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Privacy-Preserving Correlation Coefficient

Tomoaki MIMOTO†a), Nonmember, Hiroyuki YOKOYAMA†, Toru NAKAMURA††,
Takamasa ISOHARA††, Members, Masayuki HASHIMOTO††, Ryosuke KOJIMA†††, Aki HASEGAWA†††,

and Yasushi OKUNO†††, Nonmembers

SUMMARY Differential privacy is a confidentiality metric and quan-
titatively guarantees the confidentiality of individuals. A noise criterion,
called sensitivity, must be calculated when constructing a probabilistic dis-
turbance mechanism that satisfies differential privacy. Depending on the
statistical process, the sensitivity may be very large or even impossible to
compute. As a result, the usefulness of the constructed mechanism may
be significantly low; it might even be impossible to directly construct it.
In this paper, we first discuss situations in which sensitivity is difficult to
calculate, and then propose a differential privacy with additional dummy
data as a countermeasure. When the sensitivity in the conventional differ-
ential privacy is calculable, a mechanism that satisfies the proposed metric
satisfies the conventional differential privacy at the same time, and it is
possible to evaluate the relationship between the respective privacy param-
eters. Next, we derive sensitivity by focusing on correlation coefficients as
a case study of a statistical process for which sensitivity is difficult to cal-
culate, and propose a probabilistic disturbing mechanism that satisfies the
proposed metric. Finally, we experimentally evaluate the effect of noise on
the sensitivity of the proposed and direct methods. Experiments show that
privacy-preserving correlation coefficients can be derived with less noise
compared to using direct methods.
key words: differential privacy, dummy data, correlation coefficient

1. Introduction

Differential privacy, which is a confidentiality metric pro-
posed in 2006 by Dwork [1], assumes an interactive query
response with a database. Differential privacy is satisfied
using a simple probabilistic mechanism that adds specific
noise to the correct output result during a query process.
However, from the perspectives of both privacy and utility,
the mechanism must be tuned depending on the query. For
example, the magnitude of noise added by the probabilistic
disturbing mechanism is determined based on the effect that
a record can have on the output value of the query, i.e., sen-
sitivity. Therefore, it is necessary to reduce the noise and to
maintain privacy by, for example, converting the data struc-
ture to reduce the sensitivity.

In this paper, we assume a query whose sensitivity is
difficult to compute. Such difficulty is due to the differential
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privacy-specific definition. That is, because adjacent data
for any given data set must be considered, datasets must be
excluded that might be undefined or divergent depending on
the query. This may seem too powerful an assumption at
first glance, but differential privacy quantifies the minimum
privacy strength that can be guaranteed for the entire data
space without exception by considering any adjacent data
for any given data set. New metrics that exclude certain
datasets or situations could be proposed, but new metrics
that exclude certain datasets or situations could be proposed,
but exceptional situations should be considered on a individ-
ual query basis. In addition, because the data space changes,
it is not possible to evaluate privacy strength strictly in com-
bination with other differential privacy mechanisms. There-
fore, we claim that the privacy strength of any queries should
be accounted for by a uniform definition, rather than by ex-
ception handling, such as changing the data space for differ-
ent queries. We solve this uncomputable sensitivity problem
without using exception handling by proposing a confiden-
tiality metric for datasets to which dummy data are added.
Mechanisms that satisfy the proposed metric also satisfy dif-
ferential privacy, and for queries for which the sensitivity
is computable, the relationship between the proposed met-
ric and differential privacy can be approximated. Further-
more, we focus on the correlation coefficient as a case study
and propose and implement a probabilistic disturbing mech-
anism that satisfies the proposed metric. It is impossible to
directly calculate the sensitivity of correlation coefficients,
and no efficient mechanism has been proposed for deriv-
ing correlation coefficients that satisfy differential privacy.
Therefore, we compare those that satisfy the differential pri-
vacy obtained using the sequential theorem and the local dif-
ferential privacy mechanism.

2. Related Work

There are two well-known privacy metrics based on infor-
mation theory: differential privacy, which assumes interac-
tive query responses with databases [1], and local differen-
tial privacy, which assumes the provisions of the data them-
selves [2]. In particular, local differential privacy is a model
that is suitable for such use cases as the collection of health-
care data by smartwatches and other devices, and companies
such as Google [3] and Apple [4] are already putting them
to practical use by having users provide data to which the
local differential privacy mechanism is applied when using

Copyright c© 2023 The Institute of Electronics, Information and Communication Engineers



MIMOTO et al.: PRIVACY-PRESERVING CORRELATION COEFFICIENT
869

their services. Differential privacy mechanisms are mainly
used to obtain statistical information on large datasets under
privacy protection, and several mechanisms have been pro-
posed, such as histogram outputs [5], t-tests [6], chi-square
tests [7], and so on. In addition, differential privacy mech-
anisms are expected to be applied to a wide range of use
cases beyond simple statistical processing, such as machine
learning applications [8]–[10]. One main goal of previous
research is constructing a mechanism that allows for in-
dentical privacy strength with less noise. For example, a
privacy-enhanced machine learning model [10] suppresses
noise by determining the upper bound of the impact of a
single record through clipping. A more general mechanism
was proposed [11] to reduce noise and improve utility by
reducing the dimensionality of multidimensional data. Re-
lated to our study, [12] presents a systematic taxonomy of
transformations and extensions of differential privacy de-
pending on scenarios and adversary models. In addition,
Zhang et al. [13] studies correlated differential privacy that
aims to solve the issue that a data correlation may lead to
leak privacy.

3. Preliminary

3.1 Differential Privacy

Differential privacy is a privacy protection metric used when
statistical query responses to a database are assumed to be
interactive. In many cases, query q is presented to the
database, which satisfies differential privacy by applying
mechanism M that adds specific noise to the correct query
result. We define adjacent datasets to discuss differential
privacy.

Definition 3.1 (Adjacent dataset). Let the distance between
datasets D and D′(|D| = |D′| = n) be the number of different
records H(D,D′) = |

{
i : di � d′i

}
|. Here di ∈ D, d′i ∈ D′.

Dataset D′, for which H(D,D′) = 1, is defined as an adja-
cent dataset to D.

Differential privacy is defined as follows.

Definition 3.2 (Differential privacy). Mechanism M satis-
fies (ε, δ)-difference privacy (DP) if for any adjacent dataset,
assuming that Range(M) is every possible output that M can
take, thenM ⊆ Range(M):

Pr[M(D) ∈ M] ≤ eε · Pr[M(D′) ∈ M] + δ. (1)

In dealing with differential privacy mechanisms, we in-
troduce some important properties. Our proposal and exper-
iments exploit these properties [14].

Proposition 3.3 (Sequential Theorem). Given dataset D, N
probabilistic mechanisms qi that satisfy (εi, δi)-DP, and any
function g, then Q(D) = g(q1(D), · · · , qN(D)), which com-
bines qi for D, satisfies (

∑N
i=1 εi,

∑N
i=1 δi)-DP.

Proposition 3.4 (Parallel Theorem). Given dataset D =

⋃N
i Di, N probabilistic mechanisms qi that satisfies (εi, δi)-

DP, and any function g, then Q(D) = g(q1(D1), · · · , qN(DN))
satisfies (max εi,max δi)-DP.

3.2 Sensitivity

Sensitivity is a metric that shows the maximum impact on
any given record by a mechanism. Sensitivity is defined as
follows:

3.2.1 Global Sensitivity

Definition 3.5 (Global sensitivity). Define global sensitivity
GS q for query q : D → Rk as follows. Here, || · ||p is the Lp

norm function:

GS q = max
∀D,D′:H(D,D′)=1

‖q(D) − q(D′)‖p. (2)

With global sensitivity, the probabilistic mechanisms
given below satisfy differential privacy.

Proposition 3.6 (Gaussian mechanism [15]). Let q : D →
R

k be a query, let N(μ, v) be Gaussian noise with mean μ and
variance v, and then the following mechanism Mq satisfies
(ε, δ)-DP:

Mq(D) = q(D) + N

⎛⎜⎜⎜⎜⎜⎝0, GS 2
q · 2 log(2/δ)

ε2

⎞⎟⎟⎟⎟⎟⎠ . (3)

Proposition 3.7 (Laplacian mechanism [16]). Let q : D →
R

k be a query, let L(μ, v) be Laplacian noise with mean μ and
variance v, and then the following mechanism Mq satisfies
(ε, 0)-DP.

Mq(D) = q(D) + L

(
0,

GS q

ε

)
. (4)

3.2.2 Smooth Sensitivity Framework

In global sensitivity, since sensitivity to arbitrary datasets
is addressed, the sensitivity may be very large for some
queries. Therefore, a previous work [17] devised sensitiv-
ity for dataset D instead of arbitrary datasets.

Definition 3.8 (Local sensitivity). Given dataset D, we de-
fine local sensitivity LS q for query q : D → Rk as follows.
Here || · ||p is the Lp norm function:

LS q(D) = max
∀D′:H(D,D′)=1

‖q(D) − q(D′)‖p. (5)

Furthermore, smooth sensitivity is defined for the sit-
uations where the local sensitivity fails to satisfy the defi-
nition of differential privacy. Smooth sensitivity takes the
local sensitivity for arbitrary datasets into account.

Definition 3.9 (Smooth sensitivity). Suppose β > 0, and
dataset D is given. We define smooth sensitivity S q,β for
query q : D → Rk as follows:
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S q,β(D) = max
anyD′

(LS q(D′) · e−βH(D,D′)). (6)

Using smooth sensitivity, the probabilistic mechanism
given below satisfies differential privacy.

Proposition 3.10. Let q : D → Rk be a query, let α =
ε/
√

ln(1/δ) and β = Ω(ε/
√

k ln(1/δ)), and then the follow-
ing mechanism Mq satisfies (ε, δ)-DP:

Mq(D) = q(D) +
S q,β(D′)
α

· N(0, 1). (7)

3.3 Correlation Coefficient

The correlation coefficient is a measure of the relationship
between two attributes, A and B. Correlation coefficient C
is given by the following equation:

C =
sAB

sAsB

=

1
n

∑n
i=1(ai − μA)(bi − μB)√

1
n

∑n
i=1(ai − μA)2

√
1
n

∑n
i=1(bi − μB)2

,
(8)

where sAB denotes the covariance between A and B, sA, sB

denote the standard deviation of A, B, n denotes the number
of bivariate data (ai, bi), and μA, μB respectively denote the
mean values of A, B. The correlation coefficient takes value
−1 ≤ C ≤ 1, where A, B have a stronger negative correla-
tion when C is close to −1 and a stronger positive correla-
tion when C is close to 1. Since the correlation coefficient
is a linear measure of the relationship, even when the cor-
relation coefficient is close to 0, the relationship might be
quadratic, or outliers might significantly affect the correla-
tion coefficient. Although the correlation coefficient alone
cannot identify all the relationships among the attributes, it
is an indispensable measure as a basis for data analysis.

4. Proposal

4.1 Differential Privacy with Dummy Data

We next consider queries for which sensitivity is diffi-
cult to derive. As stated in Definitions 3.5 and 3.8,
sensitivity is the maximum difference between the out-
put values for the query in adjacent datasets. This may
seem like an excessive value, but it is necessary to en-
sure a lower bound of privacy for the entire data space.
Here recalling the correlation coefficient, its denominator is√

1
n

∑n
i=1(ai − μA)2

√
1
n

∑n
i=1(bi − μB)2. If all the data in A or

B have the same value, i.e., a1 = · · · = an or b1 = · · · = bn,
the denominator is zero, and the correlation coefficient can-
not be calculated. Even in the case of smooth sensitivity,
where a dataset is given as input, the calculation of S q,β is
impossible as long as there exists D′ whose denominator is
zero. Thus, when considering arbitrary datasets, comput-
ing sensitivity is difficult for undefined or divergent queries.

The definition of differential privacy makes it difficult to cal-
culate sensitivity of queries when there are non-computable
dataset on the data space. One policy to combat this is to
restrict special circumstances. For example, in the case of
correlation coefficients, it is acceptable to exclude datasets
in which all records coincide from the data space. How-
ever, exception handling should be considered each time the
query or system design changes. In addition, exception han-
dling may deviate from the strictly original definition of dif-
ferential privacy, such as a change in data space, and may
be difficult to compare directly with the privacy strength of
other mechanisms. Therefore, we propose differential pri-
vacy with dummy data as an approach that avoids consider-
ing exceptions.

Definition 4.1 (Differential privacy with dummy data).
Mechanism M satisfies (ε′, δ′)-differential privacy with
dummy data (DPwD) if for any adjacent datasets D,D′, and
R = {R1, · · · ,Rw}, the following is satisfied:

Pr[M(D∪R) ∈ M] ≤ eε
′ ·Pr[M(D′ ∪R) ∈ M]+δ′. (9)

Similarly, we define global sensitivity with dummy
data.

Definition 4.2 (Global sensitivity with dummy data).
Global sensitivity with dummy data GS R

q to query q : D →
R

k is defined as follows:

GS R
q = max

∀D,D′:H(D,D′)=1
‖q(D ∪ R) − q(D′ ∪ R)‖p. (10)

Definitions 4.1 and 4.2 differ from previous defini-
tions 3.2 and 3.5 in that dummy dataset R = {R1, · · · ,Rw}
is added to D. In Definitions 4.1 and 4.2, dummy dataset
R is fixed, and any adjacent datasets (except R) are con-
sidered. Conventional differential privacy mechanisms also
satisfy differential privacy with dummy data. As a typical
example, we consider the Laplacian mechanism.

Theorem 4.3. Let query q : D → Rk, let L(μ, v) be Lapla-
cian noise with mean μ and variance v, and then the follow-
ing mechanism MR

q satisfies (ε′, 0)-DPwD:

MR
q (D ∪ R) = q(D ∪ R) + L

⎛⎜⎜⎜⎜⎜⎝0, GS R
q

ε′

⎞⎟⎟⎟⎟⎟⎠ . (11)

Proof. Consider D ∪ R,D′ ∪ R for adjacent D and D′. Let
the query be q : D → Rk, and let px be the probability
density function of MR

q (x). At this time, for any z ∈ Rk, the
following holds:

p(D∪R)(z)

p(D′∪R)(z)
=

k∏
i=1

exp(− ε′ |q(D∪R)i−zi |
GS R

q
)

exp(− ε′ |q(D′∪R)i−zi |
GS R

q
)

=

k∏
i=1

exp
(
ε′(|q(D′ ∪ R)i − zi| − |q(D ∪ R)i − zi|)

GS R
q

)

≤
k∏

i=1

exp
(
ε′|q(D′ ∪ R)i − q(D ∪ R)i|

GS R
q

)
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= exp
(
ε′||q(D′ ∪ R) − q(D ∪ R)||1

GS R
q

)

≤ exp(ε′). (12)

Note that p(D∪R)

p(D′∪R)
≥ exp(−ε′) is symmetric. �

Definitions 4.1 and 4.2 differ from previous defini-
tions 3.2 and 3.5 only in that they cover any dataset D∪R ex-
cept R. Since this difference does not affect the proof that the
conventional Laplace mechanism satisfies differential pri-
vacy, Theorem 4.3 can also be easily proved. Note that,
although Definition 4.1 does not guarantee the privacy of R,
nor does it affect the privacy of D because R is dummy data
and generated internally by a data processor. Furthermore,
we can approximate the relationship with conventional dif-
ferential privacy as follows when GS q and GS R

q are non-zero
real numbers:

MR
q (D ∪ R) = q(D ∪ R) + L

⎛⎜⎜⎜⎜⎜⎝0, GS R
q

ε′

⎞⎟⎟⎟⎟⎟⎠
= q(D ∪ R) + L

(
0,

GS q

GS q · ε′/GS R
q

)

= q(D) + L

(
0,

GS q

ε

)
+ ω,

(13)

where ω is q(D∪R)− q(D), but R is generated internally by
a data processor and contains no information. For example,
consider a query for the average. Since the sensitivities of
each data space are GS q =

m
n and GS R

q =
m

n+w , ε′ = n
n+w · ε

is obtained. As for ω, ω = q(D ∪ R) − q(D) = n
∑w Ri−w∑n di

n(n+w)

follows from q(D∪R) =
∑n di+

∑w Ri

n+w and q(D) =
∑n di

n . Mech-
anisms that satisfy the proposed definition are realized by
superposition of noise based on sensitivity and error intro-
duced by dummy data, where the former noise can be ex-
pressed in terms of the parameters of differential privacy.
Smooth sensitivity with dummy data can be defined simi-
larly as Definitions 4.4 and 4.5.

Definition 4.4 (Local sensitivity with dummy data). Given
dataset D ∪ R, local sensitivity LS R

q with dummy data to
query q : D|χ| → Rk is defined as follows:

LS R
q (D∪R) = max

∀D′:H(D,D′)=1
‖q(D∪R)−q(D′∪R)‖p. (14)

Definition 4.5 (Smooth sensitivity with dummy data). Sup-
pose β > 0, and dataset D is given. Smooth sensitivity S R

q

with dummy data to query q : D → Rk is defined as follows:

S R
q,β(D ∪ R) = max

anyD′
(LS R

q (D′ ∪ R) · e−βH(D,D′)). (15)

Theorem 4.6. Let q : D → R
k be a query. When

α = ε′/
√

ln(1/δ) and β = Ω(ε′/
√

k ln(1/δ′)), the following
mechanism satisfies (ε′, δ′)-DPwD.

Mq(D ∪ R) = q(D ∪ R) +
S R

q,β(D
′ ∪ R)

α
· N(0, 1) (16)

As in a previous work [17], Proposition 3.10 requires
the consideration of a dataset such that H(D,D′) = k. Since
H(D,D′) = H(D ∪ R,D′ ∪ R), adding dummy data has no
effect on the proof of the theorem; the only difference is that
record R in D ∪ R is fixed, guaranteeing the privacy of any
data D. Although the privacy of R is not guaranteed, there
is no effect on each datum because R is dummy data.

4.2 Correlation Coefficient Satisfying Differential Privacy
with Dummy Data

As we have described, mechanisms that satisfy our proposed
definition satisfy conventional differential privacy and can
be compared with other differential privacy mechanisms us-
ing privacy parameters ε. Next, returning to the purpose
for which we extended the definition, we consider a mech-
anism for queries that cannot be directly constructed with
traditional differential privacy. As an example, we use Def-
initions 4.4 and 4.5 to calculate the correlation coefficient
that satisfies differential privacy with dummy data.

In the following, values corresponding to D in D′ are
denoted by using ()′. For example, the set corresponding
to set A in D′, i.e., a1 = (a1)′, · · · , an = (an)′, ai � (ai)′,
is denoted by (A)′ and the average value of (A)′ is denoted
by (μA)′. Even if the i-th record (ai, bi) and ((ai)′, (bi)′) are
the different record in adjacent datasets, we will not lose
generality and they are denoted as Δai = (ai)′ − ai,Δbi =

(bi)′ − bi. The following is the correlation coefficient of D′:

(C)′ =
(sAB)′

(sA)′(sB)′

=
h(Δai,Δbi)√

1
n f (Δai)

√
1
ng(Δbi)

,
(17)

where

f (Δai) =
n − 1

n
(Δai)

2 + 2(ai − μA)Δai

+

n∑
(a j − μA)2

= Cn(Δan)2 + 2CaΔan +Caa,

g(Δbi) =
n − 1

n
(Δbi)

2 + 2(bi − μB)Δai

+

n∑
(b j − μB)2

= Cn(Δbi)
2 + 2CbΔbi +Cbb,

h(Δai,Δbi) =
n − 1

n
ΔaiΔbi + (bi − μB)Δai

+ (ai − μA)Δbi +

n∑
(a j − μA)(b j − μB)

= CnΔaiΔbi +CbΔai +CaΔbi +Cab.

(18)

We then obtain the following theorem.

Theorem 4.7. Let C be the correlation coefficient of dataset
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D ∈ [0,m]2 with two attributes, A and B, let C′ be the cor-
relation coefficient of an adjacent dataset. Then we obtain
arg max
ri=(ai,bi)

|C′ −C| ∈
{
(0,m), (m, 0), (m,m), (0, 0), ( D3D5−D2D6

D1D5−D2D4
, D3D4−D1D6

D2D4−D1D5
)
}
. Here,

D1 = CaCb−CnCab, D2 = CnCaa−C2
a, D3 = CaCab−CaaCb,

D4 = CnCbb − C2
b, D5 = CaCb − CnCab, and D6 = CbCab −

CbbCa.

Proof. f (Δai), g(Δbi) are downward convex quadratic func-
tions, and the denominator is minimized when f (− n

n−1 (ai −
μA)) =

∑n
j=1(a j − μA)2 − n

n−1 (ai − μA)2, g(− n
n−1 (bi − μB)) =∑n

j=1(b j − μB)2 − n
n−1 (bi − μB)2. Since C is not affected by

Δai,Δbi, to maximize |C −C′|, Δai,Δbi either maximizes or
minimizes C′.

In the following, we consider a dataset such that both
D,D′ contain at least one different data set, i.e., the denom-
inator of C,C′ is non-zero. The following is the partial dif-
ferentiation of C′ by Δai:

d
dΔai

C′ =

(CaCb−CnCab)Δai+(CnCaa−C2
a)Δbi+(CaaCb−CaCab)

1/n · g(Δbi)1/2 · f (Δai)3/2
.

(19)

Similarly, a partial differentiation of C′ by Δbi yields

d
dΔbi

C′ =

(CaCb−CnCab)Δbi+(CnCbb−C2
b)Δai+(CbbCa−CbCab)

1/n · f (Δai)1/2 · g(Δbi)3/2
.

(20)

From Eqs. (19) and (20), C′ can take an extreme value
at d

dΔai
C′ = d

dΔbi
C′ = 0, where (Δai,Δbi) =

( D3D5−D2D6
D1D5−D2D4

, D3D4−D1D6
D2D4−D1D5

). Here, D1 = CaCb − CnCab,D2 =

CnCaa − C2
a,D3 = CaCab − CaaCb,D4 = CnCbb − C2

b,D5 =

CaCb −CnCab, and D6 = CbCab −CbbCa.
In addition, since Δai,Δbi ∈ [−m,m], and r′ monotoni-

cally increases or decreases with respect to the other variable
when either Δai or Δbi is fixed, |C′ − C| may be maximum
when Δai and Δbi are maximum or minimum, respectively.
Therefore, Theorem 4.7 holds. �

We now consider the actual algorithm for deriving
privacy-enhancing correlation coefficients. The algorithm
requires the local sensitivity of Dj. Let C j and C′j be the
correlation coefficient for Dj and an adjacent dataset of Dj.
Fixing the i-th record (ai, bi) of Dj, we can easily find the
adjacent dataset, where ‖C′j − C j‖ is maximum from The-
orem 4.7. Specifically, assume an adjacency data set Dj+1

with (ai, bi) converted to extreme values or values at the edge
of the domain of definition. Since the local sensitivity is
the maximum value of ‖C′j − C j‖, we consider the adjacent
dataset with the maximum ‖C′j−C j‖ for each (ai, bi) and gen-
erate the adjacent dataset with the largest difference among

Algorithm 1 CCDPwD(D0, ε
′, δ′,R1,R2(� R1)): Correla-

tion coefficient achieving differential privacy with dummy
data.
Input: Dataset D = {d1, · · · dn}, privacy parameter ε′, and random records

R1,R2.
1: D0 ← D0 ∪ {R1,R2}
2: for j = 0; j < n; j + + do
3: for i = 0; i < n; i + + do
4: Calculate d′i =

{
a′i , b

′
i

}
= arg max

a′i ,b
′
i

‖C′j−C j‖, where C′j and C j are

correlation coefficients obtained from an adjacent dataset D j+1

and D j

5: end for
6: d′ = max d′i
7: Generate D j+1 with different d′ = {a′, b′} from D j

8: Calculate LS r
q(D j+1) · e−βH(D0 ,D j+1)

9: end for
10: S r

q,β(D0) = max(LS r
q(D j+1) · e−βH(D0 ,D j+1))

11: return Mr
q(D0) = q(D0) +

S r
q,β(D0)

α · N(0, 1)

them as Dj+1. This process can be performed recursively to
obtain S r

q,β(D0), and privacy can be assured by adding noise
to the q(D) result.

5. Experimentation

In this section, we compare the correlation coefficients de-
rived by the proposed method with the privacy-protected
correlation coefficients based on the direct method. The fol-
lowing experiments were conducted on a data set (C ≈ 1.0
for ease of explanation) following a normal distribution with
n data and an m(ai, bi ∈ [0,m]) data domain.

5.1 Correlation Coefficients Satisfying Differential Pri-
vacy Using Direct Methods

As described in Sect. 4.1, computing sensitivity is impos-
sible using the correlation coefficient as a query. Thus,
it is difficult to construct a probabilistic disturbing mech-
anism to find the correlation coefficient that directly satis-
fies differential privacy. On the other hand, with the se-
quential theorem, a probabilistic disturbing mechanism can
be constructed to obtain the covariance and standard devia-
tion that satisfy the differential privacy, and to calculate the
correlation coefficient that satisfies the differential privacy
from each result. The privacy parameter can be obtained
by summing the privacy parameters. The covariance and
standard deviation are obtained by sAB = h(Δai,Δbi), sA =√

f (Δai)/n, sB =
√
g(Δbi)/n. Therefore, considering the ap-

plication of the smooth sensitivity framework, local sensitiv-
ity is maximized when each is extreme or when Δai,Δbi is
maximum or minimum. Now we can construct a mechanism
that derives a correlation coefficient that satisfies differential
privacy.

We set (n,m) = (100, 100), fix privacy parameter δ′ =
0.01, vary ε′, and evaluate the noise magnitude. The evalu-
ation is expressed in quartiles of 100 runs. Privacy param-
eters ε′, δ′ are allocated equally; if (ε′, δ′) = (1, 1/100), the
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Fig. 1 Noise distribution with sequential theorem: (m, n) = (100, 100)

privacy parameters for each sAB, sA, and sB are (ε′sAB
, δ′sAB

) =
(ε′sa
, δ′sa

) = (ε′sb
, δ′sb

) = (1/3, 1/300) and the smooth sensi-
tivity framework was applied. The experimental results are
summarized in Fig. 1. The results show that when the cor-
relation coefficient is calculated using the sequential theo-
rem, noise that satisfies differential privacy is added to each
of the three variables of standard deviation and covariance,
amplifying their effects, and the overall noise also tends to
increase. In the case of (m, n) = (100, 100), ε′ = 2.5, the
upper bound of noise is about 0.2, indicating that ε′ ≥ 3 is
required to obtain sufficient accuracy.anism.

Another way to obtain privacy-preserving correlation
coefficients is to apply a local differential privacy mecha-
nism. Although differential privacy assumes dataset D′ ad-
jacent to D = {d1, · · · , dn}, local differential privacy assumes
arbitrarily different data d′i for each datum di. Given an ε-
local differential privacy mechanism M and a dataset D′′ ={
d′1, · · · , d′n

}
, Pr[M(D)] ≤ eε · Pr[M(D′)] ≤ eε · Pr[M(D′′)]

holds. Thus M satisfies ε-differential privacy. When us-
ing the local difference privacy mechanism, noise is added
to each record, which adds more noise than necessary, and
ways to maintain its utility must be devised. For example,
a local difference privacy mechanism was proposed [6] for a
t-test and maintains its accuracy by indirectly performing a
t-test using data distribution characteristics after noise was
added. Since no local differential privacy mechanism has
been proposed that can efficiently derive correlation coef-
ficients, we evaluated them using data to which an exist-
ing local differential privacy mechanism [11] was applied.
Here, we varied privacy parameter ε and evaluated the mag-
nitude of the noise. The evaluation is expressed in quar-
tiles for 100 runs. The experimental results are summa-
rized in Fig. 2. Our experimental results show that evalu-
ating the correlation coefficient is very difficult using a local
differential privacy mechanism by simply applying the ex-
isting mechanism. Since the dataset used in this study is
C ≈ 1.0, applying the local differential privacy mechanism
almost eliminates the correlation. Although the noise can be
reduced by increasing the privacy parameter, the results are
impractical even at ε = 3.0, indicating that special process-
ing, as in a previous study [6], should be paid to the correla-
tion coefficient when a local differential privacy mechanism
is used.

Fig. 2 Noise distribution with LDP: (m, n) = (100, 100)

5.2 Proposal

We evaluate our proposed method. The following param-
eters might affect the output results: privacy parameter
(ε′, δ′), the number of data n, and the data definition domain
m. In the experiment, each parameter is varied, and noise

magnitude
S r

q,β(D0)

α
· N(0, 1) is evaluated. The magnitude of

the noise is expressed as a quartile for 100 runs. For com-
parison, the experimental results under the same conditions
are represented by white bars.

Figure 3 (a) shows a case where the number of data is
n = 100, the data definition range is m = 100(ai, bi ∈ [0,m]),
privacy parameter δ′ = 0.01 is fixed, and privacy parameter
ε′ is variable. Naturally, the larger the privacy parameter is,
the smaller the noise becomes. When ε′ ≥ 0.8, the noise
is at most ±0.1, and correlation can be obtained relatively
accurately. Figure 3 (b) shows the results when the privacy
parameters (ε′, δ′) = (1.0, 0.01), data domain m = 100 are
fixed, and the number of data n is a variable. As the num-
ber of data increases, the impact of a single datum on the
correlation coefficient decreases. Therefore, under identical
privacy parameters and data domain, noise decreases as the
number of data increases. Experimental results show that
for n ≥ 80, the noise is at most ±0.1, and correlations can
be obtained accurately even with relatively small samples.

Finally, Fig. 3 (c) shows the results when privacy pa-
rameters (ε′, δ′) = (1.0, 0.01), the number of data n = 100
are fixed, and data domain m is a variable. Data domain m
affects the noise, although not as significantly as ε′, n. This
may be due to the fact that a′i and b′i can change to 0 and
m, which are respectively the minimum and maximum val-
ues of the domain, during the construction of an adjacent
dataset, and thus the data domain affects the magnitude of
the noise. The results also show that many of the r′ = (a′i , b

′
i)

replaced in constructing the adjacency datasets are outliers.
Therefore, although this experiment was conducted on ran-
dom data following a normal distribution, the magnitude of
the noise is not easily affected by the bias or the character-
istics of the dataset. This trend is similar for any dataset.

In our proposed algorithm, a noise ω is added by
adding dummy data. Our proposal allows for the calculation
of sensitivity by adding dummy data to an arbitrary data set,
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Fig. 3 Noise distribution of the proposal algorithm

Fig. 4 Error distribution of the proposal algorithm

which is accomplished by adding at least two dummy data
with different values. The impact of dumy data on the cor-
relation coefficient, as in the mean example, ω is indepen-
dent of the privacy parameter ε′ and becomes smaller as the
number of reocrds n increases and larger as the data range m
increases. Furthermore, the effect of the number of dummy
data w depends on the distributions of the dummy data and
the actual dataset, and the closer the distributions are, the
less effect w has on ω. In this experiment, for ease of un-
derstanding the results, we deal with a dataset that follows
a normal distribution with a correlation of almost 1. On the
other hand, we did not have access to the dataset in the al-
gorithm, and dummy data with a uniform distribution were
given to the dataset. Figures 4 show the error due to dummy
data on the correlation, which depends on the number of
dummy data n,m, w. This error is caused by adding dummy
data and does not depend on the privacy parameter. For the
correlation coefficient, the number of dummy data required
to obtain the sensitivity is w = 2, and considering the case
n = 100, the impact of dummy data is at most 0.3. There-
fore, the proposed method performs better than the existing
methods even if the error due to dummy data and the noise
that satisfies the differential privacy with dummy data are
taken into account.

5.3 Improvement

The previous experiments showed that the proposed method
has a greater impact of errors due to dummy data compared
to noise to satisfy differential privacy. This is due to the fact
that the data handled in the experiments have very high cor-
relations, whereas the dummy data added by the proposed
algorithm are uniformly distributed records, and their re-

Fig. 5 Effect of assuming dummy data distribution

spective distributions are very different. In particular, since
the dataset follows a normal distribution, values at the edge
of the data range, i.e., close to m, are rarely available, and
when m is large, uniformly distributed dummy data taking
values close to m will result in a large error. Matching the
distribution of the dummy data to the distribution of the
dataset reduces the impact of the dummy data, but access-
ing the dataset is a use of the information. Therefore, to
reduce the error of dummy data, Propositions 3.3 and 3.4
can be applied. Specifically, as a preprocessing step for
the proposed algorithm, a simple differential privacy mech-
anism is applied to obtain the distribution of the dataset, and
then the proposed algorithm is applied with dummy data
following the obtained distribution. We compared the to-
tal noise of simply applying the proposed mechanism with
that of using the improved mechanism. Figure 5 shows the
results of the experiment with n = 200, m = 100, and
ε′ = ε′1 = ε

′
2 = 1.0. ε′1 and ε′2 are privacy parameters for

the preprocessing mechanism and the proposed mechanism.
The preprocessing mechanism and the proposed mechanism
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are performed on D1 and D2. Here, D1 and D2 are datasets
where D is divided into 100 records each. The experimental
result shows that the error is reduced by making the distribu-
tion of the dummy data closer to the distribution of the data
set, and that the improved version has less total noise. Note
that the experiment of the non-improve version is under the
same condition as the black bar in Fig. 4 (a).

6. Conclusion

In this paper, we defined differential privacy with dummy
data as an extension of differential privacy. Mechanisms
that satisfy the proposed definition can be constructed sim-
ply by adding dummy data to the conventional differential
privacy mechanism, and in addition, if the sensitivity in the
conventional definition can be calculated, the relationship to
the sensitivity in the extended definition can be expressed.
We further took the correlation coefficient as an example of
a mechanism that is difficult to construct according to the
conventional definition, and described how to construct the
mechanism. For queries for which it is difficult to directly
determine the sensitivity, the privacy can be guaranteed by
synthesizing differential privacy mechanisms, but the ac-
curacy is significantly degraded by the superimposition of
noise. On the other hand, our proposed method can guar-
antee privacy with less noise than the composition of dif-
ferential privacy mechanisms, even after taking into account
the additional error due to the addition of dummy data. Fur-
thermore, we provided additional suggestions to lower the
impact of errors and showed that privacy can be guaranteed
more effectively when the number of data is sufficient.
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