IEICE TRANS. INE. & SYST., VOL.E105-D, NO.1 JANUARY 2022

| PAPER Special Section on Empirical Software Engineering

An Exploration of npm Package Co-Usage Examples from Stack

Overflow: A Case Study

Syful ISLAM'®, Dong WANG', Raula GAIKOVINA KULA', Nonmembers, Takashi ISHIO', Member,

SUMMARY Third-party package usage has become a common prac-
tice in contemporary software development. Developers often face differ-
ent challenges, including choosing the right libraries, installing errors, dis-
crepancies, setting up the environment, and building failures during soft-
ware development. The risks of maintaining a third-party package are well
known, but it is unclear how information from Stack Overflow (SO) can
be useful. This paper performed an empirical study to explore npm pack-
age co-usage examples from SO. From over 30,000 SO question posts, we
extracted 2,100 posts with package usage information and matched them
against the 217,934 npm library package. We find that, popular and highly
used libraries are not discussed as often in SO. However, we can see that
the accepted answers may prove useful, as we believe that the usage exam-
ples and executable commands could be reused for tool support.

key words: package managers, npm, Stack Overflow

1. Introduction

Usage of third-party packages in contemporary software de-
velopment has become a common practice by developers.
For example, npm (i.e., Node.js package manager) is by far
the largest package manager, allowing developers to reuse
functionality instead of creating their own, saving both time
with minimal efforts. The npm ecosystem has provided over
800,000 free and reusable software libraries and is trusted
by over 11 million developers around the world*.

Despite these benefits of using packages, developers
constantly face a variety of issues when using them. Di-
etrich et al. [1] performed a case study and showed that par-
tial package upgrades have high potential to introduce bi-
nary incompatibility problems at build time. Raemaekers et
al. [2], [3] pointed out that developers are wary of the inher-
ent costs and risks of package incompatibilities when inte-
grating new and unknown packages into their systems. Most
prior work have explored package usage [4], [S], developing
package recommendation tools [6]-[11].

Previous studies reported that question-answering web-
sites such as Stack Overflow (SO) are useful for com-
municating developers’ issues. Several studies have been
conducted on SO resources including source code utiliza-
tion [12], analogical libraries recommendation [13], fixing
runtime exception [14], improving API documentation [15],

Manuscript received February 26, 2021.
Manuscript revised July 14, 2021.
Manuscript publicized October 11, 2021.

"The authors are with the Graduate School of Science and
Technology, Nara Institute of Science and Technology, Ikoma-shi,
630-0192 Japan.

a) E-mail: islam.syful.il4 @is.naist.jp
DOI: 10.1587/transinf.2021MPP0003

and Kenichi MATSUMOTO, Fellow

API usage scenarios [16] and so forth. Other studies have
focused on more interviews and surveys of developers [17],
[18]. We hypothesize that the library usage information
from SO may also be beneficial for developers. While the
risks of maintaining third-party libraries are well known, it
is still unclear that whether the library usage information
mined from question-answering sites are useful or not in
maintaining libraries.

To fill this gap, in this paper, we perform an exploratory
study on package usage information from SO in term of co-
usage relationship. As defined by Todorov et. al[19], co-
usage is the pattern of package dependencies that are used
together. The rationale behind refining the co-usage rela-
tionship is to study problems caused by npm packages. In
particular we investigate (i) whether we can detect package
usage (i.e., co-usage) information from SO and (ii) what the
developers are looking for to solve problems related to the
package. To address these, we study over 2,100 SO posts
and matched them to 217,934 npm library packages. We
reveal the following valuable lessons along the way:

Lesson 1: We find that only three out of the top ten
of the most used npm libraries are mentioned in SO. The
top-3 discussed npm packages are react, typescript,
and webpack. Again, the top-5 libraries that are less
frequently discussed in SO are mocha, eslint, chai,
babel-core, and lodash. One possible reason is that,
well-known libraries are well documented and may have
their own forum, chat tools, etc. For this reason, there is
no need to discuss them in SO. Furthermore, we find that
87.95% of package co-usage mined from SO exist in the
latest npm package release.

Lesson 2: Developers post answers provided with us-
age example or execute command. Results do indicate the
potential for a recommendation system, especially with the
available execute commands and examples.

Although SO has been a useful resource for finding an-
swers to questions, we find that popular and highly used
libraries are not discussed as often. However, we can see
that the accepted answers may prove useful, as we believe
that the usage examples and executable commands could be
reused for tool support.

The remainder of the paper is organized as follows.
Section 2 presents motivating example and research ques-
tions. Section 3 describes the data preparation. Section 4

“https://www.npmjs.com/

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers

12

presents the analysis approach. Section 5 reports the results
for each research question. Section 6, discusses the implica-
tions from this study. Section 7, presents the related works
and the research gap. Section 8 discloses the threats to va-
lidity of our study. Finally, we conclude the paper in Sect. 9.

2. Motivating Example

Recent studies point out that SO is a useful question-
answering site among developers to communicate various
issues [13]-[16], [20]. In this paper, our motivation is to in-
vestigate the following assumptions:

e Package usage information mined from SO is useful to
solve developers issues while using libraries.

e Developer responses to package usage information in
SO follow some useful patterns that might be reused
by the recommendation tools.

Figure 1 shows an example of a package co-usage re-
lated question post from SO'. As shown in the fig-
ure, a developer posts a question on the error issue of
node_module installation, resulting from two dependent
packages babel-loader and webpack. A closer look into
the question description, we observe that the successful in-
stallation of babel-loader@7.1.2 requires the package
dependency of webpack@2||3. This issue is solved by a
simple installation command (i.e., npm install webpack
-g) mentioned in the accepted answer of the question. Such
a motivating example suggests that package usage informa-
tion mined from question answering sites may help solve
package-related issues.

Research Questions: Our goal in this paper is to inves-
tigate whether package usage information mined from SO
can help maintain the packages. We formulate two research
questions to guide our study.

e RQ;: What proportion of package usage informa-

tion mined from Stack Overflow exist in npm pack-
ages?
Motivation. Developers often share package usage in-
formation to communicate various software develop-
ment issues through SO. We would like to understand
what is the difference in the package usage information
between SO and npm projects.

¢ RQ,: What kinds of answers are posted in response

to questions that include package usage informa-
tion?
Motivation. This research question investigates the de-
veloper’s response to package usage information dis-
cussed in SO posts. We argue that a closer look at the
answers may reveal practical insights to improve real
developers’ experience dealing with package co-usage
issues.

IEICE TRANS. INF. & SYST., VOL.E105-D, NO.1 JANUARY 2022

’ .
i Question }
T ’
babel-loader@7.1.2 requires a peer of
webpack@2 || 3 but none was installed
Asked 3 years, 7 months ago Active 2 years, 4 monthsago Viewed 12k times
| am having this issue while installing all node_modules. And this is making
me crazy.
6
I babel-loader@7.1.2 requires a peer of webpack@2 || 3 but none was |
Lingfalleds o o e e e e e e e o |
‘ N Throws Error
Here is my package.json file
{

"name”: "react-router-firebase-auth”,

"version™: "0.1.0",

"private": true,

"devDependencies™:

I "babel-core": "26.26.0", ||:> PaCkage Co-usage
"babel-loader”: "~7.1.2", example
"EbeT—pﬁgﬁ—’c_rarﬁw‘oﬁn—e_szﬁsmodlules—commonjs”: "76.26.0",
"babel-preset-es2015": "~6.24.1",

"babel-preset-react”: "~6.24.1",
"react-scripts": "@.9.5"
b
| am using create-react-app for this project. So i could not change
webpack.config.js file. What am i supposed to do here?
javascript reactjs npm babel-loader
eSS ~

{ Accepted Answer }
N,

Please read this post. It describes what a peer dependency is.

6 https://stackoverflow.com/a/34645112/2379376

What that means is that you have webpack not installed at all or you have a different
V version (webpack 1.x) installed. But this plugin needs webpack in version 2 or 3 to
function properly.

What you can do is

npm install webpack -g

So npm will install the newest version of webpack on your system. But now other
peer warnings could occur when other loaders need an older version of webpack.

Fig.1 A motivating example of npm package co-usage in Stack Over-
flow. The example shows that a developer encounters a issue when in-
stalling all node_modules, due to two dependent packages babel-loader
and webpack’™.

3. Data Preparation

Our study exclusively examines the npm package usage in-
formation from Stack Overflow. Stack Overflow is the
largest and most popular question-answering site among de-
velopers, which allows them to ask developers and experts
for development related questions. In addition, to compare
with the package usage from the reality, we collect another
dataset from the libraries.io.’" libraries.io is pop-

Thttps://stackoverflow.com/questions/46742824

TThttps://libraries.io/

ISLAM et al.: AN EXPLORATION OF NPM PACKAGE CO-USAGE EXAMPLES FROM STACK OVERFLOW: A CASE STUDY

g
Projects (D2)

= Question
- posts

[l Tul package

usage information

npm package
usage information

Calculate proportion of
Popular package usage

= package usage
= Proportion

X

Calculate co-usage
information related to
Npm packages

RQ;

Dataset (D1

= Accepted
Answer posts

D Sample
"I accepted
answer posts

&

Manual analysis to
classify accepted
answer

= Useful answer to
solve package
usage issues

Fig.2 An overview of the methodology of our study.

ularly known to monitor package releases. Below, we de-
scribe the details of two studied datasets.

(D1) from Stack Overflow posts: We rely on the SO-
Torrent [21] to download the Stack Overflow data dump. We
collect npm related question posts using a semi-automatic
method. To do so, we first extract all tags from the ques-
tion posts, and then we manually check whether or not
the tags are directly related to the npm packages. After
the examination, a list of eight tags that reflect npm pack-
ages posts are generated, i.e., ‘npm’, ‘npm-install’, ‘npm-
script’, ‘npm-ignore’, ‘pnpm’, ‘npm-shrinkwrap’, ‘npm-
start’, ‘npm-build’. We automatically identify all question
posts using the defined tag list, resulting in 30,136 questions
related to npm packages.

Next we further extract the npm related questions that
contain the package usage information. We observed that
several package names are as common as the natural lan-
guage, i.e., i, moment, should, express, etc.). Thus, to
reduce the bias, we only take those question posts that con-
tain package. json files, resulting in 2,805 question posts.
As we focus on the relatively popular libraries, we extract
all packages from these question posts and sort out 628 npm
packages whose frequency are greater than ten.

To ensure that our sample dataset contains most npm
libraries, we use the cumulative sampling method to assure
that our question posts are saturated to cover all 628 npm
packages. Finally, our Stack Overflow npm package usage
dataset consists of 2,100 question posts, as shown in Table 1.

(D2) from npm packages: To compare the package us-
age information with SO ones, we construct a dataset con-
sisting of npm packages from libraries.io. To do so,
we first downloaded the latest history data dump, which is
available at https://libraries.io/data, resulting in a
total number of 1,005,955 npm project release history.

Similar to the (D1), we extract the libraries from these
1,005,955 projects and sort out 23,870 npm packages whose
frequency are greater than ten. In the end, our libraries.io
npm package usage dataset consists of 217,934 npm projects
using the cumulative sampling method, as shown in Table 1.

Table1 Summary of dataset used in the study.

Initial dataset Final dataset

30,136 2,100
100,5955 217,934

Data Source

D1: SO (npm question posts)
D2: libraries.io (npm projects)

4. Data Analysis

In this section, as shown in Fig. 2, we describe in detail the
approaches we use to answer two research questions.

4.1 Approach for RQ;

We perform an exploratory study to understand to which ex-
tents do developers discuss the package usage information
from SO. Below, we describe our approach in detail.

Proportion of popular package usage: To analyze the
proportion of package usage in SO and npm projects, we ex-
tracted libraries from SO posts obtained in datasets D1 and
D2, separately. Afterward, we count and sort these packages
based on the frequency.

Co-usage information related to npm package: To an-
alyze the frequency of package usage information, we first
need to identify npm package co-usage. To do so, we fol-
low the two steps: (I) we extract all the target packages ap-
pearing in the code snippets from 2,100 SO post related to
npm package obtained in Sect.3 (D1). Then we generate
all possible binary combinations for co-usage of npm pack-
ages. For example, if a project contain three package depen-
dencies (A, B, C), then the generated list of binary package
co-usage will be: (A, B), (A, C), (B, C). After this step,
we were able to retrieve 68,750 npm package co-usage in-
formation from SO. (II) we then extract the npm package
co-usage information based on the latest release, referring
to 217,934 npm projects in Sect.3 (D2). Finally, we check
the occurrences of SO npm package co-usage information
in the generated package co-usage from latest npm projects
using the following formula: £ X 100 where @=Number of
SO npm package co-usage found in the latest npm project
release, and S=Total npm package co-usage extracted from

14

function custom compile, 1 nst all in
FeaCt ca”tpro eCt Commandﬁﬂ fmil_g

unexpecte :i token npm scripg

mpmwins

bu il ducsin depen

node madule

heroku

private

enc les failed

folderhv‘ equire

changz

il Tyl

ib rai'—i,'f

Oul‘ld nqdels\

; AT ian

mun% llFEG

or lcmtsr;btcﬁc TET NEm gUlp kg dack

br awsinfy

running npm

)
==
f=2

g
%::r
r— o

node_module T§SE, ...

node js<ireact native
g

creste react .
angulaeréP oying

anguy

reanljs github

"
2
5
=1
-
=
5
Il
A
E

peer cependencies

"
work \JEF;';

e Jusing webﬁack

sasz Havaserips | MBIV regaTve bootst
reed

nsta 1 31

npm stéft

]
impur L

directory

; m =
yeH
"Ul

u
=2

=]
running

Toraity TypEErTor peer dependenc vtn tallation ®angul, ari
sopacka age..json

Flugin typescrlpt anpo‘\ent Lleaclrg e window

ouncle erdine ervirenment

Fig.3 Word cloud generated from SO npm posts title that contains pack-
age usage information. The word cloud shows that npm posts are primarily
related to various types of errors.

SO.

In addition, to understand the issues raised by package
related question, we extract the title information from 2,100
Stack Overflow posts obtained in D1 and automatically ex-
tracted the keywords using traditional Nature Language Pro-
cessing (NLP), including stop word removals. The output is
a corpus of title keywords.

To visually understand the package related issues asked
in the SO, we generate a word cloud based on the con-
structed title corpus.

Observation 1- The npm post that discuss package us-
age information are mostly relate to different type of er-
rors. Figure 3 shows the Word cloud based on SO posts
titles. The word cloud shows that npm posts regarding pack-
age usage information are primarily related to various types
of errors like installation error, build failure, etc.

4.2 Approach for RQ,

We conduct a qualitative analysis to investigate the accepted
answer post from SO. We analyze the accepted answer since
these answers are solutions that work for developers’. Be-
low we describe the representative sample construction and
the manual coding process.

Representative sample construction: As the full set of
our constructed data is too large to manually examine their
accepted answers, we then draw a statistically representative
sample. The representative sample consists of 286 randomly
selected accepted answer, with a confidence level of 95%
and a interval of 577,

Thttps://stackoverflow.com/tour
TThttps://www.surveysystem.com/sscalc.htm

IEICE TRANS. INF. & SYST., VOL.E105-D, NO.1 JANUARY 2022

Why don't you use angular-cli to generate angular 4

projecti Here is the link: htips://cli.angular.io/ :>Usage
1 examples

Steps that you need to follow:

1. Install the Angular CLI: Step’by step
V instruction

j‘> Execute
command

npm install -g @angular/cli

2. Generating and serving an Angular project :

ng new my-project
cd my-project
ng serve

3. open http://localhost: 4200/ in your browser

Fig.4 An example that motivates to classify developers response. In the
answer we observe that, it contains usage examples, execute command, and
step by step instruction.

Manual coding: We adopt three rounds to do our man-
ual coding. First, the three authors independently sampled
25 random questions and conducted an open discussion to
establish an initial code taxonomy. Hence, the following
three codes emerged from our manual analysis in the first
round.

o Execute command: The accepted answer explicitly
mentions executing commands. In definition, execute
commands describe the process of running a computer
software program, script, or command. As shown in
Fig.4, npm install -g @angular/cli is an exe-
cute command to install ‘angular/cli’.

o Step by step Instruction: The accepted answer contains
step by step information to get the solution. In defi-
nition, instructions are detailed (i.e., step by step) in-
formation about how something should be done or op-
erated. As shown in Fig. 4, the accepted answer con-
tains three distinct step to solve the library usage issue
(i.e., Angular CLI installation, generating and serving
an Angular project, and open local host page in the
browser.)

e Usage Example: The accepted answer explicitly men-
tions examples, referred to external links, source code,
configuration files, etc. In definition, usage examples
are defined as models, or typical cases (like external
links, source code, etc.) used to solve a problem. As
shown in Fig. 4, the external link mention in the begin-
ning of the answer is usage example.

In the second round, to assure that there is no new cases,
the three authors coded another 25 samples and we found
that the initialized codes can totally fit. In the third round,
to test the comprehension understanding, we coded another
20 samples and used the Kappa score to measure the agree-

ISLAM et al.: AN EXPLORATION OF NPM PACKAGE CO-USAGE EXAMPLES FROM STACK OVERFLOW: A CASE STUDY

ment. The score is 0.82, which is implied as nearly per-
fect[22]. Based on this encouraging result, the first author
then coded the rest of the representative sample indepen-
dently.

5. Results

In this section, we provide the results for each research ques-
tion. First, we describe the result analysis, and then high-
light our findings and answer each question.

5.1 Answering RQ

To show the proportion of popular package usage, we de-
pict tables to statistically show the package usage between
SO and npm projects. Then, to analyze the frequency of So
npm package co-usage in the latest npm projects, we calcu-
lated the ratio using formula (i.e., £ x 100) discussed in the
approach.

Observation 2- Only three out of top-10 npm pack-
ages are mostly discussed in SO. Table 2 shows the top-15
packages discussed in SO with their proportion and ranks
in the latest npm projects. The top-3 discussed npm pack-
ages are react, typescript, and webpack. Again, Ta-
ble 3 shows the top-15 package usage extracted from the
latest npm projects. We observe that, the top-5 packages
in the latest npm projects which are less frequently dis-
cussed in SO are mocha, eslint, chai, babel-core,
and lodash. One possible reason is that, such well-known
libraries are well documented and may have their own fo-
rum, chat tools, etc. For this reason, there is no need to
discuss them in SO.

Observation 3- 87.95% of the SO package co-usage
information exist in the latest npm project release. Further-
more, Table 4 shows the top-15 SO package co-usage men-
tioned by developers. We observed that most of the package
co-usage mentioned by developers are related to angular
followed by (‘typescript’, ‘zone.js’). The top co-

Table 2 Top-15 npm packages extracted from SO posts with their pro-
portion and rank in the latest npm projects. Result shows that Only three
out of top-10 npm packages are mostly discussed in SO.

Count Rank

npm packages Cosu(r)lt (npm Rsaonk (npm
SO projects) SO projects)

react 586 42,591 1 9
typescript 548 57,864 2 4
webpack 489 52,453 3 5
rXjs 471 12,339 4 69
zone.js 462 8,570 5 119
react-dom 461 32,941 6 16
@angular/core 434 10,050 7 95
@angular/common 434 9,406 8 103
@angular/compiler 426 9,170 9 110
@angular/platform-browser 424 8,482 10 120
@angular/platform-browser-dynamic 419 7,634 11 132
jquery 413 9,263 12 108
@angular/forms 401 6,608 13 147
@angular/http 388 5,433 14 169
@angular/router 380 5,583 15 166

15

usage patterns from SO and their rank hints that developers
face most error type issues when they use angular packages.

RQ; Summary: Our analysis result shows that,
only three out of top-10 npm packages are mostly
discussed in SO. In addition, 87.95% of the SO npm
package co-usage information exist in the latest npm
project release.

5.2 Answering RQ,

To show the useful accepted answer attributes pattern in re-
sponse to the package usage question by developers, we pre-
pare all possible combinations for three manually curated

Table 3 Top-15 package usage extracted from the latest npm projects
with their proportion and rank in the SO posts. The top package usage
patterns from npm projects shows that application developers top usage
packages are different from SO.

Count Count Rank Rank
npm package

(npm projects) (SO) (npm projects) (SO)
mocha 101898 126 1 65
eslint 81767 199 2 45
chai 58368 114 3 78
typescript 57864 548 4 4
webpack 52453 489 5 5
babel-core 51351 309 6 26
lodash 45618 348 7 19
babel-loader 44398 340 8 22
react 42591 586 9 1
jest 41188 115 10 76
babel-eslint 39336 134 11 68
babel-cli 38038 102 12 83
eslint-plugin-import 36019 94 13 90
@types/node 35197 320 14 24
rimraf 34466 139 15 63
Table 4 Top-15 package co-usage extracted from SO posts except

angular since rest of the top co-usage are related to angular. The
top co-usage patterns and their rank in SO indicate that developers dis-
cuss most package dependency issues related to angular followed by
(‘typescript’, f‘zone.js’).

Package Co-usage Rank Count
(‘typescript’, ‘zone.js’) 9 317
(‘zone.js’, ‘rxjs’) 15 290
(‘react-dom’, ‘react’) 17 288
(‘typescript’, ‘rxjs’) 21 283
(‘karma’, ‘karma-jasmine’) 31 258
(‘zone.js’, ‘core-js’) 33 251
(‘core-js’, ‘rxjs’) 39 233
(‘webpack’, ‘babel-loader’) 40 230
(‘typescript’, ‘core-js’) 40 230
(‘jasmine-core’, ‘karma-jasmine’) 43 225
(‘karma-jasmine’, ‘karma-chrome-launcher’) 44 223
(‘babel-core’, ‘babel-loader’) 45 220
(‘typescript’, ‘tslint’) 46 216
(‘typescript’, ‘karma’) 47 210
(‘typescript’, ‘karma-jasmine’) 48 209

16

Usage example

Execute command

Exceute command and usage
example

Step by step instruction

Others

Execute command, step by step
instruction, and usage example
Step by step instruction and
usage example

Exceute command and step by
step instruction

Accepted answer attribute patterns

Count (%)

Fig.5 Analysis of accepted answers posted in response to questions that
include package usage information. Result shows that 37.76% accepted an-
swers contain usage example followed by execute command 19.58%.

attributes: Execute command, Step by step instruction, and
Usage example, respectively. Thus, we obtain eight distinct
combinations (i.e., subsets), including the others (i.e., empty
set). Finally, we calculate the percentage of each variety in
the manually analyzed representative sample.

Observation 4- Our results show that, accepted an-
swers posted by developers in response to questions that
include package usage information mostly contain usage
examples (i.e., includes real-life examples, external links,
source code, build configuration files, etc.). Figure 5 shows
the analysis result of accepted answers posted by devel-
opers in response to questions that include package usage
information. We observe that usage example (36.76%)
is most dominant attribute in accepted answer, followed
by execute command (19.58%). The third most frequent
(15.03%) attribute combination in the accepted answer is
execute command and usage example. These findings
hint that application developers are suffering from a lack of
technical depth in managing third-party libraries in their ap-
plications.

RQ; Summary: Result shows that 37.76% ac-
cepted answers posted by developers in response
to questions that include package usage informa-
tion contain usage example followed by execute
command 19.58%.

6. Discussion

In order to aid application developers faced with package
usage issues, we conducted an empirical study to under-
stand the usefulness of package usage information mined
from SO. We learned two lessons along the way:

Lesson 1- Many of the library usage information on
SO is not from the popular npm package. We find that only
three out of the top ten of the most used npm libraries are
mentioned in SO. The top-3 discussed npm packages are
react, typescript, and webpack. Again, the top-5 li-

IEICE TRANS. INF. & SYST., VOL.E105-D, NO.1 JANUARY 2022

braries that are less frequently discussed in SO are mocha,
eslint, chai, babel-core, and lodash. Further-
more, we find that 87.95% package co-usage mined from
SO exist in the latest npm package release. The npm post
that discuss package usage information are mostly relate to
different type of errors.

Lesson 2- Developers tend to post answers that are us-
age example or execute command. The good news is that
maybe the answers can be useful for any npm developer
that suffers from similar issues. There is potential for a rec-
ommendation system, especially with the available execute
commands and examples available.

7. Related Work

In this section, we discuss the related works. First, we dis-
cuss on third-party package usage issues faced by develop-
ers. Second, we discuss on mining useful information from
question-answering sites.

Third-party libraries usage issues: software package
is a reusable component developed by a body other than the
original vendor of the development platform. The usage of
third-party libraries provides developers with unique oppor-
tunity to integrate pre-tested, reusable software that saves
development time and cost’. Recent empirical studies have
found that 93.30% of modern OSS project use third-party
libraries, with an average of 28 libraries per project [6].

In recent years, analyzing the characteristics of soft-
ware ecosystem has gained much attention. Decan et al. [23]
investigated package dependency network for seven soft-
ware ecosystems. Their findings reveals that, software
ecosystems grew over time in term of number of published
libraries. Bogart et al.[24] investigate the challenges of
reusing libraries from software ecosystem. They reported
that developers struggle with changing versions of the li-
braries as the changes might potentially break dependent
codes. Bavota et al. [25] examine the evolution of depen-
dencies in Apache ecosystem and found that developers
were reluctant to upgrade their dependencies considering
that changes of a package might break its dependent li-
braries. Xavier et al.[26] performed a large scale study
on 317 real-life Java libraries with 9K releases and 260K
projects. Their analysis results show that 14.78% of API
changes are incompatible with previous versions. Kula et
al. [27] also reported that, developers do not update their
dependencies even though the updates are related to new
features, fix vulnerabilities. Several research was done on
package recommendation tools like LibRec [6], LibCup [7],
CrossRec [11]. In this research, we empirically investigate
usefulness of npm package usage information mined from
question-answering site.

Mining SO: Recent studies point out that SO is a use-
ful source for developers to meet their information needs.

Thttps://tinyurl.com/y5b2fajq

ISLAM et al.: AN EXPLORATION OF NPM PACKAGE CO-USAGE EXAMPLES FROM STACK OVERFLOW: A CASE STUDY

For instance, Chen et al.[13] reported that SO is useful
in recommending analogical libraries across different pro-
gramming languages. Mahajan et al. [14] proposed a recom-
mendation tool to fix Runtime Exceptions based on knowl-
edge from SO posts. Similarly, Treude et al. [15], Rubei et
al. [20], and Uddin et al. [16] showed that SO posts are use-
ful knowledge source to support software developers. Pre-
vious studies suggest that SO can be useful to solve package
usage related issues. There is no existing work that studies
package usage information mined from SO help to improve
developers’ experience.

8. Threats to Validity

In this section, we discuss threats to validity that might in-
fluence our study.

Internal Validity: Threats to internal validity refer to
experimental bias. In this study, we found two main inter-
nal threads that could affect our results. First, is the pre-
processing of the dataset we decide the number of posts
(2100) and npm packages (217,934) based on cumulative
extraction of npm libraries and the generated co-usages. We
continue the cumulative extraction until all the libraries and
the co-usage cover. Second, in RQ, we perform manual
analysis on random sample since the dataset size is large.
To mitigate this challenge, we prepare representative sam-
ple consists of 286 randomly selected accepted answer, with
a confidence level of 95% and a interval of 5.

External validity: Threats to external validity refer to
the generalizability of our findings. Our datasets consist of
npm packages from libraries.io and SO posts. SO is a popu-
lar platform for question and answers from developers with
various domains and experts. Hence, our observations and
results can not be generalized for other package managers
like Maven, NuGet, and others. Besides, we consider only
those SO posts that contain package. json file. Selecting
more question posts may cause variation of top package co-
usage results.

Construct validity: Threats to construct validity refers
to the suitability of our evaluation measure. In our quali-
tative analysis of classifying accepted answers (RQ2), the
answer patterns may be miscoded due to the subjective na-
ture of our coding approach. To mitigate this threat, we
took a systematic approach to validate the taxonomy and the
comprehension understanding by the three authors in several
rounds. Only until the Kappa score reaches 0.82, indicating
that the agreement is almost perfect (0.81-1.00), we were
able to complete the rest of the sample dataset.

9. Conclusion
In this paper, we examine the usefulness of package usage

information mined from SO. We perform a case study on
npm package co-usage information from SO question posts

17

(2100) and libraries.io (217,934 npm projects) dataset. Al-
though SO has been a useful resource for finding answers
to questions, we find that unfortunately popular and highly
used libraries are not discussed as often. However, we can
see that the accepted answers may prove useful, as we be-
lieve that the usage examples and executable commands
could be reused or be used for tool support. In our future
work, we will develop tool support that will utilize SO us-
age examples and executable commands extracted from ac-
cepted answers to assist npm application developers.

Acknowledgments

This work has been supported by JSPS KAKENHI Grant
Numbers JPS8H04094, JP20K 19774, and JP20H05706.

References

[1] J. Dietrich, K. Jezek, and P. Brada, “Broken promises: An em-
pirical study into evolution problems in java programs caused by
library upgrades,” 2014 Software Evolution Week-IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), pp.64-73, IEEE, 2014.

[2] S.Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning
and impact of breaking changes in the maven repository,” J. Syst.
Softw., vol.129, pp.140-158, 2017.

[3] S.Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning
versus breaking changes: A study of the maven repository,” 2014
IEEE 14th International Working Conference on Source Code Anal-
ysis and Manipulation, pp.215-224, 2014.

[4] FL. De La Mora and S. Nadi, “Which library should i use?: A
metric-based comparison of software libraries,” Proc. 40th Interna-
tional Conference on Software Engineering: New Ideas and Emerg-
ing Results, pp.37—40, 2018.

[5] J. Dietrich, D. Pearce, J. Stringer, A. Tahir, and K. Blincoe, “Depen-
dency versioning in the wild,” 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pp.349-359,
2019.

[6] F. Thung, D. Lo, and J. Lawall, “Automated library recommen-
dation,” 2013 20th Working conference on reverse engineering
(WCRE), pp.182-191, 2013.

[7] A. Ouni, R.G. Kula, M. Kessentini, T. Ishio, D.M. German, and K.
Inoue, “Search-based software library recommendation using multi-
objective optimization,” Inform. Softw. Tech., vol.83, pp.55-75,
2017.

[8] M.A. Saied, A. Ouni, H. Sahraoui, R.G. Kula, K. Inoue, and D. Lo,
“Improving reusability of software libraries through usage pattern
mining,” J. Syst. Softw., vol.145, pp.164-179, 2018.

[9] H. Alrubaye, M.W. Mkaouer, I. Khokhlov, L. Reznik, A. Ouni, and
J. Mcgoff, “Learning to recommend third-party library migration
opportunities at the API level,” Applied Soft Computing, vol.90,
p.106140, 2020.

[10] H. Yu, X. Xia, X. Zhao, and W. Qiu, “Combining collaborative filter-
ing and topic modeling for more accurate android mobile app library
recommendation,” Proc. 9th Asia-Pacific Symposium on Internet-
ware, pp.1-6, 2017.

[11] P.T. Nguyen, J. Di Rocco, D. Di Ruscio, and M. Di Penta, “Cross-
Rec: Supporting software developers by recommending third-party
libraries,” J. Syst. Softw., vol.161, p.110460, 2020.

[12] Y. Wu, S. Wang, C.-P. Bezemer, and K. Inoue, “How do develop-
ers utilize source code from stack overflow?,” Empir. Softw. Eng.,
vol.24, no.2, pp.637-673, 2019.

[13] C. Chen and Z. Xing, “Similartech: automatically recommend ana-
logical libraries across different programming languages,” Proc. 31st

http://dx.doi.org/10.1109/csmr-wcre.2014.6747226
http://dx.doi.org/10.1016/j.jss.2016.04.008
http://dx.doi.org/10.1109/scam.2014.30
http://dx.doi.org/10.1145/3183399.3183418
http://dx.doi.org/10.1109/msr.2019.00061
http://dx.doi.org/10.1109/wcre.2013.6671293
http://dx.doi.org/10.1016/j.infsof.2016.11.007
http://dx.doi.org/10.1016/j.jss.2018.08.032
http://dx.doi.org/10.1016/j.asoc.2020.106140
http://dx.doi.org/10.1145/3131704.3131721
http://dx.doi.org/10.1016/j.jss.2019.110460
http://dx.doi.org/10.1007/s10664-018-9634-5
http://dx.doi.org/10.1145/2970276.2970290

18

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

IEEE/ACM International Conference on Automated Software Engi-
neering, pp.834-839, 2016.

S. Mahajan, N. Abolhassani, and M.R. Prasad, “Recommending
stack overflow posts for fixing runtime exceptions using failure sce-
nario matching,” Proc. 28th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations
of Software Engineering, pp.1052-1064, 2020.

C. Treude and M.P. Robillard, “Augmenting API documentation
with insights from stack overflow,” Proc. 38th International Confer-
ence on Software Engineering, pp.392—403, 2016.

G. Uddin, F. Khomh, and C.K. Roy, “Mining API usage scenar-
ios from stack overflow,” Inform. Softw. Tech., vol.122, p.106277,
2020.

E.L. Vargas, M. Aniche, C. Treude, M. Bruntink, and G. Gousios,
“Selecting third-party libraries: The practitioners’ perspective,”
Proc. 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engi-
neering, pp.245-256, 2020.

L. Xavier, A. Hora, and M.T. Valente, “Why do we break APIs? First
answers from developers,” 2017 IEEE 24th International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER),
pp.392-396, 2017.

B. Todorov, R.G. Kula, T. Ishio, and K. Inoue, “SoL Mantra:
Visualizing update opportunities based on library coexistence,” 2017
IEEE Working Conference on Software Visualization (VISSOFT),
pp.129-133, 2017.

R. Rubei, C.D. Sipio, PT. Nguyen, J.D. Rocco, and D.D. Ruscio,
“PostFinder: Mining stack overflow posts to support software devel-
opers,” Inform. Softw. Tech., vol.127, p.106367, 2020.

S. Baltes, L. Dumani, C. Treude, and S. Diehl, “SOTorrent: re-
constructing and analyzing the evolution of stack overflow posts,”
Proc. 15th International Conference on Mining Software Reposito-
ries, pp.319-330, 2018.

A.J. Viera, J.M. Garrett, et al., “Understanding interobserver agree-
ment: The kappa statistic,” Fam med, vol.37, no.5, pp.360-363,
2005.

A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging ecosys-
tems,” Empir. Softw. Eng., vol.24, no.1, pp.381-416, 2019.

C. Bogart, C. Kastner, J. Herbsleb, and F. Thung, “How to break
an API: cost negotiation and community values in three software
ecosystems,” Proc. 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pp.109-120, 2016.
G. Bavota, G. Canfora, M.D. Penta, R. Oliveto, and S. Panichella,
“How the Apache community upgrades dependencies: an evolution-
ary study,” Empir. Softw. Eng., vol.20, no.5, pp.1275-1317, 2015.
L. Xavier, A. Brito, A. Hora, and M.T. Valente, ‘“Historical and im-
pact analysis of API breaking changes: A large-scale study,” 2017
IEEE 24th International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER), pp.138-147, IEEE, 2017.

R.G. Kula, D.M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies?,” Empir. Softw. Eng.,
vol.23, no.1, pp.384—417, 2018.

IEICE TRANS. INF. & SYST., VOL.E105-D, NO.1 JANUARY 2022

Syful Islam He received the M.E. degree
in Information Science from Nara Institute of
Science and Technology, Japan. He is currently
working toward the P.hD degree in the same in-
stitute. At present, he is on study leave from
Noakhali Science and Technology University,
Bangladesh. His research interests include soft-
ware ecosystem, mining Stack Overflow, etc.

Dong Wang He received the M.E. degree
in Information Science from Nara Institute of
Science and Technology, Japan. He is currently
working toward the Doctor degree in Nara Insti-
tute of Science and Technology, Japan. His re-
search interests include code review and mining
software repositories.

Raula Gaikovina Kula is currently an as-
sistant professor at Nara Institute of Science and
technology. In 2013, he graduated with a PhD.
from Nara Institute of Science and Technology,
Japan. He is currently an active member of the
IEEE Computer Society and ACM. His research
interests include repository mining, code review,
software libraries and visualizations.

Takashi Ishio received the Ph.D degree in
information science and technology from Osaka
University in 2006. He was a JSPS Research
Fellow from 2006-2007. He was an assistant
professor at Osaka University from 2007-2017.
He is now an associate professor of Nara Insti-
tute of Science and Technology. His research in-
terests include program analysis, program com-
prehension, and software reuse. He is a member
of the IEEE, ACM, IPSJ and JSSST.

Kenichi Matsumoto received the B.E.,
M.E., and PhD degrees in Engineering from
Osaka University, Japan, in 1985, 1987, 1990,
respectively. Dr. Matsumoto is currently a pro-
fessor in the Graduate School of Information
Science at Nara Institute Science and Technol-
ogy, Japan. His research interests include soft-
ware measurement and software process. He is
a senior member of the IEEE and a member of
the IPSJ and SPM.

http://dx.doi.org/10.1145/2970276.2970290
http://dx.doi.org/10.1145/3368089.3409764
http://dx.doi.org/10.1145/2884781.2884800
http://dx.doi.org/10.1016/j.infsof.2020.106277
http://dx.doi.org/10.1145/3368089.3409711
http://dx.doi.org/10.1109/saner.2017.7884640
http://dx.doi.org/10.1109/vissoft.2017.23
http://dx.doi.org/10.1016/j.infsof.2020.106367
http://dx.doi.org/10.1145/3196398.3196430
http://dx.doi.org/10.1007/s10664-017-9589-y
http://dx.doi.org/10.1145/2950290.2950325
http://dx.doi.org/10.1007/s10664-014-9325-9
http://dx.doi.org/10.1109/saner.2017.7884616
http://dx.doi.org/10.1007/s10664-017-9521-5

