layer, followed by a fully
connected layer, for each modality. Following the mecha-
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Fig. 7 During the training phase, the decoder focus on generating a lan-
guage story based on the encoder output combined with the contextual em-
bedding from the manually generated text story in the dataset.

nism of the transformer encoder in Fig. 3, the normalization
is applied, consecutively followed by the residual connec-
tion. Finally, the encoder output e j from the visual modality
e j
ṽ,m ∈ Rm×d and text modality e j

t̃,n ∈ Rn×d (m, n, and d de-
note the number of image sequence, text features, and vector
feature length, respectively) is obtained as the new feature
representation of the pair of image sequences and sentence
story for the decoder inputs.

3.5 Decoding Mechanism

In the neural encoder decoder architecture, particularly in
the natural language generation of VST, the language de-
coder is a block of processes generating contextualized and
coherent sentences y = (y1, . . . , y5) based on the conditioned
new feature representation e j as the encoder output as pre-
sented in Fig. 7.

3.5.1 Decoder Building Blocks

g j
l = b j

l +MultiAtt(b
j
l ,b

j
l ,b

j
l )

q j
l = g j

l +MultiAtt(g j
l , e

j
l , e

j
l )

b j
l+1 = q j

m + FeedForward(q j
m)

(9)

In this proposed architecture, the story generation de-
coder is composed of transformer blocks. The decoder
block proposed in transformer [18] originally comprises two
attention layers, followed by a feed-forward layer, residual
connections, and normalization (Eq. (9)). The first atten-
tion layer is a multi-head self-attention applied to human-
generated text as the ground truth output b j

l (input vector b j

on layer l) preceded with the normalization b
j
l and perform

residual connection that produces vector g j
l . Next, for the

second multi-head attention layer that traditionally handles
a single modality, it attends from the two following sources:
the encoder conditioned output e j

l and the first self-attention

output g j
l . In this research, this second attention is called

Context Attention layer guiding the generation of a contextu-
alized story from multiple modalities simultaneously. Last,
the output of the second attention layer q j

m is fed to the feed-
forward neural network and applied residual connection to
produce the final output b j

l+1.

3.5.2 Contextual Attention Story Generation

Developing a model to produce a sentence story in an ap-
propriate context from multiple arbitrary source modalities,
a sub-layer inside the decoder block (Fig. 7), called contex-
tual attention layer. Two strategies are considered in this
sub-layer: fusion strategies and involving the pre-trained
network’s weight from the language generation model. Fu-
sion strategies focus on how the model attends to the two
different modalities in time-ordered settings.

• Feature Concatenation. It creates a sequence of
features to generate information fusion representation
from multiple modalities. The contextualized attention
is performed on concatenated e j

t̃,n ‖ e j
ṽ,m both visual and

textual features encoded vector e j
c̃,(m+n) ∈ R(m+n)×d.

• Self-contained Attention. It adds two self-contained
attention layers which simultaneously handling two
different modalities. For each modality, a multi-head
self-attention layer is applied independently. Two self-
attention outputs from visual c j

v and textual c j
t are com-

bined via vector addition operation with the output c j
l

(Eq. (10)).

c j
t = g j

l +MultiAtt(e j
t̃,n, e

j
t̃,n, g

j
l )

c j
v = g j

l +MultiAtt(e j
ṽ,m, e

j
ṽ,m, g

j
l )

c j
l = g j

l + LN(c j
t + c j

v)

(10)

• Stacking Attention. It stacks two independent con-
ditional self-attention layers that sequentially represent
each modality. The stacking attention order has two
possibilities: visual e j

ṽ,m attention layer over textual e j
t̃,n

attention layer, and vice versa‘s. Equation (11) shows
the attention stack with the setting visual attention is
followed by the textual attention.

c j
v = g j

l + LN(MultiAtt(e j
ṽ,n, e

j
ṽ,n, g

j
l ))

c j
l = c j

v + LN(MultiAtt(e j
t̃,m, e

j
t̃,m, c

j
v))

(11)

This research considers to incorporate the pre-trained
weight from similar tasks to develop a contextualized lan-
guage story generation. The pre-trained language model is
currently adequately provided [35]; hence, fine-tuning pre-
trained contextual word embedding is expected to gener-
ate textual stories without suffering from a monotonous and
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low word diversity. The decoder based on only the trans-
former architecture [18], is applied in the pre-trained lan-
guage model, GPT-2 [23]. The pre-trained network weights
are implemented to initialize the decoder weight to improve
the quality of conditional generation.

3.6 Objective Function

θE and θD are the learnable parameters of the encoder and
decoder networks, respectively. The training objective was
to optimize the model parameter weight by constructing the
combination of loss functions L, which consists of three
parts (i.e., cross-modal loss (encoder loss)Le, cross-entropy
loss for visual object detectionLv, and maximum likelihood
estimation as language generation loss (decoder loss) Ld).
The total loss function is defined as L = Le +Lv +Ld.

The encoding process aims to find the alignment repre-
sentation from visual V and textual data T within pairs. Ac-
cording to CRAN [36], the objective function for the joint
cross-modality is determined by the distance-matched rela-
tion pairs between the visual and textual Le(θE ,D) models
defined as follows:

max (0, α − 1
K

K∑
k=1

d(t+, i+) +
1
K

K∑
k=1

d(t+, i−)) (12)

where, d(.) is the dot product of the relation similarity
of the K-nearest neighbor measurement; d(t+, i+) indicates
the matched pairs; d(t+, i−) indicates the mismatched pairs;
and α is the matched and mismatched proportion simply set
to 0.5.

The loss function for the object detection as one of
the encoder components is the categorical cross-entropy loss
function with softmax:

Lv(θv,X) = −
K∑

k=1

yk log
e f θk (X)∑K
1 e f θk′ (X)

(13)

where, X and θv denote the image features and the learn-
able parameter, respectively. K is the number of classes. In
this experiment, the total number of K = 95 different visual

Fig. 8 Word frequency distribution from the text story training data. This stacked bar chart shows the
word significantly characterized by the following sentence order: first to fifth sentence order.

objects. yk is the class label predicted by the softmax func-
tion. D = {(V,T )} denotes the input-output pairs (i.e., visual
and textual data) for obtaining the optimal solution θD, by
minimizing the negative log-likelihood. The loss function is
maximum likelihood estimation defined as follows:

Ld(θD,D) =
∑

V,T∈D

n∑
i=1

− log pθ(t
∗
i |vi, v) (14)

4. Experiment

In this experiment, we conduct a set of experiments that aim
to model an expected output. The conducted experiment
will answer how the proposed architecture blocks are opti-
mized effectively to produce a contextualized story language
and prove by some evaluation mechanisms.

4.1 Dataset

In this research, the training and validation process uses the
VIST [2] dataset constructed by pairs of image sequences
and sentences for VST. For the VST, the stories of images
in sequence (SIS) tier directly models the narrative lan-
guage with the temporal context, including the literal and
abstract visual concepts; therefore, this tier is chosen. Ta-
ble 1 presents the splitting configuration for the number of
compositions of images and story in the VIST dataset in
this research. For one story, it is composed of five time-
ordered images accompanied by five human-generated sen-
tence stories. The frequency distribution of the token analy-
sis presents the frequency appearance from each word based
on the sentence position denoted by colors (Fig. 8). For ex-
ample, the words today, party, and trip appear more fre-
quently in the first sentence, while end, night, finally,

Table 1 The VIST dataset splits the number of images and stories for
training, validation, and testing

Number of Training Validation Testing Total

80% 10% 10%
Images 167,528 21,048 21,075 209,651
Stories 40,155 4,990 5,055 50,200
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Fig. 9 Appearance frequency of the object from different sources in the test set. The two sources (i.e.,
image and text) are presented to describe the alignment between the input images with the output text
story.

and back appear more frequently in the last sentence.

4.2 Feature Extraction

In the experiment, we performed separate processes to ex-
tract the feature modalities (i.e., image features, visual ob-
jects, and text stories). The feature extraction aimed to trans-
form raw data into a numerical representation for further
analysis requiring pre-processing.

4.2.1 Image Features

We utilized the pre-trained model ResNet-152 [34] by re-
moving the last classifier layer to obtain the fixed-length
vector of features. Several pre-processing steps were per-
formed to fit the expected image input with the input size
of the pre-trained model (i.e., three-channel RGB images
with a dimension of 3 × H × W, where H and W are the
height and width, respectively) of at least 224 × 224. Resiz-
ing was performed by random cropping, followed by nor-
malization using mean = [0.485, 0.456, 0.406] and std =
[0.229, 0.224, 0.225] to transform the vector loaded in to a
range [0, 1] based on the ImageNet [37] dataset. The output
embedding vector dimension for each image was 512.

4.2.2 Text Features

The pre-trained BERT [26] model was used to obtain a rep-
resentative embedding vector from the sentence input. The
sentences were broken down into tokens in a process known
as tokenization that follows WordPiece algorithm [38] pro-
cedures. Next, the array of tokens was appended by a spe-
cial purposed token [CLS] at the beginning of the sentence
and [SEP] at the end of the sentence. [PAD] was added
as the sentence’s padding to make all array of tokens have

an equal length with maximum length tokens. Lastly, each
token was converted into the token IDs defined by the pre-
trained model, such that they are ready for sending to the
pre-training model to produce fixed embedding with a di-
mension of 512 for the further learning process. Addition-
ally, we present a frequency of the token compared with the
visual object detected in Fig. 9.

4.2.3 Visual Object Features

This experiment employed the Faster R-CNN [32] architec-
ture as the object detector to extract the visual object detec-
tion features from images. We used two pre-trained Faster
R-CNN-based models (i.e., R101-FPN and X101-FPN)
trained on a large-scale dataset (ImageNet [37]). Based on
the experiment, we compare the objects frequency and the
object variety from these two different pre-trained model as
shown in Fig. 10 (a) and Fig. 10 (b) respectively. In addition,
we perform a frequency comparison between token detected
and visual object detected in Fig. 9 to verify the trend is sim-
ilar.

4.3 Training and Validation

4.3.1 Implementation

The proposed architecture model was implemented with Py-
Torch† [39], a deep learning framework that supports GPU
hardware. All codes run on Python on a computer with
multiple parallel NVIDIA RTX graphic processors. Ta-
ble 2 comprehensively lists the details of each block im-
plementation and layer configuration. The model weights
were trained to meet the favorable outcome criteria using an

†https://pytorch.org/
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Fig. 10 Visual object detection analysis within image sequences to illustrate the distribution behavior
(the y-axes are presented on a logarithmic scale). A comparison is presented from two visual object
detection models, that is, Faster R-CNN X101 and R101, to identify the outperformance of the model.

Table 2 Component and dimension of the building block deep neural
network configuration for the model architecture building blocks (T : length
of sequence in a story).

Block Component and dimensions

Input layer
Image sequence T × 224 × 224

Embedding
Word-level sentence Output: 512
Visual object feature (a) Output: 2048× Num. of object ×T
Object position feature (b) Output: Num. of object ×T
Embedding combination (a+b) Output: 512

Encoder Transformer with six blocks, four
multi-head attention with
dimension 256

Temporal visual Output: T × 2048
Visual object relation Input: 512, Output: 2048
Sentence sequence Input: 512, Output: 2048
Cross-attention Same with encoder with input 2048

Decoder Transformer with 16 blocks, eight
multi-head attention with
dimensions 512

Adam optimizer [40] with the initial learning rate of 1e − 3.
The optimizer utilized a linear decay learning rate schedule
set to 1e − 5 with a warm-up strategy. The training process
took 64 for one mini-batch size and was iterated through
epochs until early-stopping criteria was met.

Technically, our computing resources are a combina-
tion of CPU and GPU processing resources. For data ex-
traction, data transformation, and data loading, we use the
CPU as the computation resource. Whereas the data prepro-
cessing and training the model are performed on GPU. For
an epoch on training using the paralleled GPU, we need 29s
56ms on average and 290s in total with the configuration of
previously mentioned. This might be different depending on
the hyper parameters value used.

4.4 Evaluation Metrics

4.4.1 Automatic Evaluation

The evaluation metrics herein were compared to those
of the previous baseline approaches using METEOR [41],
BLEU [42], CIDEr-D [43], and ROUGE-L [44]. METEOR
is a metric designed to measure the machine translation
quality that does not rely on an exact match between two
texts. ROUGE measures how much the generated text
is overlapped with reference to previously generated ones
by humans. ROUGE-L, a ROUGE variation, was applied
herein to measure the quality based on the longest com-
mon subsequence. BLEU performs an evaluation using a
precision-based metric similar to ROUGE and calculates the
overlapping component by counting the matching uni-grams
to the text references. Lastly, as a step forward, this re-
search applied the BLEURT [45] evaluation metric, which
is a learned evaluation metric based on the BERT model
that is pre-trained on large-scale human judgment. The au-
tomatic evaluation metrics (i.e., BLEU, ROUGE, CIDEr-
D, and METEOR) were implemented with codes from a
vist eval† repository. BLEURT was implemented from
the bleurt†† repository.

4.4.2 Human Evaluation

The automatic metric evaluation has a drawback in assess-
ing the subjective aspects contained in a text story. Thus,
we conduct the human evaluation on Amazon Mechanical
Turk†††. It randomly takes 20 respondents or workers to
read and rate every ten stories from the proposed model,
the baselines, and previous manual human-generated sto-
ries from the dataset consecutively. The human evaluation

†https://github.com/lichengunc/vist eval
††https://github.com/google-research/bleurt
†††https://www.mturk.com/



882
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.5 MAY 2022

Table 3 Automatic metrics evaluation (METEOR, CIDEr, ROUGE-L, BLEU, and BLEURT) com-
paring the proposed CMCA with our re-implementation of the baselines.

Method METEOR CIDEr ROUGE-L BLEU 1 BLEU 2 BLEU 3 BLEU 4 BLEURT

NIC [13] (a) 27.60 1.60 21.80 29.20 14.00 7.00 3.60 -
NIC [13] (b) 29.30 3.60 23.10 33.41 17.70 8.90 4.60 -
Visual Attention [16] 30.41 3.40 24.28 34.89 18.87 9.32 4.82 -
GLAC [3] 28.90 2.60 22.80 32.80 17.20 8.60 4.40 -
HACA [47] 30.00 2.00 23.70 33.80 18.00 9.10 4.40 -
Knowledgeable Storyteller [8] 30.89 3.12 23.32 30.41 16.98 9.12 4.80 -
CAAM [10] 31.23 3.30 24.72 33.32 18.93 9.60 4.98 -
CMCA (proposed approach) 31.63 3.72 25.16 32.11 18.88 9.83 5.02 30.4

subjectivity is considered in four categories: fluency (assess
how fluent is the story), variation (how varied the text gener-
ated and not monotonous), relevance (evaluate the generated
story is in a suitable context), and coherence (how seam-
less the flow of sentences from start to the end of story).
Some of these categories are inspired by previous research
e.g. Knowledgeable [8] use four categories i.e. fluency, rele-
vance, informativeness, coherence. Another instance in [46]
uses two categories i.e. adequacy and fluency. We select the
category that is most relevant to our objective and add a new
category that supports our objective to assess the quality of
a story. We specify the score for each category is ranged as
an integer between 1 to 5.

5. Results

5.1 Baselines

NIC [13] is one of the baselines for investigating the treat-
ment effect of a simple image to a text method with two
different modes. The (a) scenario concatenates the visual
and textual features in the early stage before the training,
while the (b) scenario joins the result after it is gener-
ated. Visual attention [16] implements an attention mech-
anism that allows language generation to focus on a par-
ticular visual representation area. In this study, the re-
implementation used scenarios that join the result of the lan-
guage generation. GLAC [3] overcomes the lack of generat-
ing text covering all image context representations by com-
bining global and local attention mechanisms. Hierarchi-
cally aligned cross-modal attention (HACA) [47] attempts to
model multi-modal temporal data by fusing both global and
local temporal dynamics in generating captions from videos.
Knowledgeable Storyteller [8] utilizes an external knowl-
edge graph to integrate the non-visual concept from images
with sentences. Canonical correlation attention mechanism
(CAAM) [10] attempts to generate a new join representation
for multi-modal temporal based on the attention mechanism.
CAAM maximizes the correlation between the pair of im-
ages and text representation for an appropriate context in
guiding the story generation.

5.2 Quantitative Result

The proposed CMCA outperformed the others, yielding

75% in the majority of metrics from the baselines (Table 3).
The bold printed value in each column of Table 3 represents
the best score from a metric. In the BLEU-4 metric, our re-
sult achieved a 71% relative improvement over the baseline
score. METEOR, CIDEr, ROUGE-L, BLEURT, BLEU 3,
and BLEU 4 resulted in the best score. But, BLEU 1 and
BLEU 2 have the lower score compared to the other base-
lines. In comparison to our previous research CAAM [10],
our proposed model has similar weaknesses in the BLEU 1
and 2.

5.3 Qualitative Result

Figure 11 demonstrates the proposed approach qualitatively
compared to the baselines. First, an image sequence is pre-
sented in a row that indicates a time-ordered event from left
to right. Second, the visual object detection algorithm is
applied to encode visually appearing objects to obtain the
object features. The detected object is presented as a la-
beled boundary box with class and percentage (for clarity,
the detected object list is presented below the images with
its frequency). Third, a comparison from the text story is
presented. The comparison comprised references (human-
generated story), baseline result, and proposed approach. At
a glance, our proposed result can produce a contextually cor-
rect and more plausible story.

In Fig. 11, the result of our proposed approach pro-
duces some words which indicate the time order of events
such as ‘today’, ‘after’, ‘end’, and ‘finally’. Compared base-
lines such as GLAC, HACA, NIC which do not provide such
words that lead to generating less coherent stories. Related
to contextualized aspects, some words present in underlined
words such as ‘child’, ‘man’, ‘baseball’, ‘chair’, ‘bag’, and
‘sports ball’. The word ‘baseball’ gives more correct con-
text compared to the GLAC, which produces a more gen-
eral word like ‘big game’. The appearance of the underlined
words is the consequence of incorporating cross-modal at-
tention. Previous approaches generate only limited words
(only provided by the dataset), whereas our proposed ap-
proach produces more diversity based on the context of the
sequence images. Furthermore, we elaborate the analysis
and more detailed explanation in the discussion section.

We found that our proposed approach has several lim-
itations regarding output quality. Although it does not lexi-
cally explain the object on images (like image captioning),
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Fig. 11 From top to bottom: sequence of image input, object detection annotation, and output story
generation comparison. Underlined words: contextualized from the encoded feature of visual detection.

the sentence tends to generate a short-length description
similar to a caption. Another limitation is the story contains
unimportant or less related objects, e.g the word bag (2nd
sentence of the proposed approach) does not contribute to
this narrative. Another output story from the proposed ap-
proach is presented in Fig. 13.

5.4 Human Evaluation Result

The human evaluation result is presented in Table 4 show
the respondent’s subjectivity after reading and viewing the
image-stories pairs outputs. The presented score result from
each subjectivity criteria is obtained from the average rating
score of all respondents. Our proposed model outperforms
75% of all the criteria, except fluency. The Human Refer-
ence is generated by a manual human labeling story pro-
vided by the test dataset which has the best score evaluated
by the respondents. Additionally, the respondents were also
asked to score the human-generated story to confirm that the
gap between human and machine-generated stories exists.

Table 4 Human evaluation results of the proposed model compared to
baselines and human-generated stories. The subjectivity criteria are fluency
(Flu), variations (Var), relevance (Rel), and coherence (Coh). The value for
each category is the average of the total score from the whole respondents.

Models Coh. Rel. Flu. Var.

Human reference 4.40 4.55 4.60 4.45

NIC [13] (a) 2.25 1.45 2.60 2.35
NIC [13] (b) 2.90 3.25 2.45 2.35
Visual Attention [16] 3.25 3.60 3.50 3.35
HACA [47] 3.40 3.45 3.35 3.05
Knowledgeable [8] 3.45 3.25 2.90 3.25
GLAC [3] 3.55 3.45 3.60 3.25
CAAM [10] 3.60 3.55 3.25 3.45

CMCA (proposed approach) 4.00 3.90 3.30 4.25

6. Discussion

In this section, we will provide the discussion and analysis
to elaborate on the experiment result from the previous sec-
tion. We provide the discussion into three parts, i.e. general
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Fig. 12 Evaluation on the use of the pre-trained weight natural language generation model is per-
formed by comparing the total number of word tokens and unique word tokens from each sequence.

Fig. 13 Output story: The boy rides a bike on holiday. He had a nice
ride out to the lake. After long riding, he stops to enjoy the scenery. Some
of the boats are docking. He really enjoy the moment until he tired.

discussion which containing the insight and analysis from
the quantitative, qualitative, and human evaluation results.
Secondly, the ablation study which discusses the contribu-
tion from each component. The last is the discussion spe-
cific to the contextual attention layer variation as the main
contribution of this paper.

6.1 General Discussion

Quantitative experiments which employ automatic metric
evaluation prove that our novel method excels from the base-
lines. But, for some points, i.e., BLEU 1 and BLEU 2 score
our proposed model resulted in a lower score. This indi-
cates that shorter similarity comparison is not good due to
the word disparity compared to the other baselines which
have monotonous stories. Moreover, this evaluation demon-
strates that the implication of the contextualizing process by
pre-trained language generation is conducive for generating
high-quality outputs.

Based on the direct observation of the output result,
the proposed CMCA was more context-correct in contain-
ing the visual object. For instance, refers to the same object,
the token baseball is more context-correct than the big
game, as determined by GLAC. Related to token sequence-
specific, compared with CAAM, there is similar for some
token appear in correspond to the order distribution that an-
alyzed in Fig. 8, but the remaining problem of CAAM is lack
of correct-context objects in the story generated. Lastly, the
generated result is coherent with that from the NIC, which
does not perform global attention, but separated attention.

The proposed approach generates diverse stories and pro-
duces more token varieties.

The coherence score from human evaluation reflects
the model successfully learning the story’s sequential flow,
i.e., the generated story has obvious parts such as open-
ing and closing statements. The human subjectivity score
of variation in our proposed approach shows performs bet-
ter than the baselines due to the lack of word diversity or
monotonousness of the language generated. It is implied
that the use of the pre-trained language generation weight
shows the effectiveness in overcoming the low lexical di-
versities. The relevance score shows that the generated lan-
guage is relevant to the presented images in a suitable con-
text. The fluency aspect has a lower score than the baselines
indicated that the generated story presents many object de-
tails unsatisfying the readers.

6.2 Ablation Study

The ablation study aims to explain the effect of a pre-trained
weight on the language generation stage by comparing two
conditions (i.e., with and without the pre-trained model).
Related to the decoding process, the analysis of utilizing the
pre-trained weight from a large-scale model, as mentioned
in Subsection Contextual Attention Story Generation, is pre-
sented herein. This analysis compares the two distributions
that potentially describe the quality of the generated story
(Fig. 12 (a) and 12 (b)) to investigate the effect of the pre-
trained model weight. First, the token frequency comparison
presents the token frequency from each sequence. From this
distribution, it can be concluded that the pre-trained weight
gives an impact in terms of the number of words generated,
which is greater for each sequence. Second, related to the
monotonous word generated story, the analysis is performed
by comparing the frequency of unique words between two
conditions (i.e., applying and not applying pre-trained mod-
els). Figure 12 (b) depicts that the pre-trained model can
boost the word variant for the generated story.
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Table 5 Perplexity value from the model fusion of contextual attention
sub-layer in the validation set.

Fusion type Average Perplexity

Feature Concatenation 7.56
Self-contained Attention 7.92
Stacking Attention 7.73

6.3 Contextual Attention Layer Variation Analysis

To investigate which fusion strategies are the best for the
model in obtaining the multi-modal context, perplexity eval-
uation was conducted. Table 5 presents a comparison of
the perplexity values during the training model validation
from three different fusion types (i.e., feature concatenation,
self-contained attention, and stacking attention). Feature
concatenation shows the lowest perplexity, which means it
exhibits the best performance. It is followed by stacking
attention and self-contained attention with the highest per-
plexity, which yields the lowest capability to refine outputs.
Feature concatenation performs with high flexibility to con-
sider which modality should be attended to. Self-contained
attention and stacking attention are imposed to include in-
formation from both modalities, where it has a low-context
relation. Therefore, in this study, feature concatenation was
applied to the test set to evaluate the model performance.

7. Conclusion and Future Directions

This research attempted to improve the language genera-
tion’s quality of VST by contextualizing the feature repre-
sentation. The new contextualize features resulted from the
cross-modal attention in the encoder incorporated with pre-
trained language generation. The performed comprehensive
experiment showed that the proposed model outperforms
the baseline in automatic and human evaluation. The prob-
lem of low-lexical diversity and incorrect context have over-
come, reflected by the variation and relevance score value
from the human evaluation consecutively. In the future, an-
other external resource (i.e., knowledge graph) will be con-
sidered to generate more plausible results.
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