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SUMMARY Microservice architecture has been widely adopted for
large-scale applications because of its benefits of scalability, flexibility, and
reliability. However, microservice architecture also proposes new chal-
lenges in diagnosing root causes of performance degradation. Existing
methods rely on labeled data and suffer a high computation burden. This
paper proposes MicroState, an unsupervised and lightweight method to
pinpoint the root cause with detailed descriptions. We decompose root
cause diagnosis into element location and detailed reason identification.
To mitigate the impact of element heterogeneity and dynamic invocations,
MicroState generates elements’ invoked states, quantifies elements’ ab-
normality by warping-based state comparison, and infers the anomalous
group. MicroState locates the root cause element with the consideration
of anomaly frequency and persistency. To locate the anomalous metric
from diverse metrics, MicroState extracts metrics’ trend features and eval-
uates metrics’ abnormality based on their trend feature variation, which
reduces the reliance on anomaly detectors. Our experimental evaluation
based on public data of the Artificial intelligence for IT Operations Chal-
lenge (AIOps Challenge 2020) shows that MicroState locates root cause
elements with 87% precision and diagnoses anomaly reasons accurately.
key words: root cause analysis, element invocation, microservice system

1. Introduction

With the advantage of flexible scalability and fast de-
livery, microservice architecture (MSA) has been widely
adopted in the modern IT industry, such as the Inter-
net of Things [1], mobile computing, and cloud comput-
ing [2]. With MSA, an application is decomposed into
single-function and loosely coupled microservices that in-
tercommunicate with lightweight protocols [3]. Each mi-
croservice runs as a set of instances that can be deployed
on multiple distributed machines. Hence, MSA-based sys-
tems contain numerous elements and processes, with com-
plex system structures and dynamic microservice interac-
tions, where detecting and diagnosing system performance
is particularly important.

When the system anomaly occurs, operators must trou-
bleshoot it and locate the first microservice where the
anomaly originates (i.e., the root cause). We present a toy
example of a microservice system with anomalies in Fig. 1,
an anomaly which originates from S1 propagates to its de-
pendent microservices S2 and S3, the system performance
will continuously degrade until S1 is fixed. Based on in-
vocation records between microservices (tracing data) and
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resource consumptions of elements (metric data), operators
can track the execution processes of the user request and re-
lated resource information, to infer the root cause element
and detailed reasons of the anomaly, e.g., S1 failed by CPU
hog.

To pinpoint the root causes, various root cause localiza-
tion methods have been proposed. Machine learning-based
methods [4], [5] identify the root cause based on the labeled
data which is difficult to fetch from frequently updated mi-
croservice systems. Graph-based methods [6]–[8] construct
the microservice dependency graph and infer the root causes
based on the walking algorithm. Since the microservice sys-
tem is highly dynamic, such a dependency graph needs to
be updated frequently. Under the huge monitoring data gen-
erated by the microservice system, machine learning-based
methods and graph-based methods suffer the computation
burden. Hence, an unsupervised and lightweight localiza-
tion method is required.

There are four challenges to achieving this goal.
1) Huge amount of data. Microservice system contains
numerous elements which will generate a large amount of
monitoring data continuously, as long as the system runs.
Such a huge amount of data hides valuable clues to pinpoint
the culprit, posing a daunting challenge for algorithm de-
sign of timely anomaly diagnosis. 2) Dynamic invocations.
Due to multiple reasons, such as dynamic system work-
load, load-balanced mechanism, and system design patterns,
microservices interact flexibly with each other. It is dif-
ficult to find a stable pattern of microservice’s normal in-
vocations to detect anomalies. 3) Element heterogeneity.
To provide enough resources for dependently deployed mi-
croservices, MSA adopts resource virtualization techniques.
Hence, MSA contains heterogeneous elements such as phys-
ical machines, virtual operation systems, and containers.
These elements undertake diverse functions developed with

Fig. 1 Example of microservice system with anomalies.
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polyglot design, and have different characteristics of invoca-
tion latency. 4) Various metrics. Microservice system moni-
tors various metrics with diverse characteristics, such as the
value range, periodicity, collection frequency, and anomaly
symptoms. Analyzing and detecting these metrics properly
is challenging because deterministic threshold schemes lack
effectiveness and customized methods are burdened.

To resolve the above issues, we propose a novel root
cause localization method, which is lightweight and unsu-
pervised, named MicroState. First, MicroState pinpoints
the culprit element, and then, it identifies the detailed rea-
son for the culprit’s abnormality, i.e., the root cause metric.
In order not to rely on labeled data, MicroState converts the
quantification of object anomalies into the assessment of the
object’s self-state variation.

For root cause element location, firstly, MicroState
characterizes the element state from its invocations by gen-
erating the element’s invocation feature vector, which pro-
cesses a huge amount of tracing data into small-scale vec-
tors and mitigates the computation burden. Secondly, to
mitigate the state fluctuation caused by dynamic invocation,
MicroState adopts the DTW algorithm to quantify an ele-
ment’s abnormality, which finds the maximum similarity of
the element’s states at two-time slots. Thirdly, MicroState
groups similar elements and infers the anomalous group,
to avoid the interference of different abnormality symptoms
from heterogeneous elements. Finally, MicroState locates
the root cause element by filtering false alarms based on
the anomaly frequency and persistency. For root cause met-
ric identification, MicroState characterizes the metric state
by extracting its trend features, and processes the contin-
uous values into finite trends. MicroState infers the root
cause metric based on its state variation, to avoid customized
anomaly rules for different metrics.

MicroState is lightweight since it does not identify the
root cause from a huge amount of data, but characterizes the
object state, i.e., element state and metric state. MicroState
is unsupervised since it requires no labeled data, but quanti-
fies an object’s abnormality through its state variation. We
evaluate MicroState using a dataset collected from a large
wireless provider. Experimental results show that Micro-
State has a high diagnostic precision compared to baselines.
In summary, our contributions include:

• For anomaly detection, we characterize the state of the
detected object (i.e., element and metric), to mitigate
the computation burden from a huge amount of data;
we convert the quantification of objects’ abnormality
into the assessment of objects’ state variation, which
requires no labeled data. The detailed processes are
presented in the modules of feature vector generation
and the root cause metric location.
• For root cause element location, we adopt the DTW

algorithm to calculate the variation of element state,
which mitigates the interference from dynamic invo-
cations, presented in the anomaly assessment module;
we group similar elements and define an index of ele-

ment group to infer anomalous group, which addresses
the element heterogeneity challenge, presented at the
module of anomaly group inference.
• We design a lightweight and unsupervised algorithm,

MicroState, to pinpoint the root cause element with de-
tailed reasons. We conduct experiments on an open
dataset system including baseline comparison and ab-
lation study. Experimental results demonstrate the ef-
fectiveness of MicroState.

The rest of this paper is organized as follows: we sum-
marize the related work in Sect. 2. Section 3 defines the
problem and presents the overall framework and details of
MicroState, including the (invoked) state-based root cause
element location and the (trend) state-based metric location.
We evaluate and discuss MicroState in Sect. 4 and conclude
the paper in Sect. 5.

2. Related Work

Various research efforts have been devoted to diagnosing
performance issues in microservices. Overall, these ap-
proaches employ machine learning, graph analysis, and
causal inference to infer the root cause. The observation
data can be divided into system logs, tracing data, and met-
rics. We briefly introduce related work from two aspects:
service granularity location and metric granularity location.

Service granularity location. Researchers have pro-
posed different approaches to pinpoint root cause services,
including graph-based approaches, machine learning-based
approaches, and time series-based methods [9].

Graph-based approaches [6], [7] generated a topol-
ogy graph from microservices execution paths at each pe-
riod. Based on such graphs, MonitorRank [6] determined
root causes by running the personalized PageRank algo-
rithm. MicroHECL [7] expanded the anomaly propagation
path. When anomaly propagation chains cannot be fur-
ther extended, the services at the end of each determined
propagation chain are root causes. Meng et al. [10] as-
sessed the anomaly degree of traces with tree edit distance.
CloudDiag [11] processed traces to determine “anomalous
groups” considering service call tree and response times
variance.

Machine learning-based approaches were proposed to
diagnose anomalies [12]–[14]. Sage [13] determined the
root cause of unpredictable performance through deep
generative models and leveraged unsupervised models.
Seer [12] diagnosed spatial and temporal patterns that trans-
lated to QoS violations with the deep learning methods.
TraceAnomaly [14] detected performance anomalies utiliz-
ing a deep Bayesian neural network. The last invoked ser-
vices in anomalous service interaction sequences were root
causes.

However, both graph-based methods and machine
learning-based methods suffer a huge computation burden
and are difficult to deploy on large systems online. Micro-
State generates an element’s state as a vector based on its
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invocation features and extracts the metric’s state based on
its trend feature. The location method is based on the small-
scale vector calculation which is lightweight.

Metric granularity location. A series of research use
causal inference to infer the root cause metric. Different
causal inference methods have been applied to learn the
causal relations among metrics. The Sieve [15] and Loud [8]
systems construct anomaly propagation graphs across all
metrics using the Granger causality test. CauseInfer [16]
infers the root cause by constructing a metrics causality
graph for each service with PC algorithm [17], services are
connected by a dependency graph. MicroCause [18] cap-
tured the sequential relationship of time series data and a
novel temporal cause-oriented random walk method that in-
tegrates the causal relationship, temporal order, and priority
information of monitoring data. MicroDiag [19] constructs
a component dependency graph and infers the causal rela-
tions among metrics with different causal inference tech-
niques. It derives a metrics causality graph and infers root
causes by the PageRank algorithm.

Existing studies only consider few metrics of the mi-
croservices in the diagnosing process, however, a microser-
vice may be monitored with a large number of indicators
comprehensively. Casual inference-based methods will gen-
erate a large number of spurious causal-effect relationships
under a large number of tested variables. In MicroState, we
consider diverse types of metrics. We locate the root cause
metrics of the targeted element among tens of metrics based
on the trend features extracted from the initial metric data.

3. Method

Firstly, we give the problem statement of root cause local-
ization in this paper. We define containers, virtual systems,
and physical hosts as the elements of microservice systems.
Our data consists of elements’ tracing records and metric
data from n elements. Suppose during an incident period
d, system performance degrades. Given a set of elements,
their invocation records, and their metric data, our goal is to
identify 1) the culprit element erc that initiates the anomalies
and 2) the detailed reason mrc of the anomaly. The output
of our algorithm is top-k root cause elements with detailed
reasons. The optimization goal is the precision of top-k ele-
ments defined at Sect. 4.1.

Tracing data contain execution paths and time-
consuming records, which are used to pinpoint the root
cause element. Metric data record the element’s resource
consumption, such as CPU or memory utilization, which
can be used to diagnose detailed reasons for anomalies. An
example of a user request and related trace records is pre-
sented in Fig. 2. As shown in Fig. 2, the trace records of a
unique request can be modeled as a directed weighted graph,
where the nodes indicate services and the weights of edges
indicate the time consumed by the service responses.

Figure 3 shows the overview of MicroState. Once sys-
tem anomalies are detected, MicroState pinpoints the root
cause element based on the aggregated tracing data, and lo-

Fig. 2 Request example. There is a call-to-call relationship between the
microservices, the time consumed by the service responses is shown in the
directed edges between services.

Fig. 3 MicroState framework.

cates the detailed anomaly reason based on the metric data.
Firstly, MicroState characterizes the invocation states, i.e.,
the feature vectors of elements, and quantifies their abnor-
mality through a warp-based state comparison. MicroState
groups similar elements together and infer the anomalous
group. And root cause element is located by a rank pro-
cedure, where ranks more frequent and longer anomalous
elements with higher priority, to filter false alarms. Then, to
find the root cause metric, MicroState extracts the metric’s
trend features, which describe the metric’s trend pattern, to
find the real anomaly reason among diverse metrics with dif-
ferent symptoms.

3.1 Root Cause Element Location

MicroState locates the root cause element based on the in-
vocation state of elements. It pinpoints the culprit through
three procedures: quantifying elements’ abnormality, in-
ferring the anomalous group, and filtering false alarms.
Firstly, MicroState characterizes elements’ invocation state,
i.e., feature vector, considering all its invocation relation-
ships. Secondly, MicroState quantifies elements’ abnor-
mality based on their self-state variance at two-time slots
through a warped procedure, to mitigate the interference of
dynamic invocations. Thirdly, MicroState groups hetero-
geneous elements with similar invocation characteristics to
infer the group which contains the root cause element, to
avoid inaccurate results by directly inferring the root cause
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Table 1 Symbolic description.

Notations Definitions
n, c Number of elements; types of elements
d Interval of anomaly
erc,mrc Set of root cause elements; set of root cause metrics
Vt

i , v
t
ji Invoked time vector of element i at timestamp t; invo-

cation time among element j and invoked element i at
timestamp t

Et
i Anomalous score of element i at timestamp t

Gt
j Anomalous score of element group j at timestamp t

Rx Ranking score of candidate element x
mt

i,k No.k metric of element i at timestamp t
T t

i,k Trend label of No.k metric of element i at timestamp t
St

i,k Ranking score of candidate metric k of element i at
timestamp t

g∗, e∗,m∗ Anomalous group; Anomalous element; Anomalous
metric

α, β, γ Threshold parameters
h, h1, h2 Time intervals of state comparison

element. Finally, MicroState locates the root cause element
from the anomalous group with a ranking procedure to filter
false alarms.

1) Feature vector generation. Diagnosing anomalies
based on the time series of invocation pairs will cause false
alarms and missing alarms, MicroState characterizes the
element’s complete state by generating its invocation fea-
ture vector with considering all its invocation relationships.
Since directly analyzing the huge amount of tracing data is
burdened, we aggregate trace data at minute-level granular-
ity. Assumes there are n elements of c types in the system.
The element type is divided from the element’s basic func-
tions. For example, physical machines, virtual machines,
docker, and databases are different element types, docker is
a dependent microservice instance, and system data is stored
in databases.

The execution paths are split into invocation pairs, i.e.,
the caller element and the callee element. Then, we compute
the average latency of each invocation pair for one minute.
At each time slot t, the invocation vector of the element i
is represented as Vt

i = [vt1i, . . . , v
t
ji, . . .], j ∈ 1, 2, . . . , n, vtji

indicated the average latency of the caller element j and the
callee element i. The length of Vt

i is the number of all caller
elements of the callee element i at time t, and the index of
the invocation element i is arranged by the element type.

2) Element anomaly assessment. Owing to the chal-
lenge of flexible and variable invocations, it is difficult to
distinguish true anomalies and variable but normal invo-
cations. Based on the elements’ feature vectors, Micro-
State quantifies their abnormality by a self-state compari-
son. Inspired by the application of Dynamic Time Warping
(DTW) [20] algorithm in time series, we use the DTW algo-
rithm here to handle the interference of variable invocations.
We define the element’s anomaly score as the DTW distance
between its feature vectors at different time slots. Since the
DTW algorithm warps two series (replaced as vectors in this
paper) as similar as possible to find an optimal match, such
a warping procedure finds the maximum similarity of two
vectors. Hence, it can mitigate the variation of an element’s

Fig. 4 Schematic diagram of MicroState modules. (a) shows a warping
example of the feature vectors. Colored nodes represent the invocation
vectors of the caller element j and the callee element i. The warping path
explicitly states which datapoints of vector vti align with what datapoints

of vector v(t−h)
i , such warping procedure finds the optimal match of two

vectors. (b) presents an example of response time (RT) between different
elements. The horizontal axis is the four selected call pairs and the vertical
axis is the logarithmic scale of the related response time (RT).

state affected by variable invocations. A warping example of
the feature vectors is shown in Fig. 4 (a). Two feature vec-
tors of element i at time t (t − h) are warped. We define Et

i
as the anomalous degree of the element i at time t

Et
i = d̃(Vt

i ,V
t−h
i ) (1)

Vt−h
i is the invocation vector at t− h. d̃(Vt

i ,V
t−h
i ) is the DTW

distance of the invocation vector Vt
i and the invocation vec-

tor Vt−h
i .
To the best of our knowledge, we are the first to use

the DTW algorithm to warp two feature vectors, not the
time series. We use the DTW algorithm here for three rea-
sons. 1) DTW algorithm can warp different length vectors,
which can fit the frequently updated microservice systems.
2) DTW algorithm computes the Euclidian distance which
is reasonably used to measure the latency variation of the
target element. 3) Small DTW values indicate element state
does not change dramatically, which denotes there are no
anomalies since h is much larger than the anomaly period.

3) Anomaly group inference. Due to the element het-
erogeneity, directly locating the root cause based on the
anomalous scores is inefficient. An example of response
time (RT) between different types of elements is presented in
Fig. 4 (b). We took two hours without anomalies and chose
the logarithmic scale for clearer visualization. It can be ob-
served that invocations of os-type elements exhibit greater
volatility compared to docker-type elements.

Based on the observation that the invocation character-
istics of the same type elements are similar, but there are
big differences between the different type elements, hence,
we group the elements of the same type together. Since the
purpose of grouping is to compare elements with similar in-
vocation characteristics together; other clustering methods
based on the element’s latency characteristics (e.g., mean
value, variance) also can be used in different microservice
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systems. It is reasonable that the anomaly degree of the
root causes will be significantly different from other nor-
mal elements in the group because elements in a group are
more likely to present similar invocation features with sim-
ilar business functions. Hence, we compute the anoma-
lous score of a group based on the comparison of elements’
anomalous scores in this group.

We propose an index Gt
j to assess the anomalous degree

of the group j at time t. With a given group j, we define mj

as the element that has the maximum anomalous score in
the group j. Gt

j is defined as the ratio of Et
mj

to the average
anomalous score of the remaining elements.

Gt
j =

Et
mj

Et
j

, j ∈ 1, 2, · · · , c (2)

Et
j =

∑
i∈ j,i�mj

Et
j

| j| − 1
, j ∈ 1, 2, · · · , c (3)

We do not compare the anomalous scores of heteroge-
neous elements directly, but assess the group anomaly de-
gree based on anomalous scores of elements of the same
type. In addition to the invocation latency, tracing data also
record the success rate of invocations, we utilize the success
rate of the group as the average success rate of all elements
in the group. If the group has the maximum group anoma-
lous score and the minimum success rate, it can be inferred
as the anomalous group g∗; otherwise, g∗ is referred to as
the group which has the maximum group anomalous score.

4) False alarm filtration. Since some anomalies’
symptoms may not last for a notable time. Under the inter-
ference of false alarms, it is challenging to locate the true
anomalous elements. MicroState gives higher priority to
candidates which have longer anomaly duration and higher
anomaly frequency, to filter false alarms.

Based on the anomalous group g∗ and the anomaly
scores of the elements in g∗, the candidate root cause e∗
can be inferred as the element that has the highest anomaly
score. During the anomaly duration time d, assuming there
is one candidate. Hence, the candidate root cause list is rd =

{r0, r1, · · · , rd−1}. For a candidate, continuously appearing
in rd is a strong signal that it is anomalous. MicroState uti-
lizes such anomaly persistency to locate the root cause. For
candidate x in rd, it may appear multiple times or at con-
secutive slots. The duration l that x appears continuously
ranges from 0 to d. We record each anomaly duration l of
candidate x, named as Dx. Assume that rd = [A, B, A, A,C],
then DA = [1, 2], DB = [1], and DC = [1]. Then, we com-
pute the final ranking score Rx of candidate x

Rx =
∑
l∈Dx

lα, α > 1 (4)

Rx indicates the probability of candidate x to be a root cause,
the longer and more frequently that the element is anoma-
lous, the more likely x to be the root cause. α is the weighted
factor to quantify the importance of the duration of x that ap-
pears continuously in rd. We choose a power function here

to calculate the final ranking score, and the exponent of the
power function α should be set greater than 1, because the
longer the duration, the higher the score, α is set as 1.1 in
this paper. Other functions can also be used according to
actual situations. For example, if a normal element is im-
possible to appear continuously in the candidate set, α can
be set bigger to filter normal elements. The key to filtering
false alarms is to take into account the anomaly duration of
the candidate.

3.2 Root Cause Metric Location

The performance issues of the microservices need to be ad-
dressed timely, it is vital to provide root causes of metric
granularity for engineers to take accurate operations further.
Since various monitoring metrics have different characteris-
tics, one anomaly detector does not suit all metrics, but it
is impossible to customize the anomaly detector for all met-
rics. Owing to the metric correlation, multiple anomalous
metrics appear at the same time. And almost all the existing
methods locate the root cause metrics among few metrics,
hence, diverse various features of metrics have not gained
enough attention.

Since the root cause metric trend will exhibit differ-
ently compared to its normal states, such as a sudden in-
crease or a sudden decrease, MicroState processes initial
metric data, i.e., time series, into discrete trend features,
and locates the root cause based on the metric state varia-
tion. Firstly, MicroState defines finite trends of time series:
stable, increase, decrease, and other trend. Then, Micro-
State characterizes the metric’s state by extracting the met-
ric’s trend from the initial time series, which converts the
time series to discrete trends. Finally, MicroState assesses
the metric’s abnormality through its state variation and pin-
points the metric which has the maximum variation as the
root cause.

We define four types of metric trends as Table 2 shows.
Given a short time slice of a metric [mt−d+1

i,k , . . . ,mt
i,k]. The

trend of mt
i,k is denoted by a time sliding window with length

d − 1. If the standard deviation of the metric data is 0, then
the trend is stable; if mt

i,k is greater (smaller) than the aver-
age value in the time window [t − d + 1, t − 1] multiply the
adjustable parameter β (γ), then the trend of mt

i,k is increase
(decrease); otherwise, the mt

i,k is in other trend. Referring
to typical anomaly patterns summarized by [21], Micro-
State can detect these anomaly patterns, since anomaly pat-
terns can also be recognized by the combination of differ-
ent trends. For example, a sudden increase anomaly pattern

Table 2 Trend description.

Label Trend Conditions

0 Stable

√∑t
t−d+1 (mi−m)

d = 0

1 Increase mt > β(
∑t

t−d+1 mi

d ), β > 1

2 Decrease mt < γ(
∑t

t−d+1 mi

d ), γ < 1
3 other otherwise
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can be decomposed to the trend sequence as: stable and in-
crease.

During the anomaly duration d, T t
i,k which indicates the

trend of No.k metric of element i at timestamp t, we define
a comparison function f to infer whether mt

i,k exhibits dif-
ferently compared to its former state at two different time
slot t − h1 and t − h2. h1 and h2 should be set much longer
than d. The final ranking score St

i,k of the metric mi,k in the
candidate set is determined by the trend comparison results
between the detected time t, t − h1 and t − h2. Then, the root
cause metrics are located by the final ranking score St

i,k.

St
i,k =

t∑
t−d+1

f (T t
i,k,T

t−h1
i,k ,T

t−h2
i,k ) (5)

f (x1, x2, x3) =

{
0, i f x1 = x2 or x1 = x3

1, otherwise
(6)

For example, if the trend label list of No.k metric of
element i in the time window [t − d + 1, t] is [0, 1, 1, 2, 0],
its trend list at time window [h1 − d + 1, h1] is [0, 0, 0, 0,
0], and its trend list at time window [h2 − d + 1, h2] is [0, 0,
0, 0, 0]. Then, the St

i,k is 3. A higher score denotes a bigger
possibility of the metric being a root cause, which exhibits a
more different trend compared to its normal states. The most
likely anomalous metric is referred to as m∗ whose anoma-
lous score is the maximum of all metrics. MicroState uses a
simple but effective method to extract the metric’s trend, and
other methods such as lightweight machine learning classi-
fiers can also be used to divide the trend in other datasets.

4. Evaluation

To demonstrate the effectiveness of our algorithm clearly,
we present and discuss the result of locating the root cause
element in Sect. 4.1 and the root cause metric identification
in Sect. 4.2. The overhead, sensitivity, and limitations of
MicroState are discussed in Sect. 4.3.

4.1 Root Cause Element Location

Dataset Description and settings. We evaluate Micro-
State on the open dataset from International AIOps Chal-
lenge [22], which is a competition focusing on the diagno-
sis of microservices systems. Here we use the 2020 ver-
sion which was collected from a large wireless provider.
The average amount of daily tracing data is about 1.2 GB.
The dataset provides a complete description of failure types,
which are mainly divided into three categories: container-
docker (docker), virtual host (os), and database (db). The
system architecture contains 22 virtual hosts, 13 databases,
and 8 dockers. The counts of fault types are shown in Ta-
ble 3. h is set as 60 in experiments.

Evaluation Metric. To quantify the performance lo-
cating algorithm, we use the performance metric: precision
at top k. It denotes the probability that the top k results
given by an algorithm include the real root cause, denoted as

Table 3 Count of failure type.

Element type Fault number
container-docker 49

os 17

database 12

all 78

Table 4 Performance of element localization.

Element MicroState Cauchy MicroRCA RS
Overall

PR@1 0.55 0.15 0.05 0.06
PR@3 0.71 0.29 0.21 0.15
PR@5 0.87 0.53 0.46 0.23

Docker
PR@1 0.47 0.22 0 0.05
PR@3 0.61 0.39 0.18 0.13
PR@5 0.82 0.63 0.55 0.21

Os
PR@1 0.47 0.06 0.24 0.06
PR@3 0.76 0.12 0.35 0.18
PR@5 0.94 0.24 0.35 0.27

Database
PR@1 1 0 0 0.06
PR@3 1 0.17 0.25 0.18
PR@5 1 0.5 0.25 0.27

PR@k. A higher PR@k score, especially for small values of
k, represents the system correctly identifies the root cause,
Let R[i] be the rank of each cause and erc be the set of root
causes. More formally, PR@k is defined on a set of given
anomalies A as:

PR@k =
1
|A|
∑
a∈A

∑
i<k (R[i] ∈ erc)

(min (k, |erc|)) (7)

Baseline Methods. We compare our algorithm to three
baseline methods as follows.

• Cauchy: The champion method of AIOps Challenge
2020 [23] uses an anomaly detector (Cauchy detector)
to detect the response time of each call pair, takes
the call pair’s anomaly score as the invoked element’s
anomaly score, and calculates the average anomaly
score for all call pairs of an element, then the root cause
is located based on the ranking of element scores.
• MicroRCA: MicroRCA [24] constructs attributed graph

model of microservices and correlates service anoma-
lous performance symptoms with corresponding re-
source utilization. It adopts a personalized PageRank
to infer root causes.
• Random Selection (RS): Random selection is a way en-

gineers use when lacking domain-specific knowledge
of the system. Every time, they randomly select an
unchecked microservice to investigate until the root
cause is found.

Evaluation and comparison. Table 4 shows the per-
formance of MicroState and baselines in identifying the
root causes of three types of anomalies. Overall, Micro-
State achieves an average PR@5 in the range of 80%–100%
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Fig. 5 Performance of ablation experiment in terms of PR@1, PR@3
and PR@5.

among all anomaly types. We evaluate the performance of
MicroState by comparing it with three baseline methods,
i.e., Cauchy, MicroRCA, and RS. We apply MicroState and
three baseline methods to all anomaly cases and get their
performance in terms of PR@1, PR@3, and PR@5. We can
see that all these methods can not pinpoint the culprit metric
in the top 1 of the ranked list. However, compared to the
best baseline method, our MicroState achieves an improve-
ment of 64% in precision, and it achieves 71% inPR@3 and
87% in PR@5.

Results of MicroRCA show inefficiencies in locating
os-type and db-type anomalies, because 1) MicroRCA does
not consider these types of anomalies, and 2) the inter-
ference of element heterogeneity. MicroRCA locates root
causes based on trace data and metric data while MicroState
only needs trace data. Besides, we can see MicroState’s pre-
cision in identifying docker-type anomalies is lower than
other type anomalies, because docker-type anomalies in-
volve several different kinds of anomalies, such as CPU
fault anomaly, network delay anomaly, and network loss
anomaly. Since the network-related anomalies will not
cause latency deviation of the execution paths, such anoma-
lies may not express in tracing data and are difficult to lo-
cate.

Ablation study. We assess the effectiveness of Micro-
State modules by applying ablation experiments on the root
cause element location.

• MicroState-w1: MicroState quantifies microservice ab-
normality based on the euclidean distance of two fea-
ture vectors, instead of the DTW algorithm.
• MicroState-w2: MicroState infers the root cause ele-

ment directly based on the anomaly score, without the
anomalous group inference.
• MicroState-w3: MicroState locates the root cause el-

ement based on the frequency of candidate elements,
without the false alarm filtration.

Figure 5 presents the performance of MicroState and
ablation experiments, in terms of all cases at PR@1, PR@3,
and PR@5. We can see that all modules improve the ef-
ficiency of MicroState. In terms of PR@3 and PR@5,

Table 5 Performance of metric localization.

Element Cauchy M-Cauchy FFT M-FFT
Overall

PR@1 0.31 0.62 0 0.10
PR@2 0.69 0.83 0.14 0.41
PR@3 0.83 0.90 0.21 0.72

Os
PR@1 0.47 0.65 0 0.12
PR@2 0.65 0.76 0 0.29
PR@3 0.71 0.88 0 0.82

Database
PR@1 0.08 0.58 0 0.08
PR@2 0.75 0.92 0.33 0.58
PR@3 1.0 0.92 0.50 0.58

anomaly group inference plays a vital role. MicroState-w1
only assesses the effectiveness of the DTW algorithm, not
the whole anomaly assessment module, whose effectiveness
can be approximately evaluated by the comparison with the
baseline method: Cauchy.

4.2 Root Cause Metric Location

Datasets. The dataset is the metric data collected from
the same microservices system described in Sect. 4.1. The
dataset contains several metrics of different elements. The
metric number of the os-type element is 52. The metric
number of the database-type element is 47. Since the metric
amount of docker-type elements is less than 10 and is easy
to be located, we only focus on the os-type and database-
type anomalies in this subsection. Trend parameters β is set
as 1.2, γ is set as 0.6. h1 is set as 60 and h2 is set as 120 in
experiments.

Benchmarks. To illustrate the effectiveness of the
trend comparison, we choose two anomaly detectors as
baselines. M-Cauchy (M-FFT) denotes the Cauchy (FFT)
detector deployed with the trend comparison of MicroState.

• Cauchy: An anomaly detector used in [25] to detect the
time series abnormalities, which assumes data has the
Cauchy distribution.
• FFT: An anomaly detector proposed by [26] based on

the spectral residual.

We apply two baseline methods to database and os
anomaly cases, and get the average performance of each
method in terms of PR@1, PR@2, PR@3, as shown in Ta-
ble 5. We can see that compared to the baseline methods,
our MicroState achieves a large improvement with at least
76.5% in precision, and it achieves 97% in PR@2 and 100%
in PR@3. In os-type anomalies, we can see MicroState
achieves a higher performance in the FFT detector than the
Cauchy detector, because there are many anomalous metrics
in os-type anomaly cases, which cause strong interference
to locate the culprit. MicroState mitigates such interference
and finds the true root cause metrics. In db-type anoma-
lies, we can see in most cases, MicroState improves the
location precision, but in the PR@3 case, Cauchy outper-
forms MicroState, the reason is that some anomalies present
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Fig. 6 Processing time of MicroState modules.

significant bursting characteristics which are easier caught
by the Cauchy detector, but MicroState misses the true root
cause under the interference of other metrics.

4.3 Discussion

Here, we discuss the overhead and the sensitivity of Micro-
State.

1) Overhead: The overhead of MicroState is mostly
caused by two modules: feature vector generation and el-
ement anomaly assessment which quantifies the elements’
abnormality through the DTW algorithm. Figure 6 shows
the processing time of these two modules, the vertical axis
is in seconds. We generate feature vectors in one minute,
and there are different trace numbers in one minute. Fig-
ure 6 (a) presents the processing time of feature vector gen-
eration against trace numbers per minute. As the blue dots
show, when the trace numbers increase, the processing time
increases, but for each trace’s processing time, as the orange
dots show, it decreases. Figure 6 (b) shows the processing
time of the DTW algorithm against different dimensions of
feature vectors. Since the vector dimension in our dataset
is less than 100. We simulate vectors with different dimen-
sions, ranging from 0 to 1000. We can see that the pro-
cessing time of the DTW algorithm is short enough to run
in a real-time scenario. The blue dots present the processing
time of all elements and the orange dots show the processing
time for one element. With the element number increases,
the processing time of one element increases approximately
linearly, even if the system is huge, it won’t take much com-
puting time.

2) Sensitivity: To evaluate the sensitivity of Micro-
State to the trend feature parameters, β and γ. We analyze
the performance of MicroState with different values of them,
in terms of os-type failures. Figure 7 shows the precision of
MicroState in terms of PR@3, where β ranges from 0.2 to 1,
γ ranges from 1 to 2. We can see the performance of Micro-
State almost changes slightly with the parameters changing,
because the core idea of root cause metric location is to con-
vert continuous time series values into discrete trends, with
a time-sliding window. Hence, the performance of Micro-
State is not sensitive to parameters β and γ. In practice,
engineers can tune the parameters according to the metric

Fig. 7 Performance against trend parameters β and γ.

data features.
3) Limitations: MicroState classifies elements into 3

types: virtual host, docker, and database. Such classifica-
tion may not suit other microservice systems. Based on el-
ements’ invocation characteristics, clustering methods can
be used to group similar elements. In the module of false
alarm filtration, MicroState only chooses one function, i.e.,
the power function, to calculate the ranking score of the can-
didate, different ranking methods based on element anomaly
duration and frequency will be explored further.

5. Conclusion

In this paper, we proposed a new method, i.e., MicroState, to
diagnose root causes with detailed reasons in heterogeneous
microservices systems. MicroState converts the abnormal-
ity quantification into the state variation of the detected ob-
ject. For the detected element, MicroState characterizes its
invocation state; for the detected metric, MicroState extracts
its trend features. MicroState quantifies the root cause ele-
ment based on its state variation, then locates the anomalous
group first, and pinpoints the culprit element with the filtra-
tion of false alarms. MicroState pinpoints anomaly reasons
at a fine granularity on the metric level and finds the root
cause metric based on the metric state variation. Our ex-
perimental results showed that MicroState achieves 87% in
the precision of the location of root cause elements and per-
forms better than anomaly detectors which directly detect
metric data.
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