
1576
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.10 OCTOBER 2021

LETTER Special Section on Picture Coding and Image Media Processing

Rolling Guidance Filter as a Clustering Algorithm
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SUMMARY We propose a generalization of the rolling guidance filter
(RGF) to a similarity-based clustering (SBC) algorithm which can handle
general vector data. The proposed RGF-based SBC algorithm makes the
similarities between data clearer than the original similarity values com-
puted from the original data. On the basis of the similarity values, we as-
sign cluster labels to data by an SBC algorithm. Experimental results show
that the proposed algorithm achieves better clustering result than the result
by the naive application of the SBC algorithm to the original similarity val-
ues. Additionally, we study the convergence of a unimodal vector dataset
to its mean vector.
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1. Introduction

Edge-preserving smoothing (EPS) is one of the fundamental
techniques used in several research areas such as image pro-
cessing, computer vision and computer graphics. For exam-
ple, the bilateral filter proposed by Tomasi and Manduchi [1]
has many applications as surveyed by Paris et al. [2]. Re-
cently, Zhang et al. [3] have proposed another EPS filter
called the rolling guidance filter (RGF), which can be inter-
preted as the iterations of joint bilateral filter [4]. The RGF
is a scale-aware filter extensible to suit various applications
and scenarios, and achieves a realtime performance for large
scale images [3]. However, the theoretical convergence in
the RGF procedure remains unsolved.

In this paper, we propose a similarity-based clustering
(SBC) algorithm based on the rolling guidance framework.
The proposed algorithm clusters general vector data on the
basis of their similarities. The RGF procedure updates the
similarities iteratively, and the resultant similarities become
clearer than the original ones. As a result, we can easily
cluster given data with the updated similarities. Experimen-
tal results show an improved performance of data clustering.

The rest of this paper is organized as follows. Section 2
briefly summarizes the RGF. Section 3 proposes the RGF-
based SBC algorithm. Section 4 shows experimental results.
Finally, Sect. 5 concludes this paper.

2. Rolling Guidance Filter

Let I be an input image, and let J be a guidance image
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which has the same size as I. Then the rolling guidance
filter (RGF) computes the following equation iteratively:
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where p and q denote the pixel coordinates, N(p) denotes
the set of neighboring pixels of p, and σs and σr are pos-
itive constants to control the spatial and range weights, re-
spectively. Jt+1(p) denotes the output value at the position p
in the (t + 1)th iteration of the RGF procedure. If we initial-
ize J as J0(p) = c with a constant c for all pixels p, then the
first iteration of (1) becomes the Gaussian filter.

The above RGF updates the guidance image J only,
while keeping the input image I fixed. This procedure can be
interpreted as the iterations of the joint bilateral filter [4] or
cross-bilateral filter [5]. However, as Zhang et al. [3] stated,
the proof of the convergence to a meaningful image by the
RGF procedure remains an open question.

3. Clustering by RGF

In this section, we would like to generalize the above RGF
to the procedure for multidimensional vector data. Instead
of two images I and J, we consider two vector datasets
D = {d1, d2, . . . , dn} and F0 = { f 0

1 , f 0
2 , . . . , f 0

n } where n de-
notes the number of data, and only the latter set F is updated
iteratively. Let Ft = { f t

1, f t
2, . . . , f t

n} be the output at the tth
iteration. Then (1) can be rewritten as
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where wi j is the weight between data i and j, e.g., in (1), we
have wi=p, j=q = exp(−‖p−q‖2/2σ2

s). For the sake of simplic-
ity, we assume that wi j = 1 below. The similarity between
f t
i and f t

j is denoted by s( f t
i , f t

j ) = exp(−‖ f t
i − f t

j‖2/2σ2
r ). We

also assume that Ft is initialized as F0 = D.
After the update of every f t

i by (2), we update the sim-
ilarities s( f t

i , f t
j ) for all pairs. Therefore, the RGF proce-

dure can be viewed as an algorithm to update similarities
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Algorithm 1 Similarity-based clustering
Require: similarity si j between data i and j
Ensure: a set of labels {l1, l2, . . . , ln}
1: li ← −1 for i = 1, 2, . . . , n
2: c← 1
3: for i = 1, 2, . . . , n do
4: if li < 0 then
5: li ← c
6: for j = i, i + 1, . . . , n do
7: if si j > θ then
8: l j ← c
9: end if

10: end for
11: c← c + 1
12: end if
13: end for
14: return {l1, l2, . . . , ln}

between data. The obtained similarities get closer to the
minimum value 0 or the maximum value 1. On the basis
of this ‘crisp’ similarities, we can classify the given data
into clusters. Here, we use a simple clustering algorithm
described in Algorithm 1.

In this algorithm, the first datum gets a label 1, and the
following data similar to the first one also get the same label
1. Next, the first datum among the remaining unlabeled data
gets the second label 2, and the following unlabeled data
similar to the one with label 2 also get the same label 2.
Such a procedure is repeated until all data get their labels.

The above RGF-based clustering algorithm shares the
open question in the original RGF. Therefore, it is difficult
to discuss the convergence of (2). In Appendix A, we study
the convergence in a simple case.

4. Experimental Results

We conducted a numerical simulation of data clustering
by the proposed algorithm with a two-dimensional dataset
S1 [6], which is publicly available on the website “Cluster-
ing basic benchmark” [7]. Figure 1 shows 500 point data
sampled from the dataset S1 with blue points. This dataset
forms 15 Gaussian clusters, whose centers are depicted with
yellow points. The similarities between the blue points with
σr = 50000 are shown in Fig. 2 (a), where the similarity
between ith and jth points is put in the (i, j)th entry of a
matrix, which is displayed as a grayscale image in which
dark pixels indicate small similarities, and bright pixels in-
dicate large similarities. Here, σr is a parameter to be spec-
ified by users. In this example, we decided the value as fol-
lows: We first find horizontal and vertical ranges in which
all data exist as H = 857681 and V = 851014, respec-
tively. Then we divide the area HV by the number of clus-
ters K = 15 as HV/K, which is the mean area per clus-
ter, and take the square root of it L =

√
HV/K, which is

the mean length assigned to each cluster. We place that a
normal distribution in the range of length L, and assume
that the range is covered by a constant multiple of σr, e.g.,
4σr ≤ L ≤ 5σr. Typically, if we set 4.5σr = L, then we have

Fig. 1 Two-dimensional data S1 [6]

Fig. 2 Similarity matrices.

Fig. 3 Clustering results.

σr = L/4.5 =
√

857681×851014
15 /4.5 ≈ 49020, from which

we have an approximate number 50000. In Fig. 2, the data
are roughly ordered according to their cluster membership,
therefore we can see the block diagonal structure in the sim-
ilarity matrices.

After 10 iterations of the RGF procedure, the blue
points moved to the red points in Fig. 1, and the corre-
sponding similarities became crisper than the original ones
as shown in Fig. 2 (b) with σr = 50000, which is the same
value as Fig. 2 (a). Figure 3 shows the clustering results by
Algorithm 1. Figures 3 (a) and (b) show the results without
and with the RGF procedure, respectively, i.e., the former
result is computed from the similarity matrix in Fig. 2 (a),
and the latter from that in Fig. 2 (b). In Fig. 3, the data with
the same label have the same color. In Fig. 3 (a), we adjusted
the similarity threshold θ in Algorithm 1, line 7, as 0.01 to
obtain 15 clusters, where we can see some jumbled data. On
the other hand, in Fig. 3 (b), all data are correctly clustered



1578
IEICE TRANS. INF. & SYST., VOL.E104–D, NO.10 OCTOBER 2021

Fig. 4 Similarity matrices of shuffled data.

Fig. 5 Clustering results of shuffled data.

Fig. 6 Similarity matrices of shuffled data S2.

with θ = 0.5.
Next, we shuffled the order of point data to see the in-

fluence of it on the clustering result. Figure 4 shows the
similarity matrices with σr = 50000 for both Figs. 4 (a) and
(b). We can see that the block diagonal structures in Fig. 2
are untied in Fig. 4. Figures 5 (a) and (b) show the cluster-
ing results based on the similarity matrices in Figs. 4 (a) and
(b), respectively. In Fig. 5 (a), there are some jumbled data,
while Fig. 5 (b) shows the same clustering result as Fig. 3 (b)
except for color assignment.

We also clustered another two-dimensional dataset
S2 [6]. Figure 6 shows the similarity matrices computed
from the shuffled data S2 with σr = 50000. Figures 7 (a)
and (b) show the clustering results based on the similarity
matrices in Figs. 6 (a) and (b), respectively. A number of
jumbled data found in Fig. 7 (a) are correctly clustered in
Fig. 7 (b). Figure 8 shows the converged points in red and

Fig. 7 Clustering results of shuffled data S2.

Fig. 8 Two-dimensional data S2 [6]

the ground truth cluster centers in yellow with the original
point data in S2 in blue, where the red points have converged
near the ground truth yellow points.

5. Conclusion

In this paper, we proposed a generalization of the rolling
guidance filter (RGF) to a clustering algorithm for general
vector data. The proposed algorithm makes the similarity
between data closer to the minimum value 0 or maximum
value 1. As a result, we can divide the given data into clus-
ters by a simple algorithm based on a similarity matrix. Ex-
perimental results on a benchmark dataset demonstrated the
performance of the proposed clustering algorithm, where
data points converged to their respective cluster centers or
ground truth points without knowing the number of clusters.

Future work will include the development of an RGF-
based clustering algorithm which can find clusters of differ-
ent shapes and non-linearly separable clusters.
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[6] P. Fränti and O. Virmajoki: “Iterative shrinking method for clustering
problems,” Pattern Recognition, vol.39, no.5, pp.761–765, 2006.
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Appendix A: Convergence to Mean Vector

As Zhang et al. [3] suggested, it is difficult to describe the
RGF as an optimization problem from which the RGF pro-
cedure will be derived. Therefore, it is also difficult to dis-
cuss the convergence of the guidance image to a meaningful
image.

In this section, we consider a simplified situation where
data form a single cluster, i.e., the kernel density estimate

p̂( f ) ∝
n∑

j=1

s
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)
(A· 1)

is unimodal. The first iteration of (2) with wi j = 1 is given
by
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which satisfies the following inequality:

n∑
j=1

s
(

f 1
i , d j

)
≥

n∑
j=1

s
(
di, d j

)
, (A· 3)

since (A· 2) can be derived from the necessary condition for
optimality of max f p̂( f ):
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i = di for i = 1, 2, . . . , n. The uni-
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and introduce a convex function φ(x) = exp(−x/2σ2
r ) which

satisfies φ(x2) − φ(x1) ≥ φ′(x1)(x2 − x1) for all x1 and
x2, where φ′(x1) = − exp(−x1/2σ2

r )/2σ2
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where the final inequality follows from (A· 5). That is, the
total sum of similarity s( fi, f j) increases with the update of
fi by (A· 2). On the other hand, the similarity s( fi, f j) is
bounded by 1 from above. Therefore, when we iterate (2),
each s( fi, f j) will approach 1. Then each f t

i approaches the
unweighted average of D or the mean vector d̄ =

∑n
i=1 di/n.

In the case that there exists more than one cluster in
the given data D, the above discussion will be valid for
the partial data belonging to the same cluster as shown in
Fig. 1, where the converged red points almost overlap with
the ground truth yellow points.
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