
1828
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.11 NOVEMBER 2021

PAPER Special Section on Next-generation Security Applications and Practice

The Uncontrolled Web: Measuring Security Governance on the
Web

Yuta TAKATA†a), Member, Hiroshi KUMAGAI†, and Masaki KAMIZONO†, Nonmembers

SUMMARY While websites are becoming more and more complex
daily, the difficulty of managing them is also increasing. It is important to
conduct regular maintenance against these complex websites to strengthen
their security and improve their cyber resilience. However, misconfigura-
tions and vulnerabilities are still being discovered on some pages of web-
sites and cyberattacks against them are never-ending. In this paper, we take
the novel approach of applying the concept of security governance to web-
sites; and, as part of this, measuring the consistency of software settings
and versions used on these websites. More precisely, we analyze multi-
ple web pages with the same domain name and identify differences in the
security settings of HTTP headers and versions of software among them.
After analyzing over 8,000 websites of popular global organizations, our
measurement results show that over half of the tested websites exhibit dif-
ferences. For example, we found websites running on a web server whose
version changes depending on access and using a JavaScript library with
different versions across over half of the tested pages. We identify the cause
of such governance failures and propose improvement plans.
key words: security governance, web measurement, cyber resilience

1. Introduction

A website is one of the representative systems of a com-
pany and provides various services to many users. Hence, if
these websites are compromised or taken down by cyberat-
tacks, the economic damage can be significant. In addition
to the economic damage, there is also a risk of successful
attacks being leveraged by attackers to launch further at-
tacks. A security vendor reported that attackers distributed
malicious code and ransomware via dozens of compromised
websites [1]. To protect websites from such cyberattacks,
various guidelines regarding website management and oper-
ations have been published [2], [3]. The guidelines describe
basic web security, such as security-related settings, soft-
ware updating, and vulnerability checks in order to support
the operation of secure websites. However, misconfigura-
tions and vulnerabilities are still being discovered on web-
sites, and cyberattacks against them are never-ending [4].

As the size of companies and organizations grows, so
does the number of services on their websites. These web-
sites often rely heavily on third-party content to provide
their services [5], [6]. For instance, they may make use
of web advertisements, analytics, social media, and exter-
nally hosted JavaScript libraries to develop features quickly.

Manuscript received January 27, 2021.
Manuscript revised May 26, 2021.
Manuscript publicized July 8, 2021.
†The authors are with Deloitte Tohmatsu Cyber LLC, Tokyo,

100–0005 Japan.
a) E-mail: yuta.takata@tohmatsu.co.jp

DOI: 10.1587/transinf.2021NGP0003

However, as a result, websites become both more dependent
on third-parties’ components and more complex. The com-
plexity leads to weaker web security on several pages and
might increase the attack surface of the websites [7], [8].
For example, Lauinger et al. researched websites with in-
clusions of multiple different jQuery versions in the same
document. They reported that a part of these duplicate in-
clusions was caused by dynamic inclusions of libraries by
third-party components which can lead to potentially non-
deterministic behaviour with respect to vulnerabilities [9].
Of course, it is important to address these individual security
issues, but it is also important to apply them to all web pages
consistently. Since different software versions have differ-
ent vulnerabilities, using various versions leads to increase
the risk of vulnerability abuse. To minimize the risk, it is
desirable to control and manage which versions of which
software are used on all web pages with the consistency.
In addition, we can expect to accelerate new vulnerability
responses by the consistency, as a result, improve their cy-
ber resilience. Therefore, we should strive to apply consis-
tent and governed security rules across all pages of complex
websites. The importance of maintaining a certain level of
security by applying governance is also described in various
standards such as NIST SP800 [2] and ISO/IEC 27014 [10],
and complying with them will lead to drive stable business.
Although many researchers have studied the state of web
technologies, settings, dependencies, and security on indi-
vidual web pages, they did not focus on multiple pages and
provide a comprehensive analysis across them [5]–[9].

In this paper, we take the novel approach of applying
the concept of security governance to websites; as part of
this, measuring the consistency of software settings and ver-
sions used on these websites. Our main motivation is to
investigate whether website maintenance and security mea-
sures are pervasive when applied across all pages of a web-
site. To understand the web security governance of a given
website, we crawl multiple web pages of the same domain
name and identify differences in the security settings of
HTTP headers and versions of software among them. Our
simple approach of analyzing multiple web pages can help
us find misconfigurations and vulnerabilities newly. We also
analyze the details of the identified differences to infer their
causes and improve web security. Overall, our study makes
the following contributions:

• We shed light on web security governance as it relates
to the consistency of website maintenance and security

Copyright c© 2021 The Institute of Electronics, Information and Communication Engineers



TAKATA et al.: THE UNCONTROLLED WEB: MEASURING SECURITY GOVERNANCE ON THE WEB
1829

measures.
• We analyze 8,190 websites, including 77,599 pages

of famous global organizations, and show that 4,680
(57.1%) of them exhibit differences concerning HTTP
headers and/or software versions between web pages.
• We show that there are websites running on Nginx

whose version changes depending on access and web-
sites using different jQuery versions on different pages
of the same domain name. Using various versions leads
a higher risk of containing vulnerabilities.
• Based on our measurement results, we contribute to ac-

celerating the adoption of security governance and the
improvements of cyber resilience on the web.

2. Background

2.1 Web Security

Various guidelines describe web security measures for man-
aging and operating websites more securely [3]. In these
guidelines, regular security checks are recommended for
web servers (e.g., OS, server software, and middleware) and
web applications (e.g., JavaScript libraries, frameworks, and
CMS (Content Management Systems)). It is important to
check technologies used on websites, version updating, and
software patching to prevent abuses of known vulnerabili-
ties in these servers and applications.

In addition to the above web security measures, we
can activate the security features of browsers through HTTP
response headers [11]. The Content-Security-Policy,
Strict-Transport-Security, and X-XSS-Protection
headers, shown in Table 1 are examples of such headers. By
setting these headers (hereinafter, they are called “HTTP se-
curity headers”), we can force browsers to use only HTTPS
connections and/or prevent injection attacks although some
of them, i.e., XFO and XSSP, are no longer supported in
modern browsers. Still, more effective web security can be
applied to websites by using both server-side security fea-
tures and client-side security features.

2.2 Web Security Governance

To maximize the effectiveness of web security measures as

Table 1 HTTP response headers that enable client security features

Header Name Description

Content-Security-Policy This header is a security policy mechanism that mitigates a wide range of data injections vulnerabilities,
(CSP) such as cross-site scripting (XSS). The mechanism allows browsers to load resources based on a specified policy.
Strict-Transport-Security This header is a security policy mechanism that can force browsers to use HTTPS instead of HTTP for website
(HSTS) connections. It specifies its own expiration time and whether the scope includes its subdomains.
X-Content-Type-Options This header forces browsers to load content with a MIME type advertised in a Content-Type header.
(XCTO) It can be used to mitigate MIME type sniffing.
X-Frame-Options This header indicates whether a browser should be allowed to render pages within frames to mitigate clickjacking
(XFO) attacks. However, it includes a feature for legacy browsers, i.e., ALLOW-FROM.
X-XSS-Protection This header is a security feature of browsers that can stop pages from rendering when they detect XSS attacks.
(XSSP) However, it is for legacy browsers, and the above Content-Security-Policy header is recommended to detect

unsafe-inline scripts instead in modern browsers.

described in the previous section, it is important to define
and apply a standard, methodology, and process for the man-
agement of websites in an organization. By borrowing the
concept of security governance, which involves risk man-
agement, awareness, reporting, and accountability related to
information security in an organization, and applying it to
websites, we can expect to reduce inadequate web security.
For instance, in a website that has multiple pages, common
software settings and versions should be used across all of
these pages. Since different versions of web technologies
have different vulnerabilities, using various versions leads
to increase the risk of vulnerability abuse. To minimize the
risk, it is desirable to control and manage which versions
of which technologies are used on all web pages with the
consistency. In addition to reducing inadequate web secu-
rity, we can expect to accelerate new countermeasures and
new vulnerability responses by applying governance, as a
result, improve their cyber resilience. However, miscon-
figurations and vulnerabilities are still being discovered on
websites. We can assume that this is because companies ex-
perienced governance failures that in turn, had negative im-
pacts on web security. As an example case, a security ven-
dor reported attackers launching a malware campaign that
injected fake JavaScript libraries which imitated legitimate
libraries [12]. We speculate that the campaign targeted web-
sites without governance and that the fake library injections
could have been discovered early if they were controlled and
managed correctly.

In this paper, we investigate the consistency of soft-
ware settings and versions used on websites as part of secu-
rity governance. We identify causes of governance failures
and consider improvement plans. Although there are many
studies that analyzed web security on a page of a website,
to the best of our knowledge, there are no studies that mea-
sure the governance of web security that can be revealed by
analyzing multiple different pages.

3. Related Work

3.1 Web Measurement

There are numerous measurement studies aiming to inves-
tigate web security features and their impact [8], [13]–[15].



1830
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.11 NOVEMBER 2021

Van Goethem et al. performed a large-scale security assess-
ment of websites in the EU [13]. They studied the severity of
certain vulnerabilities and web security failures, and showed
a relationship between both countries and website popular-
ity. Tajalizadehkhoob et al. conducted an empirical analy-
sis of the distribution of web security features and software
patching practices in shared hosting providers [14]. They
disentangled the defensive efforts of providers and webmas-
ters, and assessed their impact on web compromises. Stock
et al. investigated changes in client-side technologies such
as HTTP security headers and JavaScript libraries using in-
ternet archives [8]. Many researchers also investigated web
dependencies of third-party resources and their impact on
security [6], [7]. They reported that complicated dependen-
cies prevented HTTPS adoption and led to the implicit load-
ing of malicious content. Mozilla also reported scan results
of the Alexa Top 1M websites using the Mozilla Observa-
tory [15]. The report surveyed the pervasiveness of HTTP
security headers on a wide range of websites.

The above studies measured the state of web technolo-
gies, settings, dependencies, and security on individual web
pages. However, the objective of our study is to analyze the
consistency, commonality, and governance among multiple
web pages.

3.2 Analysis of HTTP Security Headers

HTTP security headers can add security features to
websites by simply setting them on the web servers.
However, security researchers have found inconsisten-
cies in how these headers are handled among modern
browsers, e.g., Microsoft Edge, Mozilla Firefox, and Google
Chrome. For example, there are many studies focusing
on Content-Security-Policy and X-Frame-Options
headers, which report details of certain discrepancies and
their security impact [16]–[18]. Other researchers also
found vulnerabilities and bypass methods of features in the
Content-Security-Policy header [19], [20]. Our study
also confirmed some results associated with these studies
and complemented their findings, i.e., multiple HTTP head-
ers (see Sect. 5.2.2).

3.3 Analysis of Web Technologies

There are many studies that analyze vulnerabilities and mis-
configurations of various web technologies. Vasek et al.
conducted a case-control study to identify risk factors that
are associated with higher and lower rates of web server
compromise [21]. Other researchers also investigated third-
party JavaScript libraries and their security impact, known
vulnerabilities and the adoption of patches [5], [9]. How-
ever, these studies analyzed only one page per website and
did not draw conclusions across multiple pages.

3.4 Multi-page Analysis for Security and Privacy

There are numerous studies on characterizing website

structures and graphs by analyzing multiple web page over
two decades [22]. Several researchers tried to utilize them
for web security and privacy purposes [23], [24]. Soska et al.
proposed an approach for predicting website compromise
using machine learning [23]. They utilized website struc-
tures collected by crawling internal links as one of the fea-
ture vectors. Urban et al. conducted a large-scale measure-
ment study of the Web dynamics to gain insights into the us-
age of libraries provided by third-parties [24]. They showed
that more information can be collected by crawling websites
more deeply. Both of the above studies employed a multi-
page analysis similar to ours, but the objectives and targets
of each measurement were different.

4. Measuring Web Security Governance

We measure web security governance by analyzing differ-
ences in the security of multiple pages in a website. We
show our measurement process in Fig. 1. First, we col-
lect and crawl URLs of landing pages. Next, we use the
data gathered by crawling landing pages to also collect and
crawl URLs of subpages. Finally, we identify differences by
comparing commonly used settings and technologies among
these pages, shown in Fig. 2. The following sections elabo-
rate on each process phase.

Before describing our measurement process phases, we
define several terms we use throughout this work. A web-
site consists of multiple web pages, and a web page indi-
cates information displayed in a browser when accessing
a URL. Furthermore, we separate web pages into landing
pages and subpages. The former are web pages correspond-
ing to URLs, for example, of a root directory and of “offi-
cial sites”. The latter are web pages with the same domain
name (more precisely, FQDN excluding its subdomains) of
the landing page but different URL paths.

4.1 URL Collection and Crawling

To measure the web security governance of companies, we
must exclude URLs of personal websites, such as blog web-
sites, from measurement targets. Therefore, we collected
domain names listed on Alexa Top Sites [25], which pro-
vides a website ranking based on page views. The URLs
from the list are used as landing pages.

Subpages are chosen based on the landing pages. In
practice, we collected URLs of subpages through search re-
sults of the landing pages’ domain names. Note that we
excluded non-html pages, e.g., PDF file pages, and used in-
ternal links from landing pages to bolster our subpages if the
search results were insufficient.

To collect web data for the next phase, i.e., governance
analysis, we access the URLs of landing and subpages us-
ing a browser. The web data includes URLs, HTTP head-
ers, HTML content, JavaScript, and cookies that can be col-
lected by accessing the input URL.



TAKATA et al.: THE UNCONTROLLED WEB: MEASURING SECURITY GOVERNANCE ON THE WEB
1831

Fig. 1 Measurement Process of Web Security Governance

Fig. 2 Analysis of Web Security Governance

4.2 Governance Analysis

We identify differences in web security measures among
landing and subpages based on collected data. As web secu-
rity indicators, we use the settings of HTTP security headers
and versions of web technologies as described in Sect. 2.1.
In Fig. 2, our analysis identifies the X-Frame-Options
header value and the jQuery version as differences between
the landing page and subpage A.

4.2.1 Analysis of HTTP Security Headers

HTTP security headers are also used for security indica-
tors because of their characteristics. In particular, five re-
sponse headers, namely Strict-Transport-Security,
Content-Security-Policy, X-Frame-Options, X-XSS-
Protection, and X-Content-Type-Options, were stud-
ied for their popularity and statistics by many re-
searchers [8], [13], [14], [16], [18]. Our analysis also detects
these headers as security indicators and compares the values
used on landing and subpages.

4.2.2 Analysis of Web Technologies

We can detect web technologies, such as servers and appli-
cations, and their versions with two methods: Static analysis
and dynamic analysis [9].

(1) Static analysis.

This method detects technologies used in a website by
matching keywords and regular expressions to URLs, HTTP

headers, and HTML bodies. The versions can be extracted
from pattern matching results.

(2) Dynamic analysis.

This method detects technologies used in a website by ana-
lyzing data in the global scope of JavaScript. The versions
can be extracted from specific variables or objects defined
in the scope.

Our analysis detects web technologies using the above
two methods and compares these version values of technolo-
gies used on landing and subpages. Note that these tech-
nologies are detected on the web pages of not only first-
parties but also third-parties.

4.3 Measurement Setup

To build a URL list of landing pages, we used root-level
URLs of domain names that were listed in the top 10,000
Alexa rankings on November 11st, 2020. We collected 1
URL of landing pages and up to 10 URLs of subpages using
internal links of the landing page. Note that we removed do-
main aliases† (a total of 694 domain names were removed)
using Mozilla Public Suffix [26] and tldextract [27].

To collect web data of each page, we used a Chromium
browser [28] on Ubuntu. Since JavaScript executions and
asynchronous communications will occur after loading web
content, we forced the browser to wait for the network to idle
while crawling. Note that if content loading did not com-
plete within three minutes, we timed out the access. HTTP

†Domain aliases are domains with the same second-level
domain, but different top-level domains, e.g., google.com and
google.co.jp.



1832
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.11 NOVEMBER 2021

response headers of input or redirect URLs were used to de-
tect HTTP security headers. To detect web technologies, we
used Wappalyzer [29], which can detect 1,800 technologies
across 69 categories, such JavaScript libraries, web servers,
and CMS [30], by the methods described in Sect. 4.2.2.

5. Measurement Results

5.1 Results of URL Collection and Crawling

We show results of crawling URLs of landing and sub-
pages in December 2020 in Table 2. 8,190 landing pages
responded with content successfully. The others were net-
work errors (e.g., DNS errors and timeout errors) or server-
side errors (e.g., HTTP400s and HTTP 500s). In addition
to the landing pages, 74,608 URLs of subpages were col-
lected based on the domain names of landing pages and
among these, 69,409 responded with content successfully.
We analyze landing pages and subpages without network
and server-side errors in the following sections.

5.2 Results of Governance Analysis

5.2.1 Differences Among Multiple Pages

We analyzed differences in setting values of HTTP secu-
rity headers and version values of web technologies among
multiple pages. As a result, 4,680 (57.1%) websites had
differences. Table 3 shows that almost all of these differ-
ences were versions of web technologies (more details in
Sect. 5.2.3), and that settings of security headers only ac-
counted for 447 differences (more details in Sect. 5.2.2). In
addition, there were 2,812 (34.3%) websites with “no differ-
ence” and 698 (8.5%) websites with only landing pages and
“no subpages”. Websites with only links to different subdo-
mains or PDF contents as well as websites without search
results and internal links were classified as “no subpage”,
since the target of our analysis were subpages with the same
domain name as the landing pages and HTML contents. In
the following sections, we elaborate on differences in HTTP

Table 2 Results of URL Crawling

Result Landing Page subpage

HTTP 200 OK 8,190 69,409
Network error 818 3,731
Server-side error 257 1,468

Total 9,306 74,608

Table 3 Differences among landing/subpages

Difference # of Websites Rate (N=8,190)

Web technology 4,233 51.7%
No difference 2,812 34.3%
No subpage 698 8.5%
Both header and technology 295 3.6%
Security header 152 1.9%

security headers and web technologies of both lists together.

5.2.2 Differences in HTTP Security Headers

Table 4 shows HTTP security headers detected on landing
pages. The top detected header was the XFO header, which
was detected on 1,838 (22.4%) pages. This XFO header
is used for mitigating click-jacking attacks by validating
content injected from other websites via frames. However,
Calzavara et al. recommended using it in combination with a
CSP header because it is not effective against click-jacking
attacks using double framing [18]. A CSP header protects
browsers from XSS and content injection attacks through
resource policy as described in Table 1. Although a CSP
header can mitigate a wide range of data injection attacks, it
is known for its complex settings, many misconfigurations,
and lack of adoption [16], [17]. Our results also show a lack
of CSP adoption, with only 784 (9.6%) websites using the
header.

While comparing them with the above security head-
ers of landing pages, we show security headers with dif-
ferent settings detected on subpage settings in Table 5.
The breakdown of these differences is as follows: “Pol-
icy Change” means that different settings were used, “Mul-
tiple Values” means multiple settings, and “Misconfigura-
tion” means settings with extra characteristics. For exam-
ple, Policy Changes were setting changes from SAMEORIGIN
to DENY in X-Frame-Options headers and set/unset of
includeSubdomains in Strict-Transport-Security
headers. The headers with “Multiple Values” were,
for example, “X-XSS-Protection: 1; mode=block, 1;
mode=block”, “X-Frame-Options: SAMEORIGIN, DENY”
(this example used different values at the same time),
and “X-Frame-Options: SAMEORIGIN, SAMEORIGIN,
SAMEORIGIN, SAMEORIGIN, SAMEORIGIN, SAMEORIGIN,

SAMEORIGIN, SAMEORIGIN” (this example used the same
value repeated eight times). Calzavara et al. reported that

Table 4 HTTP security headers detected on landing pages

Header Name # of Pages Rate (N=8,190)

XFO 1,838 22.4%
HSTS 1,804 22.0%
XCTO 1,661 20.3%
XSSP 1,413 17.3%
CSP 784 9.6%

Table 5 HTTP security headers with different settings detected on sub-
pages

Breakdown of Differences
Header # of Policy Multiple Mis-
Name Diffs Change Values configuration

HSTS 181 90 63 28
XFO 155 63 84 8
CSP 145 128 6 11
XSSP 67 15 45 7
XCTO 63 1 55 7



TAKATA et al.: THE UNCONTROLLED WEB: MEASURING SECURITY GOVERNANCE ON THE WEB
1833

Table 6 Top 10 software with versions detected on landing pages

Software Name # of Pages Rate (N=8,190)

jQuery 6,011 73.4%
Nginx 3,627 44.3%
PHP 1,949 23.8%
Microsoft ASP.NET 1,877 22.9%
Apache 1,684 20.6%
Bootstrap 1,649 20.1%
IIS 1,501 18.3%
jQuery UI 1,286 15.7%
Jetty 1,044 13.3%
OpenSSL 1,067 13.0%

Table 7 Top 10 software with different versions detected on subpages

Software Name Category # of Websites

Nginx Web Server 3,077
jQuery JavaScript Library 1,838
Apache Web Server 1,468
Jetty Web Server 744
Apache Traffic Server Web Server 587
IIS Web Server 567
PHP Programming Language 537
Microsoft ASP.NET Web Framework 434
Bootstrap UI Framework 325
Varnish Caching 242

these headers with multiple values were interpreted differ-
ently depending on the browser and lead to inconsisten-
cies [18]. The last “Misconfiguration” were tiny mistakes
such as inclusions of commas and semicolons.

We assume that the causes of these differences in HTTP
security headers are manual settings of servers/applications
and header manipulations by middleboxes such as network
appliances [31].

5.2.3 Differences in Web Technologies

We enumerate the top 10 software with versions detected
on landing pages in Table 6. The top detected software is
jQuery, which is a popular JavaScript library, and has 75.9%
market share in global websites as of June 2020 [32]. Our
results also show that 73.4% of websites used jQuery, sug-
gesting that jQuery is the most influential web technology.

Next, we enumerate the top 10 software with different
versions detected on landing and subpages and its category†
in Table 7. The top 5 software with different versions among
landing/subpages were web servers and jQuery. In the fol-
lowing sections, we investigate the details of differences in
these web servers and JavaScript libraries, i.e., Nginx and
jQuery.

5.3 Differences in Web Servers

A first-party web server can be identified through the corre-
sponding domain name. Hence, we can distinguish whether
a web server belongs to a first-party or third-party domain.

†We used the categorization result from Wappalyzer.

Table 8 Breakdown of differences in Nginx versions

Breakdown of Differences # of Diffs Rate (N=3,077)

Use of different versions among 2,288 74.4%
third-party servers
Version hiding 529 17.2%
Use of different versions among 186 6.0%
first-party and third-party servers
Use of different versions among 74 2.4%
first-party servers

In this section, we analyze differences in Nginx versions by
focusing on their hosts.

5.3.1 Differences in Nginx Versions

We analyzed the use of Nginx in first-party and third-party
domains for each web page and identified differences in
Nginx versions. Table 8 shows the breakdown of the dif-
ferences. The use of different versions among third-party
servers accounted for over 70% of the differences. Because
third-party content, such as ads and analytics, used on each
page changed, the web servers that hosted the content also
changed. The second difference was “version hiding” which
is a popular hardening technique [14]. In addition to the dif-
ferences caused by third-party dynamics, only 74 websites
used different versions of Nginx in first-party domains. We
elaborate on these first-parties in the next section.

5.3.2 Different Nginx Versions Behind Same Domain
Name

We analyzed Nginx versions used for each domain name. As
a result, we found Nginx versions were often changed be-
cause the domain name was the same, but IP addresses were
different. The first-party domain names with such server be-
haviours were 159 domains. We assume that it is due to
load balancing that distributes website access to multiple IP
addresses. However, version changes depending on server
loads might have a negative impact on the reproducibility of
web security measures. Therefore, we suggest that webmas-
ters should use the same version by applying governance on
at least web servers under their control.

5.4 Differences in JavaScript Libraries

Unlike web servers (i.e., server-side technologies), we can
use JavaScript libraries (i.e., client-side technologies) hosted
on both first-party and third-party domains. Hence, we an-
alyze version statistics, differences in versions, detection
and inclusion methods of jQuery to measure the governance
from various perspectives.

5.4.1 jQuery Versions

We visualize the results of counting and sorting jQuery ver-
sions detected on landing and subpages in Fig. 3. Figure 3
shows that the major version 1.x was detected more than



1834
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.11 NOVEMBER 2021

Fig. 3 Distribution of detected jQuery versions (N > 300)

Table 9 Pattern of differences in jQuery versions

# of Patterns # of Websites Rate (N=1,838)

2 patterns 1,301 70.8%
3 patterns 365 19.9%
4 patterns 106 5.8%
5 patterns 43 2.3%
6 patterns 20 1.1%
7 patterns 3 0.2%

the newer 3.x version. The most detected version, jQuery
1.12.4, is the latest release of major version 1.x as of August
2020, and it is known to be used for backward compatibility
by WordPress [33]. In CMSs like WordPress, many plugins
created by third-party developers use jQuery. If no back-
ward compatibility was provided, many websites would be
affected by errors caused by these plugins. We can therefore
assume that these old versions continue to be used due to
compatibility issues.

We found that there are 1,437 websites using multiple
different versions of jQuery on the same page. This means
that, for example, a landing page used jQuery with two ver-
sions, 1.6.2 and 1.8.3, at the same time. Although these
duplicate library inclusions may be related to server-side
templating, third-party content, or the combination of inde-
pendently developed components, webmasters do not notice
them unless any critical errors occur. However, duplicate li-
brary inclusions should be fixed because they lead to nonde-
terministic behaviour with respect to vulnerabilities and can
be beneficial for long-lasting attack campaigns such as fake
jQuery injections [9], [12].

Table 10 Website example with 7 patterns of jQuery versions

Page Detected jQuery Versions

Landing page 1.11.1
subpage 1 1.10.2
subpage 2 1.11.2
subpage 3 1.2.6, 1.4.2
subpage 4 1.2.6, 1.11.1
subpage 5 1.2.6, 1.11.2
subpage 6 1.10.2, 1.12.2

Table 11 Use of jQuery with versions detected by only dynamic analysis

# of Pages # of Websites Rate (N = 1,838)

0 page (Not used) 521 28.3%
1 page 825 44.9%
2 pages 419 22.8%
3 pages 54 2.9%
4 pages 16 0.9%
5 pages 3 0.2%

5.4.2 Differences in jQuery Versions

To reveal whether the 1,838 differences in jQuery versions
identified in Sect. 5.2.3 occurred on only one page or mul-
tiple pages, we analyzed jQuery version patterns. We count
the number of patterns of jQuery versions used in 1 land-
ing page and up to 10 subpages, i.e., up to 11 patterns, and
show the results in Table 9. Surprisingly, there were 3 web-
sites using different jQuery versions on 7 web pages. We
show the jQuery patterns in one of the three websites in Ta-
ble 10. As you can see, this website used various jQuery ver-
sions and also used duplicate inclusions on subpages from
3 to 6. These websites had in common that the web con-
tents and design of each page were totally different and that
the first directory of each URL is also different. For exam-
ple, these pages were a recruitment page, a teaser site, pages
for branches/offices/shops, a product page, and a news page.
We assume that these differences in client-side technologies
occurred, for example, when switching website contexts and
when webmasters are different for each page.

5.4.3 Detection Method of jQuery

Wappalyzer can detect jQuery and its version by static anal-
ysis of URLs and dynamic analysis of JavaScript. The static
analysis can detect jQuery versions if URLs include ver-
sion values explicitly, but cannot detect version values from
URLs such as https://a.example/lib/jquery.js. On
the other hand, dynamic analysis can detect the last loaded
version of jQuery even if URLs do not contain any explicit
information. Such jQuery detected by only dynamic analy-
sis was used in 1,317 (71.7%, N=1,838) websites, and used
in multiple pages as shown in Table 11. To identify whether
the implicit inclusion affects jQuery version governance, we
manually investigated the 73 websites that used different
jQuery versions on 3 or more pages shown in Table 11. We
found that some of these websites included jQuery using



TAKATA et al.: THE UNCONTROLLED WEB: MEASURING SECURITY GOVERNANCE ON THE WEB
1835

Table 12 jQuery inclusion methods in websites with differences

Inclusion Method # of Websites

First-party only (internal links) 426
Third-party only (external links) 766
Mixed first-party and third-party 400

a bundle file of multiple JavaScript libraries in addition to
URLs without version information. A bundle file of libraries
can be managed and generated by a module bundler, e.g.,
webpack [34]. However, in addition to these bundle files,
some websites used other versions of jQuery, i.e., duplicate
jQuery inclusions in Sect. 5.4.1. Therefore, we can infer that
webmasters used multiple jQuery versions due to forgetting
about a bundled jQuery or a manual jQuery inclusion.

5.4.4 Inclusion Methods of jQuery

There are two inclusion methods of jQuery. One is to use
jQuery that was downloaded from official sites and pack-
age managers (e.g., npm [35], [36]) and was hosted on own
(first-party) servers, and the other is to use jQuery hosted
on external (third-party) servers such as those provided by
Google and Microsoft [37], [38]. To identify whether differ-
ences in these inclusion methods lead to version differences,
we investigated the hosts of loaded jQuery libraries.

We show the results of analyzing inclusion methods
based on the URLs in Table 12. The number of jQuery
inclusions hosted on third-party only was higher than first-
party only. In addition, there were 400 (21.8%, N=1,838)
websites that did not align with the first-party or third-party
hosts of jQuery. Because the mixed inclusions were few on
websites without differences of jQuery versions, only 121
(2.9%, N=4,173), it suggests that differences in inclusions
methods of jQuery contribute to the differences in jQuery
versions.

6. Discussion

6.1 Improvement Plans for Governance Failures

We suggest four improvement plans shown in Table 13
against governance failures identified in the previous sec-
tion.

(1) Review of Guidelines.

Establishing guidelines in an organization is an effective
way to govern website development and operations. We
can apply web security based on the current requirements
by preparing and deploying guidelines based on risk assess-
ment results of the business, information, assets, and sys-
tems. In particular, we believe that this plan can improve
governance failures by being applied to websites with dif-
ferent contexts and webmasters. The standardized guide-
lines will govern webmasters and improve the consistency
of website maintenance. Since the evolution of web tech-
nology and the rapidly changing role of websites, it is also

Table 13 Improvement plans to governance failures identified by our
measurements

Improvement Plan Governance Failure

Review of guidelines Difference in website’s context and webmasters
(Sect. 5.4.2)

Automation of Multiple HTTP headers (Sect. 5.2.2)
web security Different server versions (Sect. 5.3.2)

Use of bundle library (Sect. 5.4.3)
Mixed library inclusions (Sect. 5.4.4)

Supply chain Difficulty of managing third-party content
management (Sects. 5.2.3, 5.3.1, and 5.4.4)

Technical limitation caused by third-party
content (Sect. 5.4.1)

Regular assessment All of the above
by third-parties

important to regularly review the guidelines to prevent them
from becoming obsolete or stale [2].

(2) Automation of Web Security.

A promising improvement plan against the governance fail-
ures of manual operations is automation. This is called
SecDevOps (or DevSecOps), and can automatically perform
certain web security checks when updating functions or re-
leasing systems by integrating security factors into DevOps.
DevOps is a culture and practice that orchestrates develop-
ment and operations for maintaining system quality and pro-
viding value to users promptly. We can automate processes
such as building, testing, releasing and deploying by using
tools created for DevOps [39]. SecDevOps can automate
security checks by integrating logging, monitoring, secure
coding and vulnerability checks into DevOps [40]. There-
fore, webmasters can be aware of governance failures via
automated checks of SecDevOps. Among governance fail-
ures identified by our measurements, we can expect to im-
prove the prevention of multiple HTTP headers, different
server versions, duplicate library bundles, and mixed library
inclusions.

(3) Supply Chain Management.

It is important to check the use of third-party content to
decrease attack surfaces stemming from unintended defects
and vulnerabilities [5], [7]. Webmasters must pay attention
to select third-party vendors to decrease risks caused by
server-side technologies because these technologies cannot
be controlled by webmasters. On the other hand, client-side
technologies, such as jQuery and CMSs, can be controlled
and updated by webmasters. In Sect. 5.4.1, we found com-
patibility issues caused by CMS plugins by detecting the
use of jQuery 1.x. Webmasters must also keep plugins up to
date. Since outdated CMS plugins tend to be targeted by at-
tackers during website compromises, it is necessary to man-
age and control these third-party dependencies [41], [42].
Another approach to verify third-party supply chains is the
use of Subresource Integrity (SRI) [43]. The SRI is a se-
curity feature that enables browsers to verify that third-
party content has no unexpected manipulation by checking a



1836
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.11 NOVEMBER 2021

Fig. 4 Number of jQuery-related CVEs on websites without jQuery dif-
ferences and websites with each version pattern

cryptographic hash of the resource. In addition to on-
demand third-party content, it is also important to manage
and control third-party content, such as JavaScript libraries,
that is downloaded in advance. The automation tools men-
tioned above are suitable for management purposes [9]. For
example, the JavaScript package manager npm can prevent
duplicate library inclusions and manage which versions of
which libraries are downloaded and used on a website [36].

In the case of entrusting website development and op-
erations to a third-party, we should define what guidelines,
tools, settings and versions to use in requirements or spec-
ifications. It is also crucial to govern third-party operators
so that the same level of web security applies to systems
developed by them [44], [45].

(4) Regular Assessment by Third-parties.

To prevent governance failures, security assessments by in-
dependent third-parties play a key role in addition to secu-
rity checks by SecDevOps. We can evaluate the state of
web security measures, meaning whether websites comply
with guidelines and web security measures are sufficient, by
performing our governance analysis and similar assessments
regularly [44], [45].

6.2 Web Security Governance for Cyber Resilience

We can suspect that websites with governance failures have
a higher risk of containing defects and vulnerabilities. We
calculated the CDF (Cumulative Distribution Function) of
the number of jQuery-related CVEs on websites without dif-
ferences in jQuery and with each other pattern. Note that
we counted the number of CVEs using public vulnerabil-
ity databases [46]. Figure 4 shows that websites with differ-
ences have more CVEs than those without. Moreover, we
can say that more patterns usually translate into more CVEs
although results were partially reversed on websites with 7
version patterns due to the small amount of data used for
analysis. In other words, it means that governing software
versions leads to a decrease in the number of known vulner-
abilities on websites.

Many known vulnerabilities and security indicators
should not be interpreted to mean that a website is ex-
ploitable or defensible [14]. However, websites with con-
trolled software settings and versions can more promptly re-
spond to threats through security measures, such as updating
and patching, in order to respond to zero-day vulnerabilities
than websites without. Therefore, we can expect that the
web security governance measured in our work can be uti-
lized as a security indicator that measures a facet of cyber
resilience.

6.3 Compatibility Issue

In our measurements, we analyzed the consistency of header
settings and software versions. However, some websites
have difficulty governing these settings and versions due
to compatibility issues [11], [47]. Especially jQuery is of-
ten considered a problem that prevents version updates be-
cause it may lack backward compatibility even between mi-
nor versions [9]. One solution to this compatibility issue is
to use the jQuery Migrate plugin [48]. This plugin provides
functions that, for example, restore removed APIs and ad-
ditionally show warnings when removed and/or deprecated
APIs are used. The official website also provides upgrad-
ing guides for help when upgrading jQuery [49]. However,
the plugin is not pervasive because it was only used in 611
(7.5%) websites and was not included in top 10 ranking in
Table 6.

Although it might take a long time to fix governance
failures on websites due to these compatibility issues, we
suggest to make future decisions based on their role and im-
portance. For example, it is also an option to abolish or
merge these websites altogether.

6.4 Governance Including Subdomains

In our measurements, we assumed that web pages with the
same domain name are managed by the same organiza-
tion, and our governance analysis also identified differences
among these web pages. However, there are websites using
many subdomains described in Sect. 5.2.1. We can suspect
that these websites including subdomains are managed by
the same organization. Hence, we analyze the web security
governance of subdomains to examine whether they inher-
ited the rules of their base domains.

First, we collected one subdomain for each base do-
main using a search engine. We randomly extracted 500
base domains each with and without differences listed in Ta-
ble 3. Note that we chose this method for focusing on sub-
domains used for websites although there are various other
methods to collect subdomains by using DNS, certificates
and WHOIS records. As a result, 424 and 410 subdomains
were collected from the base domains with and without dif-
ferences, respectively. Next, we analyzed the web security
governance of these subdomains using the methods shown
in Sect. 4. Subdomains of base domains with existing differ-
ences had further differences in 287 (72.2%) websites, and



TAKATA et al.: THE UNCONTROLLED WEB: MEASURING SECURITY GOVERNANCE ON THE WEB
1837

those without existing differences had no further differences
in 284 (71.7%) websites. Subdomains are generally used
for creating new websites or switching design themes and
contexts from base domains. Although the level that web
security governance is applied at varies depending on the
organization, we can say that many websites tend to inherit
their adherence/non-adherence among subdomains.

6.5 Limitation

Our two approaches of web technology detection, i.e., static
analysis and dynamic analysis, have cases where both ap-
proaches can fail, described in Sect. 5.4.3. For example,
web technologies outside of Wappalyzer [29] detection ca-
pability and heavily modified servers and libraries cannot
be detected. However, we consider that to have negligible
impact on our measurement results since web servers and
JavaScript libraries with high market share can be detected.

Our governance analysis compared only a landing page
with the subpages because we thought that a landing page
is the most maintained and should be the basis of a web-
site. However, comparing among subpages each other is
also beneficial to identify differences in settings and ver-
sions of new software that are not used in the landing page.
As future work, we plan to extend our governance analysis
to identify differences among subpages.

Our governance analysis did not compare the presence
of HTTP security headers and web technologies, but only
their set values and version values. Since the variability
of these values varies depending on the headers and tech-
nologies themselves, the likelihood of these differences also
changes. For instance, almost all jQuery versions are ref-
erenced in Major.Minor.Patch format while almost all
Drupal versions are referenced in Major only format [50].
In addition, we cannot detect differences in web technolo-
gies without any version releases at all. Therefore, it is pos-
sible that the number of websites with governance failures
is potentially higher than our measurement results indicate.

6.6 Ethical Consideration

In our measurements, we collected data by crawling multi-
ple pages of websites. During the crawling, we distributed
access and time slots to avoid overloading specific websites.
Moreover, in order not to have a negative impact on specific
companies and organizations, we analyzed websites without
mentioning specific names.

7. Conclusion

The increasing complexity of websites makes them almost
uncontrollable. To better control websites, it is important
to manage and use common software settings and versions
across all web pages of the website by applying security
governance. In addition, applying security governance to
websites can help address new vulnerabilities and threats
and, as a result, improve their cyber resilience. We hope

that our measurement results will trigger regular web secu-
rity checks and security governance improvements to harden
websites.

References

[1] J. Vijayan, “Attackers Compromised Dozens of News Websites as
Part of Ransomware Campaign.” https://www.darkreading.com/
attacks-breaches/attackers-compromised-dozens-of-news-websites-
as-part-of-ransomware-campaign/d/d-id/1338265, July 2020.

[2] NIST, “SP 800-35: Guide to Information Technology Security Ser-
vices.” https://doi.org/10.6028/NIST.SP.800-35, Oct. 2003.

[3] NIST, “SP 800-44: Guidelines on Securing Public Web Servers.”
https://doi.org/10.6028/NIST.SP.800-44ver2, Oct. 2007.

[4] ISEC IPA, “10 Major Security Threats 2019.” https://www.ipa.go.jp/
files/000076989.pdf, Aug. 2019.

[5] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W.
Joosen, C. Kruegel, F. Piessens, and G. Vigna, “You Are What You
Include: Large-scale Evaluation of Remote JavaScript Inclusions,”
ACM SIGSAC Conference on Computer and Communications Se-
curity (CCS), 2012.

[6] M. Ikram, R. Masood, G. Tyson, M.A. Kaafar, N. Loizon, and
R. Ensafi, “The chain of implicit trust: An analysis of the web
third-party resources loading,” The Web Conference (WWW),
pp.2851–2857, 2019.

[7] D. Kumar, Z. Ma, A. Mirian, J. Mason, J.A. Halderman, and M.
Bailey, “Security Challenges in an Increasingly Tangled Web,”
World Wide Web Conference (WWW), pp.1–8, 2017.

[8] B. Stock, M. Johns, M. Steffens, and M. Backes, “How the Web
Tangled Itself: Uncovering the History of Client-Side Web (In) Se-
curity,” USENIX Security Symposium, 2017.

[9] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and
E. Kirda, “Thou Shalt Not Depend on Me: Analysing the Use of
Outdated JavaScript Libraries on the Web,” Network and Distributed
System Security Symposium (NDSS), 2017.

[10] “ISO/IEC 27014:2020 Information security, cybersecurity and pri-
vacy protection – Governance of information security.” https://www.
iso.org/standard/74046.html, Dec. 2020.

[11] “OWASP Secure Headers Project.” https://owasp.org/www-project-
secure-headers/, April 2020.

[12] Jérôme Segura, “Fake jquery campaign leads to malvertis-
ing and ad fraud schemes.” https://blog.malwarebytes.com/threat-
analysis/2019/06/fake-jquery-campaign-leads-to-malvertising-and-
ad-fraud-schemes/, June 2019.

[13] T. Van Goethem, P. Chen, N. Nikiforakis, L. Desmet, and W. Joosen,
“Large-scale security analysis of the web: Challenges and find-
ings,” International Conference on Trust and Trustworthy Comput-
ing (TRUST), pp.110–126, 2014.

[14] S. Tajalizadehkhoob, T. Van Goethem, M. Korczyński, A.
Noroozian, R. Böhme, T. Moore, W. Joosen, and M. van Eeten,
“Herding Vulnerable Cats: A Statistical Approach to Disentangle
Joint Responsibility for Web Security in Shared Hosting,” ACM
SIGSAC Conference on Computer and Communications Security
(CCS), 2017.

[15] A. King, “Analysis of the Alexa Top 1M Sites.” https://blog.mozilla.
org/security/2018/02/28/analysis-alexa-top-1m-sites-2/, Feb. 2018.

[16] S. Calzavara and M. Bugliesi, “Content Security Problems? Evaluat-
ing the Effectiveness of Content Security Policy in the Wild,” ACM
SIGSAC Conference on Computer and Communications Security
(CCS), pp.1365–1375, 2016.

[17] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock,
“Complex Security Policy? A Longitudinal Analysis of Deployed
Content Security Policies,” Network and Distributed System Secu-
rity Symposium (NDSS), 2020.

[18] S. Calzavara, S. Roth, M. Backes, and B. Stock, “A Tale of
Two Headers: A Formal Analysis of Inconsistent Click-Jacking

http://dx.doi.org/10.1145/2382196.2382274
http://dx.doi.org/10.1145/3308558.3313521
http://dx.doi.org/10.14722/ndss.2017.23414
http://dx.doi.org/10.1007/978-3-319-08593-7_8
http://dx.doi.org/10.1145/3133956.3133971
http://dx.doi.org/10.14722/ndss.2020.23046


1838
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.11 NOVEMBER 2021

Protection on the Web,” USENIX Security Symposium, 2020.
[19] B. Eriksson and A. Sabelfeld, “AutoNav: Evaluation and Autom-

atization of Navigation Policies,” The Web Conference (WWW),
pp.1320–1331, 2020.

[20] S. Roth, M. Backes, and B. Stock, “Assessing the Impact of Script
Gadgets on CSP at Scale,” ACM Symposium on Information, Com-
puter and Communications Security (AsiaCCS), 2020.

[21] M. Vasek, J. Wadleigh, and T. Moore, “Hacking is not ran-
dom: a case-control study of webserver-compromise risk,” IEEE
Transactions on Dependable and Secure Computing, vol.13, no.2,
pp.206–219, 2015.

[22] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener, “Graph structure in the web,”
Computer Networks, vol.33, no.1, pp.309–320, 2000.

[23] K. Soska and N. Christin, “Automatically Detecting Vulnerable
Websites Before They Turn Malicious,” USENIX Security Sympo-
sium, 2014.

[24] T. Urban, M. Degeling, and T. Holz, “Beyond the Front Page: Mea-
suring Third Party Dynamics in the Field,” The Web Conference
(WWW), 2020.

[25] “Alexa Top Sites.” https://aws.amazon.com/jp/alexa-top-sites/, June
2020.

[26] Mozilla, “Public Suffix List.” https://publicsuffix.org/, 2021.
[27] J. Kurkowski, “tldextract.” https://pypi.org/project/tldextract/, 2021.
[28] “The Chromium Projects.” https://www.chromium.org/Home, Feb.

2020.
[29] E. Alias, “Wappalyzer.” https://www.wappalyzer.com/, 2021.
[30] E. Alias, “Technologies - Wappalyzer.” https://www.wappalyzer.

com/technologies/, 2021.
[31] G. Tyson, I. Castro, F. Cuadrado, and S. Uhlig, “Exploring HTTP

Header Manipulation In-The-Wild,” World Wide Web Conference
(WWW), 2017.

[32] W3Techs, “Usage statistics of JavaScript libraries for websites.”
https://w3techs.com/technologies/overview/javascript library, May
2020.

[33] “Why wordpress only use old jQuery version is 1.12.4?.”
https://wordpress.org/support/topic/why-wordpress-only-use-old-
jquery-version-is-1-12-4/, 2021.

[34] “webpack.” https://webpack.js.org/, 2021.
[35] “jQuery CDN.” https://code.jquery.com/, 2021.
[36] “npm.” https://www.npmjs.com/, 2021.
[37] “Hosted Libraries | Google Developers.” https://developers.google.

com/speed/libraries, 2021.
[38] “Microsoft Ajax Content Delivery Network.” https://docs.microsoft.

com/en-us/aspnet/ajax/cdn/overview, 2021.
[39] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,”

IEEE Softw., vol.33, no.3, pp.94–100, 2016.
[40] V. Mohan and L. Ben Othmane, “SecDevOps: Is it a marketing

buzzword? Mapping research on security in DevOps,” Interna-
tional Conference on Availability, Reliability and Security (ARES),
pp.542–547, 2016.

[41] D. Fiser, “Looking into Attacks and Techniques Used Against
WordPress Sites.” https://blog.trendmicro.com/trendlabs-security-
intelligence/looking-into-attacks-and-techniques-used-against-word
press-sites/, Dec. 2019.

[42] D. Saunders, “CMS attacks on the rise.” https://hello.global.ntt/
en-us/insights/blog/cms-attacks-on-the-rise, June 2020.

[43] Mozilla, “Subresource Integrity.” https://developer.mozilla.org/en-
US/docs/Web/Security/Subresource Integrity, Dec. 2020.

[44] NIST, “SP 800-30: Guide for Conducting Risk Assessments.”
https://doi.org/10.6028/NIST.SP.800-30r1, Sept. 2012.

[45] NIST, “SP 800-37: Risk Management Framework for Information
Systems and Organizations: A System Life Cycle Approach for Se-
curity and Privacy.” https://doi.org/10.6028/NIST.SP.800-37r2, Nov.
2018.

[46] NIST, “NVD Data Feeds.” https://nvd.nist.gov/vuln/data-feeds,
2021.

[47] T. Dumitraş and P. Narasimhan, “Why do upgrades fail and what can
we do about it? toward dependable, online upgrades in enterprise
system,” Proc. 10th ACM/IFIP/USENIX International Conference
on Middleware, 2009.

[48] “jQuery Core Upgrade Guides.” https://jquery.com/download/
\#jquery-migrate-plugin, 2021.

[49] “jQuery Migrate Plugin.” https://jquery.com/upgrade-guide/, 2021.
[50] C. Dresen, F. Ising, D. Poddebniak, T. Kappert, T. Holz, and S.

Schinzel, “CORSICA: Cross-Origin Web Service Identification,”
ACM Symposium on Information, Computer and Communications
Security (AsiaCCS), 2020.

Yuta Takata received his B.E., M.E., and
Ph.D. degrees in computer science and engi-
neering from Waseda University, Japan in 2011,
2013, and 2018. He was a researcher at NTT
from 2013 to 2018. He is currently a senior
researcher and a manager at Deloitte Tohmatsu
Cyber LLC, Tokyo, Japan. Since joining
Deloitte in 2019, he has been engaged in R&D
of technologies and solutions related to cyber se-
curity, web security and privacy while working
on utilizing the research results in business.

Hiroshi Kumagai worked as a lead an-
alyst in JPCERT/CC from 2011 to 2015. He
was a researcher at PwC from 2015 to 2019. In
2019, he joined Deloitte Tohmatsu Cyber LCC,
Tokyo, Japan where he is currently a princi-
pal researcher. His research interests include
threat intelligence, dark web, cryptocurrency,
fake news, and he has been engaged in R&D
of technologies and solutions based on these
interests.

Masaki Kamizono led the Cyber Secu-
rity Laboratory at PwC and worked as a se-
nior researcher at NICT from 2015 to 2019. In
2019, he joined Deloitte Tohmatsu Cyber LCC,
Tokyo, Japan as CTO to launch the Advanced
Cyber Security Laboratory. He leads the R&D
team, and consistently develops new solutions
and new businesses based on R&D. He has also
been engaged in human resource development.

http://dx.doi.org/10.1145/3366423.3380207
http://dx.doi.org/10.1145/3320269.3372201
http://dx.doi.org/10.1109/tdsc.2015.2427847
http://dx.doi.org/10.1016/s1389-1286(00)00083-9
http://dx.doi.org/10.1109/ms.2016.68
http://dx.doi.org/10.1109/ares.2016.92
http://dx.doi.org/10.1007/978-3-642-10445-9_18
http://dx.doi.org/10.1145/3320269.3372196

