
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022
31

LETTER Special Section on Empirical Software Engineering

Analyzing Web Search Strategy of Software Developers to Modify
Source Codes∗∗

Keitaro NAKASAI†∗a), Nonmember, Masateru TSUNODA††, and Kenichi MATSUMOTO†, Members

SUMMARY Software developers often use a web search engine to im-
prove work efficiency. However, web search strategies (e.g., frequently
changing web search keywords) may be different for each developer. In
this study, we attempted to define a better web search strategy. Although
many previous studies analyzed web search behavior in programming, they
did not provide guidelines for web search strategies. To suggest guidelines
for web search strategies, we asked 10 subjects four questions about pro-
gramming which they had to solve, and analyzed their behavior. In the
analysis, we focused on the subjects’ task time and the web search metrics
defined by us. Based on our experiment, to enhance the effectiveness of the
search, we suggest (1) that one should not go through the next search result
pages, (2) the number of keywords in queries should be suppressed, and
(3) previously used keywords must be avoided when creating a new query.
key words: web search strategy, software development, subjective experi-
ment

1. Introduction

Considerable useful programming information is available
on the World Wide Web. For example, many official refer-
ences to programming languages and Q&A websites (e.g.,
StackOverflow) are available. Software developers often use
web search engines, such as Google, to obtain useful infor-
mation that increases work efficiency [7].

Web search strategies (such as “changing search
phrases frequently”) might be different for each developer.
If the search strategy is ill-suited, it could take a long time to
find a web page that contains useful information, resulting
in a decrease in work efficiency of programming. To avoid
such a situation, we analyzed the search strategies of devel-
opers to establish guidelines for preferable web searches.

Many previous studies analyzed web search behavior
in programming [2], [3], [6], [7], [9], [11], mostly analyzing
how web searches are employed (e.g., frequency and search
target). For example, Sadowski et al. [7] analyzed how often
and what developers search for on the Web. However, these
studies did not provide guidelines for web search strategies.

Manuscript received February 26, 2021.
Manuscript revised July 12, 2021.
Manuscript publicized October 29, 2021.
†The authors are with Nara Institute of Science and Technol-

ogy, Ikoma-shi, 630–0192 Japan.
††The author is with Kindai University, Higashiosaka-shi, 577–

8502 Japan.
∗Presently, with NIT, Kagoshima College.
∗∗This work is an extended study of K. Nakasai et al., “Web

Search Behaviors for Software Development,” In Proc. of Interna-
tional Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE 2016), pp.125–128, 2016.

a) E-mail: nakasai@kagoshima.kosen-ac.jp
DOI: 10.1587/transinf.2021MPL0004

2. Web Search Metrics

We defined five web search metrics to quantitatively ana-
lyze the web search strategies of software developers. To
define the metrics, we focused on the selection of search
keywords (input into the search engine) and the understand-
ing of search results (output from the search engine). This
is because they are considered important for analyzing web
search behavior.

Result pages Per Viewed pages (RPV)

RPV = r / v (1)

The web search engine creates a web page, which in-
cludes a list of websites related to the query. We refer to
the created web page that includes the list as a search result
page. When Google is used as the search engine, a search re-
sult page contains 10 web page URLs by default. The value
r is the number of times the search result page is shown
during programming (task). The value v is the number of
web pages that are visited during programming (the value
includes r).

For example, if a developer accesses a search result
page during programming, r = 1. The developer also visits
10 web pages (i.e., a search result page and nine ordinal web
pages that are not search result pages) during programming;
therefore, v = 10. In this example, RPV = 0.1.

The typical reaction to the search result output can be
classified into two groups. One is to judge whether each
page is useful by reading only the title and summary of the
web page included in the search results, and the other is not
only to read the search results, but also to access the web
pages included in the search results and to read the content.
When the RPV is high, developers tend to do the former, and
when it is low, they tend to do the latter. The aforementioned
numerical example falls in the second group. An example of
the first case is that a developer accesses nine search result
pages and an ordinal web page. Therefore, r = 9, v = 10,
and RPV = 0.9.

Unique Queries Per Result pages (QPR)

QPR = q / r (2)

A query is defined as a string of words that a devel-
oper inputs into a web search engine. For example, “class
interface” and “null pointer exceptions” are queries. The
value q is the number of unique queries used during pro-
gramming. For example, if the queries are “class interface,”

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers



32
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

“null pointer exception,” and “class interface,” the value is
2. The definition of r is the same as that of RPV.

As explained, a Google search result page includes 10
web links, the destinations of which are related to the query
by default. To check more than 10 links, a developer should
go to the next search result page. Similarly, to check more
than 20 links, the developer should go to a search result page
after the next page. When accessing the search result pages
sequentially, the denominator of the QPR increases but the
numerator remains the same.

Therefore, when the QPR is small, developers tend to
go to the next result page. For instance, when the query is
“class interface,” and the developer browses through three
search result pages, (i.e., he/she checked 21–30 web links),
q = 1 and r = 3. As a result, the value of the QPR becomes
0.33. In contrast, a large QPR implies that the developer
does not frequent the next result pages.

The value of QPR also decreases when the developer
cannot produce a new query and uses the same query again.
In this case, the denominator also increases while the nu-
merator remains the same. This possibility was considered
in the analysis.

All key Words Per unique Queries (WPQ)

WPQ = w / q (3)

In the above equation, w is the number of keywords in-
cluded in unique queries. For example, if the query is “class
interface,” the value is 2. The value q is defined in QPR.
That is, WPQ represents the average number of keywords
in each query. Google’s search guidelines suggest that it is
preferable to include fewer keywords in queries. To ana-
lyze the validity of the guidelines in programming, we used
WPQ. When WPQ is large, it implies that the developer used
many keywords in queries.

Result pages Per Task time (RPT)

RPT = r / t (4)

The value t is the time required for the developer to
complete the programming (i.e., task). The value of r is de-
fined in the RPV. For example, if a developer accesses 10
search result pages in 10 minutes, the RPT is 1. A higher
RPT indicates that the developer gains knowledge from the
Web (or is reading search result pages), instead of program-
ming or reading non-search result pages.

Unique key words Per all key Words (UPW)

UPW = u /w (5)

The value u refers to the number of unique keywords
used during programming. For example, used queries are
“class interface” and “class abstract,” the value u is 3 and
the value w is 4. A higher UPW indicates that the developer
uses the same keywords when creating a new query.

3. Experiment

3.1 Overview

In the experiment, we asked the subjects four questions

about programming, and they tried to solve them. The
subjects were ten students majoring in information science.
One of them was a master course student, one a second-year
undergraduate, and the remaining were third-year students
(ages of all the students were approximately 20). Although
the number of subjects was fairly small, some studies used
10 subjects [4], [5]. The subjects used Google Chrome as a
web browser, Google as a search engine, and Eclipse as an
editor. Some metrics are based on the number of accessed
web pages, which, in turn, is based on the history of the title
of the web browser; the history is collected using software
(Key Logger Free Edition) [10].

Although the subjects were not professional software
developers, the study [8] suggests that the difference be-
tween students and professionals is little. Thus, students can
substitute practitioners. We believe that the results of the
analysis would not be significantly different if practitioners
were used as subjects. However, experiments using profes-
sionals as subjects will be conducted in our future studies.

3.2 Questions about Programming

The questions about programming were linked to Java be-
cause all the subjects studied Java at their universities. In
the questions, the source code that should be modified was
given in advance. Each source code had a defect, and the
subjects were asked to search through the Web and under-
stand the cause of the defect and how to fix it. The source
code was modified based on the knowledge obtained. After
the experiment, the subjects were asked whether they knew
the solution before the experiment.

Question one: In a given source code, the floating-
point operation raises an error. In the question, we asked
how to fix the problem using a Java library [1]. To solve this
problem, subjects must find an appropriate library.

Question two: A given source code uses an array list
as the data structure to store the data. Subjects should mod-
ify the program using an associative array. The question
does not directly indicate the use of an associative array.
However, an associative array should be used to fulfill the
function described in the question.

Question three: In a given source code, data is re-
ceived from a website. Character codes are shown, although
the expected result is an html document format. To solve
this problem, subjects must find an I/O library of Java.

Question four: In a given source code, an appropriate
error message is not shown. To solve the problem, subjects
need to understand the exception hierarchy of Java.

Definition of correct answer: If the subject answered
the current question correctly, the next question was dis-
played. That is, the next question was shown only when
the subject’s answer to the previous question was correct.

Definition of task time: The task time started when
a question was displayed to the subjects and ended when
JUnit confirmed that the program was modified correctly.
Notably, the task time includes not only the web search-
ing time, but also the coding time of the program (i.e., the



LETTER
33

time to modify the program based on the web search re-
sults). However, the coding time was considered short and
did not differ much among the subjects. Therefore, this
would not affect the analysis. This is because it is easy to
modify source codes in the questions if an appropriate li-
brary is found. Task time is discussed in detail in Sect. 5.2.

Definition of incorrect answer: No time limit was set
for answering the questions. However, if the task time for
a question exceeded 20 min, the question could be skipped.
The skipping of a question was considered as an incorrect
answer and the skipped question could not be answered
again (e.g., when a subjects started to answer Question 2,
it could not return to Question 1).

3.3 Research Questions

To clarify the goal of the analysis, we formulated the fol-
lowing research questions. In the questions, “beter” means
“effective to shorten task time.”

• RQ1: To judge the utility of the web pages shown
in the search results, is it better to access the pages
in addition to reading their summaries included in the
results?
• RQ2: Is it better to go through next search result

pages?
• RQ3: Is it better to suppress the number of keywords

in queries?
• RQ4: Is it better to gain more knowledge from the Web

(i.e., showing more result pages) in a short time?
• RQ5: Is it better to avoid previously used keywords

when creating new queries?

4. Results

Analyzed data: Ten subjects answered four questions, and
as a result, 40 data points were collected. In seven cases out
of the 40 data points, subjects knew the library (solution)
to be applied in advance. The number of correct answers
was seven for Question 1, 8 for Question 2, and 6 each for
Questions 3 and 4. Three subjects answered all the ques-
tions correctly, and one subject answered all the questions
incorrectly.

When we excluded seven cases where subjects knew

Fig. 1 Relationships between web search metrics and task time

the solution in advance, the number of available data points
was 33. Additionally, when we excluded 13 cases of incor-
rect answers (i.e., skipped questions), 20 data points were
used for the analysis. Because the number of data points is
not very large, we also analyzed the 33 data points which
included incorrect answers, as a reference.

Relationships to task time: We assumed that shorter
task time means higher work efficiency and analyzed the
relationship between task time and Web search metrics.
Spearman’s rank correlation coefficient was used to analyze
the relationships to avoid the influence of outliers. In psy-
chology, if the absolute value of the correlation coefficient
is larger than 0.2, the relationship is regarded as a weak cor-
relation. In the subject experiment of software engineering,
the condition was similar to that of the psychology experi-
ment. Therefore, we focused on correlations with an abso-
lute value larger than 0.2.

The correlation coefficients and p-values between the
task time and web search metrics are shown in Table 1. The
absolute values of the correlation for all metrics were larger
than 0.2 for the 20 correct answers. Of the 33 data points,
including incorrect answers, the absolute values were also
larger than 0.2, except for RPV.

4.1 Analysis to Answer RQ1

RPV: Although RPV was positively correlated with task
time, we cannot answer “yes” to RQ1. The 20 data points
were divided into two groups (longer task time and shorter
task time) according to the median of the task time. The
median number of accesses to destination pages was 16 in
the longer task group and 7 in the shorter task group. That
is, the number of accesses to the pages was large in the first
group (RPV was not positively related to time).

Table 1 Correlation coefficients between task time and web search
metrics



34
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

4.2 Analysis to Answer RQ2

QPR: Figure 1 (a) shows a scatter plot of the task time for
20 data points of the correct answers. In the figure, the
data point denoted by “X” is considerably different from the
other data points. When we exclude the outlier, the corre-
lation coefficient becomes −0.254 (p-value = 0.296), which
is almost the same as when the outlier is not removed.

We cannot explicitly observe a monotonic decreasing
trend in the figure. However, when the task time was shorter
(less than approximately 30 min), there were more data
points whose QPR was larger (i.e., larger than approxi-
mately 0.4). In contrast, when the task time was longer,
there were more data points with a smaller QPR. Therefore,
a negative correlation is observed in the figure.

In Fig. 1 (a), we focus on data points, the task times
of which were shorter than the median (i.e., data points on
the left side of the graph), and those with task times longer
than the median (i.e., data points on the right side). If the
longer-time subjects often used the same query again, the
numerator of the QPR did not increase but the denominator
increased. As a result, the tendency of the QPR is identical
to that of the graph. In this case, the QPR indicates how
often a query is reused but does not indicate how often it
goes to the next result pages.

However, the numerator’s average and median were
7.95 and 7, respectively, for the shorter-time subjects, and
12.62 and 14, respectively, for the longer-time subjects.
That is, the number of queries used by the longer-time sub-
jects increased. Therefore, when the QPR is small, the
subjects tend to not use the same query repeatedly but go
through the next result pages.

According to the results, when the QPR is small, that is,
when a developer goes to the next result pages more often,
the task time tends to be longer. Therefore, the answer to
RQ2 is “no.”

4.3 Analysis to Answer RQ3

WPQ: The scatter plot of the task time for 20 correct an-
swers is shown in Fig. 1 (b). In the figure, the data point
denoted by “X” is considerably different from the other data
points. When the outlier was excluded, the correlation coef-
ficient became 0.415 (p-value = 0.077), and the correlation
became stronger when the outlier was not excluded. In the
figure, it can be observed that the minimum and maximum
WPQ of data points whose task time is approximately 10
min, are lower than that of data points whose task time is
approximately 30 min.

In the former case, the range of the WPQ was approxi-
mately 1.5–2.5, and approximately 3.0, in the latter case. In
some cases, the task time was equal to the medium (approx-
imately 20 min) and the WPS was around 3.0, as shown in
the figure. Therefore, although it is better to use fewer than
three words in each query, this is not a necessity. All sub-
jects used Japanese for the web search engine. Therefore,

the above range of the WPQ could vary when English or
other languages are used for the web search.

From the results, it can be observed that when the WPQ
is large, that is, when the developer includes several key-
words in the query, the task time tends to be longer. There-
fore, the answer to RQ3 is “yes.”

4.4 Analysis to Answer RQ4

RPT: RPT was positively correlated with task time. This
indicates that when the task time increases, web searches per
task time also increase. This simply indicates that the task
is stuck (i.e., the number of searches increased because an
appropriate web page was not found). Therefore, the answer
to RQ4 is “no.”

4.5 Analysis to Answer RQ5

UPW: The p-value was smaller than 0.05. That is, the cor-
relation was statistically significant at 5%. The scatter plot
of the task time for 20 correct answers is shown in Fig. 1 (c).
From the figure, we can see that when the UPW is small, the
task time tends to be long.

Therefore, when the UPW is high, that is, the new
query does not include the keywords used before, the task
time tends to be short. That is, the answer to RQ5 is “yes.”
To choose new keywords, it might be better to use synonyms
of the keywords used previously.

5. Discussion

5.1 Analysis Focusing on Correctness of Answers

To understand the web search metrics from another perspec-
tive, we focused on the relationship between the correctness
of answers and the web search metrics. To analyze the rela-
tionship, we created a dummy variable that denotes whether
the answer is correct or incorrect; the value is 0 in the former
case and 1 in the latter cases. Same as Table 1, we calculated
Spearman’s rank correlation coefficient between the dummy
variable and web search metrics.

The correlation coefficients using 33 data points are
shown in the top row of Table 2. We only focused on the
QPR, WPQ, and UPW because they are related to work ef-
ficiency, as explained in Sect. 4. Although the absolute val-
ues are smaller than those in Table 1, the positive and neg-
ative values of each metric are identical to those in Table 1.
We speculated that the absolute values in the top row of Ta-
ble 2 decreased owing to data points with correct answers
but longer task time.

Table 2 Correlation coefficients between the correctness of answers and
web search metrics



LETTER
35

To suppress the influence of such data points, we also
set the dummy variable to 1 when the answer of the data
point was correct but its task time was longer than 66 per-
centile of the time. Intuitively, we also regarded the data
points as incorrect answers when the task time was longer.
As a result, the value of the dummy variable became 1 for 4
of the 20 correct answers.

Under the above conditions, as shown in the bottom
row of Table 2, the correlation coefficients of the QPR,
WPQ, and UPW were similar to those in Table 1. There-
fore, even when we consider the correctness of answers, the
proper web search strategies suggested in Sect. 4 still apply.

5.2 Relationship between Coding and Task Time

In the analysis, it would be better to remove the coding
time from the task completion time. However, coding and
searching can be frequently switched during the tasks. For
instance, a subject finds an undesired web page and modi-
fies the program incorrectly. In this case, the program does
not pass the unit test prepared by us, and the subject tries
again to find desired web pages. Therefore, it is difficult to
automatically distinguish the search time from the task time.

For 20 correct answers, the average number of web
pages visited per minute was 1.32, and the median was 1.04.
The average number of webpages visited during the task was
33.5. In the case of 33 data points, including incorrect an-
swers, the values were 1.45, 1.19, and 61.6 respectively. The
results suggest that subjects spent most of their task time
searching. This is because the tasks typically require sub-
jects to find proper libraries but not to formulate appropriate
algorithms. Therefore, the tasks can be completed easily
by using proper libraries but cannot be completed without
them. For example, given the source code for question one
is the following:

double answer = 2.00 - 1.10

To set the value of the answer as 0.90, the BigDecimal class
should be used as follows:

BigDecimal answer = new BigDecimal("2.00")

.subtract(new BigDecimal("1.10"))

Although the modification is easy, the value of the answer
cannot be set as 0.90 without the BigDecimal class. There-
fore, the coding time was considered short and did not differ
much among the subjects.

5.3 Threats to Validity

Internal validity: The tasks in the experiment required the
subjects to find proper libraries. However, the details of the
tasks were different, and the difference could be a confound-
ing factor in the analysis. This issue could be easily solved
by classifying the data per question. However, the classi-
fication reduces the data points considerably, making their
analysis difficult. Therefore, we did not classify the data;

however, we should be aware of the possibility of confound-
ing in the tasks before utilizing the analysis results.

External validity: The experimental results were only
observed in the tasks to find proper libraries. Developers
could also use web search engines to identify the cause of
system failure, such as runtime errors. A future research un-
dertaking is to clarify a better web search strategy for other
types of tasks.

6. Conclusion

We analyzed the web search strategy of developers in pro-
gramming. We defined web search metrics to analyze the
strategies. In the experiment, subjects answered questions
about programming (the usage of Java libraries), gaining
knowledge about the questions from the Web. In the analy-
sis, we focused on the relationship between web search met-
rics and task time to solve these problems. The analysis
suggests that search strategies are preferable for reducing
time.

• It is recommended not to go through next search result
pages much.
• It is better to suppress the number of keywords in

queries.
• When creating a new query, it is better to avoid previ-

ously used keywords.

In actual software development, developers make use
of searches on the Web for various reasons. The above
search strategies are expected to be effective, especially
when developers use libraries for programming. Note that,
owing to the small size of the experiment, the obtained re-
sults are preliminary. We plan to conduct further research to
validate these strategies in a future work.

Acknowledgments

This research was partially supported by the Japan Soci-
ety for the Promotion of Science (JSPS) [Grants-in-Aid
for Scientific Research (C) and (S) (No.21K11840 and
No.20H05706).

References

[1] J. Bloch and N. Gafterj, Java Puzzlers: Traps, Pitfalls, and Corner
Cases, Addison-Wesley Professional, 2005.

[2] S. Bajracharya and C. Lopes, “Analyzing and mining a code search
engine usage log,” Empirical Software Engineering, vol.17, no.4,
pp.424–466, 2012.

[3] R. Gallardo-Valencia and S. Sim, “Information used and perceived
usefulness in evaluating web source code search results,” Proc. CHI
’11 Extended Abstracts on Human Factors in Computing Systems,
pp.2323–2328, 2011.

[4] T. Mizuno, S. Nomura, A. Nozawa, H. Asano, and H. Ide, “Eval-
uation of the effect of intermittent mental work-load by nasal skin
temperature,” IEICE Trans. Inf. & Syst., vol.J93-D, no.4, pp.535–
543, 2010 (in Japanese).

[5] T. Nakagawa, Y. Kamei, H. Uwano, A. Monden, and K. Matsumoto,
“On measuring the difficulty of program comprehension based on

http://dx.doi.org/10.1007/s10664-010-9144-6
http://dx.doi.org/10.1145/1979742.1979858


36
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.1 JANUARY 2022

cerebral blood flow,” Computer Software, vol.31, no.3, pp.270–276,
2014 (in Japanese).

[6] M. Rahman, J. Barson, S. Paul, J. Kayani, F. Lois, S. Quezada,
C. Parnin, K. Stolee, and B. Ray, “Evaluating how developers use
general-purpose web-search for code retrieval,” Proc. International
Conference on Mining Software Repositories (MSR), pp.465–475,
2018.

[7] C. Sadowski, K. Stolee, and S. Elbaum, “How developers search for
code: a case study,” Proc. Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), pp.191–201, 2015.

[8] I. Salman, A. Misirli, and N. Juristo, “Are students representatives
of professionals in software engineering experiments?,” Proc. Inter-
national Conf. on Software Engineering (ICSE), pp.666–676, 2015.

[9] S. Sim, M. Umarji, S. Ratanotayanon, and C. Lopes, “How Well Do
Search Engines Support Code Retrieval on the Web?,” ACM Trans-
actions on software Engineering and Methodology, vol.21, no.1,
article 4, 2011.

[10] Sword, Key Logger Free Edition, http://keylog.web.fc2.com/
keyfree/keyfree.html

[11] X. Xia, L. Bao, D. Lo, P. Kochhar, A. Hassan, and Z. Xing, “What
do developers search for on the web?,” Empirical Software Engi-
neering, vol.22, no.6, pp.3149–3185, 2018.

http://dx.doi.org/10.1145/3196398.3196425
http://dx.doi.org/10.1145/2786805.2786855
http://dx.doi.org/10.1109/icse.2015.82
http://dx.doi.org/10.1145/2063239.2063243
http://dx.doi.org/10.1007/s10664-017-9514-4

