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SUMMARY  With the development of IoT devices and sensors, edge
computing is leading towards new services like autonomous cars and smart
cities. Low-latency data access is an essential requirement for such ser-
vices, and a large-capacity cache server is needed on the edge side. How-
ever, it is not realistic to build a large capacity cache server using only
DRAM because DRAM is expensive and consumes substantially large
power. A hybrid main memory system is promising to address this is-
sue, in which main memory consists of DRAM and non-volatile mem-
ory. It achieves a large capacity of main memory within the power sup-
ply capabilities of current servers. In this paper, we propose Fogcached,
that is, the extension of a widely-used KVS (Key-Value Store) server pro-
gram (i.e., Memcached) to exploit both DRAM and non-volatile main
memory (NVMM). We used Intel Optane DCPM as NVMM for its pro-
totype. Fogcached implements a Dual-LRU (Least Recently Used) mech-
anism that seamlessly extends the memory management of Memcached
to hybrid main memory. Fogcached reuses the segmented LRU of Mem-
cached to manage cached objects in DRAM, adds another segmented LRU
for those in DCPM and bridges the LRUs by a mechanism to automatically
replace cached objects between DRAM and DCPM. Cached objects are
autonomously moved between the two memory devices according to their
access frequencies. Through experiments, we confirmed that Fogcached
improved the peak value of a latency distribution by about 40% compared
to Memcached.

key words: Fogcached, KVS, Key-Value-Store, Middleware, edge, edge
computing, Dual-LRU, NVM, NVMM, DCPM

1. Introduction

With the advance of IoT (Internet of Things) technology,
a large amount of data is transferred to servers from smart
devices and sensors for processing. When IoT technology
spreads to every corner of our lives in the future, it will be
necessary not only to process data in geographically distant
cloud data centers, but also to process data at the edge near
users [1]. In edge computing, it is necessary not only to re-
tain data on the distant cloud data center side, but also to
retain data on the edge side in order to achieve higher re-
sponsiveness [1], [2].

We focused on a key-value-store (KVS) server that al-
lows a large amount of data to be temporarily cached. To re-
alize low-latency access to a large amount of data, the KVS
server needs to be equipped with a large memory. However,
the capacity of a DRAM module, which is currently used as
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main memory, is limited, and it is unlikely that it will in-
crease significantly in the future [2], [3]. DRAM is volatile
and continuous power supply (i.e., refresh operation) is nec-
essary. It is difficult to equip a computer with a large
capacity of DRAM because of its large power consump-
tion. Therefore, we consider improving the capacity of main
memory by using a non-volatile main device. It has larger
capacity than DRAM and also has energy efficiency enabled
by the inherent characteristic of non-volatility. However, its
read/write performance is likely inferior to that of DRAM.
For example, the read latency of Intel Optane DCPM (Data
Center Persistent Memory, i.e., the first commercially avail-
able byte-addressable non-volatile memory module) is ap-
proximately 3 times slower than that of DRAM for random
access and approximately 2 times slower for sequential ac-
cess [4]. For KVS servers, it is promising to use non-volatile
memory device to expand the capacity of the main memory
S0 as to increase its cache hit rate; however, it is necessary
to avoid the deterioration of performance due to its inferior
performance.

In this study, we propose ‘Fogcached’, a KVS server
program supporting hybrid main memory composed of
DRAM and DCPM. It drastically increases the capacity of
cached data by taking the advantage of the large capacity of
DCPM. It also reduces performance degradation caused by
the large latency of DCPM by automatically optimizing the
locations of cached data between DRAM and DCPM.

We extend a widely-used KVS server program, Mem-
cached [5], which is originally designed for DRAM-based
main memory. Memcached has a segmented LRU (Least
Recently Used) algorithm to manage cached objects accord-
ing to their access frequencies. To keep its powerful func-
tionalities, we keep the segmented LRU for DRAM and
add another segmented LRU for DCPM, and loosely cou-
ple them with a mechanism to optimize the locations of
cached objects between the memory devices. Fogcached au-
tomatically moves frequently-accessed cached objects from
DCPM to DRAM and infrequently-accessed ones to DRAM
to DCPM. It increases the hit ratio to the faster memory de-
vice (i.e., DRAM) and decreases performance degradation
due to the slower memory device (i.e., DCPM).

Note that Memcached has a mechanism called
ext_store [6] that expands the capacity of a KVS server by
using a storage device. The ext_store mechanism, how-
ever, is designed for flash memory devices, which is not
capable in fully taking advantage of byte-addressable non-
volatile memory. Byte-addressable non-volatile memory is
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designed to be accessed as the main memory of a computer
like DRAM. We aim at avoiding the overhead of storage I/O.
Fogcached is natively designed for byte-addressable non-
volatile memory.

We conducted experiments using a computer equipped
with DCPM. We confirmed that the proposed mechanism
correctly works. In tested conditions, the peak value of a
latency distribution was improved by approximately 40%,
compared to Memcached. Fogcached succeeded in improv-
ing performance, thanks to its optimization mechanism.

To promptly report the results and obtain the first feed-
back from the community, we published an early report of
Fogcached [7]. Considering the broader reader’s interest, we
focus this paper to recount the study and add the detailed
explanation of the mechanism related to the performance
evaluation. Moreover, we have added the evaluation and
discussion of how this work overcame the challenges in the
approach.

The structure of this paper is as follows: Sect.2 de-
scribes related work. Section 3 summarizes requirements.
Section 4 introduces the proposed design and its implemen-
tation. Section 5 presents evaluation. Section 6 concludes
this work and discusses issues.

2. Related Work
2.1 Studies on Non-Volatile Main Memory

Non-volatile memory (NVM) based on a new operating
principle has appeared in contrast to volatile memory such
as SRAM and DRAM used in conventional computer sys-
tems. Some types of non-volatile memory devices are be-
ing put into practical use. For example, resistance change
memory (ReRAM), magnetic memory (MRAM), and phase
change memory (PCM) have appeared [7], [8].

These memory devices have non-volatility in which
stored data is persistent without electrical supply. It is ex-
pected that the capacity of such emerging memory devices
will increase in the future. Although the capacity of main
memory is expanded, its power consumption will be sup-
pressed. It is also considered that some types of non-volatile
memory devices achieve the same performance as DRAM in
terms of latency.

Now studies on the use of non-volatile memory devices
are being actively conducted. For example, focusing on the
fact that non-volatile memory devices have a potential to be
used in both main memory and storage, there is a study on
a file system that combines DRAM and non-volatile mem-
ory [9]. There are also proposals for using non-volatile
memory devices for KVS databases. The persistence of data
is used to improve the fault tolerance of KVS[10], [11].

2.2 Studies on KVS Systems Using Non-Volatile Memory
Devices

In contrast to the fact that some KVS systems traditionally
guaranteed persistence by using flash storage, Fei Xia et al.
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proposed HiKV (Hybrid index Key-Value Store) that guar-
antees persistence by using non-volatile memory for a KVS
system [14]. HiKV provides a mechanism to a construct hy-
brid index on hybrid memory. The hybrid index is com-
posed of a B+ tree index in DRAM and a hash index in non-
volatile memory. It supports the request type of range scan
to the KVS server. In contrast, our proposed mechanism
exploits the LRU algorithm of Memcached, optimizing its
design for ephemeral caching and basic KVS operations to
set and get data.

Hao Liu et al. proposed LibreKV [15], which responds
to requests from clients at high performance. LibreKV
places a hash table in DRAM and non-volatile memory,
respectively. When the hash table in DRAM is full, Li-
breKV merges its data into the hash table in non-volatile
memory, in order to continue serving for requests. It also
provides the persistence of data. LibreKV is designed as a
non-ephemeral database, unlike KVS programs designed as
cache servers such as Memcached. LibreKV has no mecha-
nism to delete an object from memory when memory is fully
used. LibreKV assumes that the total data size to be saved is
smaller than the memory size of a server. This is in contrast
to the LRU algorithm of our proposed mechanism, which is
designed for a cache server.

Hai Jin et al. proposed a mechanism to extend the basic
structure of Memcached [17]. It however adopts the multi-
queue algorithm [18] as a replacement algorithm to deter-
mine which objects to be selected when optimizing the lo-
cations of objects between DRAM and non-volatile mem-
ory. Instead, our proposed method reuses the segment LRU
algorithm of Memcached and can coexist with its existing
functionalities such as ext_store (i.e., a function to expand
cache capacity by using a storage device).

We aim at the placement of objects in different memory
devices by seamlessly extending the LRU algorithm of the
existing KVS. It is intended to achieve high responsiveness.

2.3 Studies on Data Management in Hybrid Main Memory

Wu [21] et al. proposed automatic task memory page move-
ment between memory devices for task-based parallel pro-
gramming. They have implemented a mechanism that ana-
lyzes similar types of tasks from task metadata information
and automatically move memory pages of similar types of
tasks between DRAM and non-volatile memory according
to the information of frequently accessed tasks. However,
access patterns in a database can vary greatly from object
to object and from time to time. Therefore, it is difficult to
predict the behavior of similar types of objects by analyzing
them in advance. We consider that it is more appropriate for
KVS systems to do prediction by reference frequencies.

3. Requirements
There are three main requirements for KVS servers using

hybrid memory. The first requirement is to avoid perfor-
mance degradation due to the slowness of a non-volatile
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memory device. It is possible to increase the hit rate of
cached data by expanding memory space by a large size of
non-volatile memory device. However, its read/write perfor-
mance is inferior to that of DRAM. The read performance
of DCPM is 3 to 4 times larger than that of 80 ns of DRAM,
even though its capacity is 10 times larger. It requires inge-
nuity to properly use both memory devices in consideration
of caching efficiency and performance.

The second requirement is to respond dynamically
changing requests to KVS servers. Requests from clients
vary from object to object and from time to time. Therefore,
it is difficult to determine in advance which object should
be stored in a faster memory device (i.e., DRAM). A KVS
server needs a mechanism to dynamically move objects be-
tween memory devices, according to the access frequencies
to objects.

The third requirement is to maximize performance of a
byte-addressable non-volatile memory device. Memcached
1.5.4 and later have a mechanism, called ext_store, that
holds cached data in a storage device. The design of the
ext_store function is intended for flash storage, which is
significantly inferior in speed to DRAM. It uses the sys-
tem calls for file I/O and the operating system performs 1/O
buffering. On the other hand, byte-addressable non-volatile
memory devices are capable of being accessed as a part of
main memory in the same manner as DRAM. Its latency is
larger than that of DRAM but smaller than that of flash stor-
age. It is expected that maximum performance will not be
obtained through a mechanism designed for storage devices.

4. Proposal
4.1 Overview

We propose Fogcached, a KVS server designed for hybrid
main memory consisting of both DRAM and DCPM. 1t is
intended to achieve large capacity and high performance to-
gether. DCPM provides byte-addressing memory access in
its AppDirect mode. Memory access is done in the same
way as DRAM. We extended Memcached to support hybrid
main memory, keeping its basic mechanism as much as pos-
sible. Memcached treats memory objects according to their
access frequencies so as to minimize access latency. This
basic mechanism is straightforwardly extended for the main
memory consisting of the two memory devices.

We expanded the segment LRU (Least Recently Used)
algorithm of Memcached, which is its key memory man-
agement mechanism. It dynamically moves memory objects
between two types of memory devices, depending on the ac-
cess frequency of each item.

By placing frequently-accessed memory objects in a
faster memory device (i.e., DRAM) and other memory ob-
jects in a slower device (i.e., DCPM)), it is possible to hold a
large amount of data on memory as well as alleviate the per-
formance degradation caused by mixing a slower memory
device in the main memory.

In this section, we introduce the basic design of Mem-
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Fig.1 The high-level overview of the key-value store mechanism of
Memcached
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Fig.2  The basic memory management structure of Memcached, com-
posed of slab classes, slabs and chunks.

cached and then describe the design and implementation of
Fogcached.

4.2 Memcached

Memcached is a typical in-memory KVS server program
and is widely used in data centers today. Compared to
other KVS servers, its overall structure is relatively sim-
ple; we consider that it is suitable as a target for imple-
menting a new idea of memory management. Memcached is
a multi-threaded program in which worker threads respond
to requests from clients and other threads work for overall
memory management. We used the version 1.5.16 of Mem-
cached.

4.2.1 Basic Design

Figure 1 shows the basic operations of Memcached with
a client. It receives a key and its value from the client; a
worker thread in the server process of Memcached receives
them. It firstly updates its hash index table from the key, and
secondly saves the set of the key, the value and its metadata
(e.g., key/value lengths and ancillary information to track its
access frequency) in a region of the main memory.

In Memcached, a set of a key, its value and its meta-
data is called an item. In order to improve the utilization ef-
ficiency of memory space allocated from the main memory,
items of similar sizes are grouped and managed together.
Memcached allocates memory space from the main mem-
ory in a unit called slabs (Fig.2). The size of a slab is 1
MB. A slab is further divided into chunks. Each slab has its
specific chunk size. Slabs are classified by chunk size. For
example, slabs with the chunk size of 96 B are managed as
slab class 1, and those of 120 B are managed as slab class
2. When saving an item in the main memory, Memcached
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selects the slab class whose chunk size the most nearly fits
the size of the item.

Memcached monitors the valid period of each item dur-
ing which the item is intended to be retained in its LRU
structure (described later). It deletes an item in the struc-
ture when its valid period has expired. If Memcached lacks
memory space when adding a new item, it deletes an old
item by means of the following algorithm, regardless of its
valid periods of items. It then adds the new item to the struc-
ture.

4.2.2  Segmented LRU Algorithm

Each slab class has an LRU to manage items according to
the frequency of references of each item. The LRU is di-
vided into three segments: Hot, Warm and Cold. Each item
has bit flags that change depending on the number of ref-
erences. It moves between the segments depending on the
state of the flags. Just after an item is created, the flags are
in the cleared state.

As the item is referenced first, the Fetched flag is set
and linked to the head of the Hot segment. When the item
is referenced again in the Hot segment, the Active flag is
also set. A thread, called maintenance thread, periodically
monitors the tail of each segment. If the item at the tail of
the Hot segment has the Active flag, it is moved to the Warm
segment. Otherwise, it is moved to the Cold segment (i.e.,
such items not being accessed again in the Hot segment are
deemed to be unlikely accessed again). The Active flag is
cleared.

The item at the tail of the Warm segment remains at the
Warm segment. Otherwise, it is moved to the Cold segment.
The item at the tail of the Cold segment is evicted due to the
lack of memory space. See Fig. 4 (a) for details.

4.3 Fogcached

We propose Fogcached, an advanced memory management
mechanism for the KVS server supporting hybrid main
memory. Figure 3 shows the overview of the memory man-
agement structure of the proposed mechanism. We added a
new group of slab classes dedicated for the memory space
allocated from DCPM, while maintaining the original slab

Slab Class 1 Slab Class 1

(chunk size 96B) DRAM NVMM (chunk size 96B)
Chunk Chunk
1MB
Slab Slab
Slab Class 2 Slab Class 2
(chunk size 120B chunk size 120B)
Chunk Chunk
Slab Slab

Fig.3 The proposed memory management structure off Fogcached,
called dual-LRU slab class
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classes of Memcached. The structure of the slab classes for
DCPM is the same as that of DRAM. We call this structure
dual-LRU slab classes. The LRU algorithm composed of the
Hot, Warm and Cold segments is implemented for the mem-
ory space of each memory device. This design is intended
to avoid drastic modification to the current design of Mem-
cached and keep supporting its existing powerful memory
management functionalities also for the emerging memory
device with minimum efforts.

4.3.1 Extension of the Segment LRU Algorithm

To seamlessly integrate the newly added group of slab
classes, we added two new segments to bridge the two seg-
mented LRU structures. See Fig.4 (b) for details. The
Move segment to DCPM holds the items being evicted from
DRAM and being placed in DCPM. The Move segment to
DRAM holds the items being placed in DRAM. We also
added a thread to monitor each Move segment and conduct
replacement of items. We call them migration threads.

The basic design of the segmented LRU to manage
the memory space of each memory device is not modified.
The maintenance thread for each segment LRU periodically
monitors items in the LRU. By introducing the Move seg-
ments and the migration threads, we can loosely couple the
two LRU mechanisms, each of which is originally designed
just for a single memory device. Each LRU mechanism in-
dependently moves items among its segments without inter-
fering the other LRU mechanism. The migration thread in-
dependently works for each Move segment. The item migra-
tions to DCPM and those to DRAM asynchronously work.

Because the maintenance thread needs to periodically
scan items to find expired items, another merit of having the
two maintenance threads is to mitigate performance over-
head. The maintenance thread needs to hold an exclusive
lock for its LRU segments while scanning items. The per-
formance of worker threads is adversely affected if it needs
to hold the lock for a long time.

We added the Promote flag to the state of an item to
distinguish the items to be moved from DCPM and DRAM.
In the current implementation, when an item having the Ac-
tive flag is referenced again, its Promote flag is set. The
meaning of the Fetched and Active flags does not change;
items are moved among the Hot, Warm and Cold segments
according to the existing flags. By adding the Promote flag,
we succeeded in reusing the existing LRU algorithm for the
inside of each memory device while seamlessly connecting
it for the other memory device.

4.3.2 The Migration of Items between DRAM and DCPM

First, the mechanism of moving frequently-accessed items
from DCPM to DRAM works as follows. The maintenance
thread for the segmented LRU of the DCPM side monitors
the items at the tails of the Hot segment and the Warm seg-
ment. If an item at the either tail has the Promote flag, it
moves it to the Move segment to DRAM. The migration
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If the item at the tail of the Hot segment has the Active flag (i.e.,
hit at least twice in the segment), it is moved to Warm and its
Active flag is cleared. Otherwise, it is moved to Cold.

If the itern at the tail of the Warm segment has the Active flag, it stays at
Warm and its Active flag is cleared. Otherwise, it is moved to Cold.

.f'l' K
The item at the tail of the Cold segment is

A new kem s added to the head of the Hot evicted due to the lack of memory space.
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When an item in Cold segment gets the Active flag, it is
immediately moved to Warm. Its Active flag is cleared.

Note: Items are also moved among segments according to given threshold values of each segment size and expiration time.

(a) The LRU mechanism of each slab class in Memcached. The maintenance thread moves items among the
Hot/Warm/Cold segments of each slab class.

A new item is added to the Hot segment at the DRAM
side. If there is no free space at the DRAM side, a new
item is added to the DCPM side.

An item is moved to the Move segment
to DCPM due to the lack of free DRAM
space or the expiration of the item.
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(b) The LRU mechanism of each slab class in Fogcached. In addition to the maintenance thread of each memory device,
the migration thread is added for each memory device to move items from its Move segment.

Fig.4

thread of the Move segment to DRAM periodically moni-
tors the segment and moves items in the segment to the Hot
segment of the LRU of the DRAM side. It finds a target slab,
secures a destination item and copy the data of the source
item to it. Finally, it deletes the source item. When secur-
ing a destination item, if memory space is not available, it
deletes the item at the end of the Cold segment of the LRU
of the DRAM side. Overall, the above procedure is summa-
rized as follows:

An item in the Hot and Warm segments in the LRU of
the DCPM side gets the Promote flag.

(1) The item arriving at the tail of the either segment is
moved to the Move segment to DRAM.

(2) The item in the Move segment is moved to the Hot seg-
ment of the LRU of the DRAM side.

The mechanism of moving infrequently-accessed items
from DRAM to DCPM is rather simple and it reuses the
mechanism of the Cold segment of Memcached. When an
item in the Cold segment is evicted due to the lack of free
memory space or the expiration of the item, it is moved to
the Move segment to DCPM. The migration thread of that
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Move segment periodically monitors it and moves items to
the head of the Cold segment of the LRU of the DCPM side.

4.4 TImplementation

The proposed mechanism is based on the version 1.5.16
of Memcached and implemented for the Linux operating
system running on a machine equipped with DCPM. The
extension to Memcached is approximately 400 lines in C
language. The proposed mechanism uses the Device Dax
mode of the NVDIMM driver of Linux to access the mem-
ory space of DCPM. In the Device Dax mode, user-space
programs can allocate memory pages from DCPM by us-
ing the device file of the NVDIMM driver (e.g., /dev/dax).
The proposed mechanism call the mmap() function to map
memory pages from DCPM to its virtual address space.

It reads and writes them in the same way as memory
pages allocated from DRAM.

It should be noted that the NVDIMM drive of Linux
also provides a mechanism to use DCPM as a storage de-
vice. In experiments, we used this mode to compare the pro-
posed mechanism with the ext_store mechanism of Mem-
cached.

5. Evaluation
5.1 Experimental Settings

Through experiments, we confirmed that Fogcached cor-
rectly worked and clarified its basic performance. We pre-
pared for two computers. The one is used for a KVS server
program working as a cache server, the other is used for
a KVS client program sending requests to the server. The
specifications of the server and client computers are shown
in Table 1. The KVS server machine has 2 Intel Xeon pro-
cessors. Each processor has 24 physical CPU cores and 2
memory controllers. Each controller has 3 memory chan-
nels. Each memory channel has a DRAM module (16 GB)
and a DCPM module (128 GB). The total DRAM size is 192
GB. The total DCPM size is 1.5 TB. All the DCPM modules
are set to the AppDirect mode. The machines are connected
with 10 Gb Ethernet.

Table 1  The machine specifications used in experiments

KVS server machine

CPU Intel Xeon Gold 6230 2.10 GHz x2
DRAM DDR4 16GB x12 (192 GB)

NVM Intel Optane DCPM 128GB x12 (1.5 TB)
NIC 10Gbase-T

0S Fedora

KVS client machine

CPU Intel Xeon CPU E5-2630 2.20 GHz
DRAM DDR4 16GB x8 (128 GB)

NIC 10Gbase-T

(O Ubuntu
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5.2 Performance Evaluation

First, we compared the basic performance of Fogcached
with that of Memcached. As a benchmark tool for a KVS
server, we used Memaslap [22]. For comparison, experi-
ments were conducted in the following 5 configurations in
Table 2:

(1) Memcached was used. 32 GB of DRAM was allocated.

(2) Fogcached was used. 32 GB of DCPM was allocated.
No DRAM space was allocated to it.

(3) Fogcached was used. 4 GB of DRAM and 28 GB of
DCPM were allocated. Its mechanism to dynamically
relocate items between DRAM and DCPM was dis-
abled. It first uses DRAM space to place new items.
After using all the allocated DRAM space, it uses
DCPM.

(4) Fogcached was used. 4 GB of DRAM and 28 GB
of DCPM were allocated. Its mechanism to dynami-
cally relocate items between DRAM and DCPM was
enabled.

(5) Memcached was used. 4 GB of DRAM was allocated.
The ext_store mechanism of Memcached was enabled.
A file of 28 GB was used for the ext_store mechanism,
which was created on DCPM.

Memaslap was configured to generate GET requests.
The size of a key was 64 B and that of value was 1 KB. The
number of key-value pairs was 100 K. It created 256 TCP
connections concurrently. In this parameter setting, the total
size of cached data reached 30 GB. We had in mind that we
emulated a situation where many sensor nodes are connect-
ing to a KVS server located at the edge. Memaslap first per-
formed a warm-up phase in which it sends SET requests of
all the key-value pairs to a KVS server. After that, it gener-
ated GET requests, choosing keys in a nearly random man-
ner. To see the contribution of dynamic relocation, access
frequencies of keys should not be completely equal; some
keys need to be accessed more frequently and supposedly
tends to be placed in DRAM for a longer time. We modified
Memaslap to alternately change a range of keys from which
it selects a key randomly; once it picks up a key from all the
keys, next time it picks up a key from a particular set of 5 K
keys. In each experiment, Memaslap generated 20 million
GET requests. Figure 5 shows the latency distributions of

Table 2  The configurations of experiments
DRAM DCPM
(1) | Memcached with DRAM only | 32 GB 0GB
(2) | Fogcached with DCPM only 0GB 32 GB
(3) | Fogcached without dynamic| 4 GB 28 GB
relocation
(4) | Fogcached with  dynamic| 4 GB 28 GB
relocation
(5) | Memcached with the ext store | 4 GB 28 GB
mechanism enabled
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Fig.5 Latency distributions obtained through the experiments using
Memaslap

GET requests obtained in the above configurations (1)-(5).

5.2.1 Comparison between Fogcached and Memcached
with its Ext_Store Mechanism

First, we focus on the comparison between (4) Fogcached
and (5) Memcached with the ext_store mechanism enabled.
Both configurations use the same mixed ratio of DRAM and
DCPM (i.e., 4 GB and 28 GB, respectively). The ext_store
mechanism of Memcached enables us to apply it to hybrid
main memory without any modification to it. Moreover, the
use of the ext_store mechanism enables us to allocate any
mixed ratio of DRAM and DCPM to Memcached (Fig. 5).

It should be noted that we did not use the Memory
mode of DCPM for evaluation. In addition to the AppDi-
rect mode, DCPM also supports the Memory mode in which
the memory controller integrates DCPM into main memory
and automatically relocates memory pages between DRAM
and DCPM. In the Memory mode, the operating system run-
ning on the machine virtually sees that main memory is
composed of one memory device, not being aware of hy-
brid main memory. In this work, we however discuss how
software-based mechanisms should treat hybrid main mem-
ory. Software-based mechanisms enable us to implement
application-specific memory management for hybrid main
memory. This work picks up a KVS server as an exam-
ple application and discusses the feasibility of the proposed
memory management mechanism. We do not discuss com-
parison between software and hardware-based mechanisms.
In addition, the use of the Memory mode needs to always
integrate the entire DRAM with DCPM. It is not possible
to flexibly mix two memory devices. This is another reason
that we used the ext_store mechanism for experiments.

The results showed that, the average latency of requests
with Fogcached was 311 us and that of Memcached was 460
us. The peak value of latency distribution was 290 to 300
us by Fogcached and 470 to 480 us by Memcached. The
peak value of latency distribution was improved by approx-
imately 40% by Fogcached. Fogcached, directly accessing
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DCPM as main memory and not involving complex storage
I/O mechanisms, achieved better performance.

5.2.2 Comparison between DRAM and DCPM

The comparison between (1) Memcached with 32 GB
DRAM and (2) Fogcached with 32 GB DCPM showed how
the performance of a memory device impacts on a KVS
server. Note that because Fogcached reuses the segmented
LRU of Memcached, if it is configured without DRAM, it
behaves as if Memcached was applied to DCPM. The peak
value of latency distribution was 250-260 us by Memcached
with DRAM, and 330-340 us by Fogcached with DCPM.
Thus, for hybrid main memory, it is important to efficiently
use DRAM to mitigate performance degradation caused by
DCPM.

5.2.3 Contribution of Dynamic Relocation in Fogcached

The peak value of latency distribution was 310 to 320 us
when dynamic relocation of Fogcached was disabled. It was
20 us larger than the result of Fogcached with dynamic relo-
cation. Even though Memaslap selects the key of a request
in a nearly random manner, dynamic relocation slightly im-
proved the hit ratio to DRAM.

6. Conclusion

We proposed a KVS (Key-Value Store) server program de-
signed for hybrid main memory consisting of DRAM and
non-volatile memory. We used Optane DCPM as non-
volatile memory for its prototype. Fogcached implements
a Dual-LRU (Least Recently Used) mechanism that seam-
lessly extends the memory management of Memcached to
hybrid main memory. Cached objects are automatically
moved between the two memory devices according to their
access frequencies. Through experiments, we confirmed
that Fogcached improved the peak value of a latency dis-
tribution by approximately 40% compared to Memcached.
A possible direction of future work is to discuss the
performance scalability of a KVS server for a huge size of
main memory, which is likely limited to the scalability of its
index structure. Holding a large amount of data on the LRU
algorithm will increase lock contentions and hash collisions.
Other algorithms may achieve better performance. Another
direction is to discuss the use of persistency of non-volatile
memory for KVS servers. Furthermore, comparison with
other Memcached variants is an interesting topic. Evalua-
tion from the viewpoints of other performance metrics such
power consumption is also invaluable for edge systems.
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