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OPENnet: Object Position Embedding Network for Locating
Anti-Bird Thorn of High-Speed Railway

Zhuo WANG†a), Student Member, Junbo LIU††b), Fan WANG††c), and Jun WU†d), Nonmembers

SUMMARY Machine vision-based automatic anti-bird thorn failure in-
spection, instead of manual identification, remains a great challenge. In
this paper, we proposed a novel Object Position Embedding Network
(OPENnet), which can improve the precision of anti-bird thorn localization.
OPENnet can simultaneously predict the location boxes of the support de-
vice and anti-bird thorn by using the proposed double-head network. And
then, OPENnet is optimized using the proposed symbiotic loss function
(SymLoss), which embeds the object position into the network. The com-
prehensive experiments are conducted on the real railway video dataset.
OPENnet yields competitive performance on anti-bird thorn localization.
Specifically, the localization performance gains +3.65 AP, +2.10 AP50,
and +1.22 AP75.
key words: anti-bird thorn localization, double-head network, symbiotic
loss, object position embedding network

1. Introduction

Bird activity is a common cause of traction power supply
equipment failure of high-speed railway, which seriously
menaces the safety of train [1]. In order to reduce the failure
rate of traction power supply equipment, we usually install
anti-bird thorns on the support device of the catenary tower
to dislodge birds. However, severe weather, birds fighting,
and nonstandard installation will lead to anti-bird thorn fail-
ure, so as lose the dislodge birds function [2]. Therefore,
it is necessary to periodically inspect whether the anti-bird
thorn is fault.

At present, the anti-bird thorn failure inspection meth-
ods based on vehicle video are composed of two parts: anti-
bird thorn localization and anti-bird thorn failure identifica-
tion. In this paper, we mainly focus on some challenges of
anti-bird thorn localization task and propose a novel Object
Position Embedding Network (OPENnet), which can fleetly
and precisely locate anti-bird thorn.

Figure 1 shows an example image of a high-speed rail-
way collected by the comprehensive inspection train. The
visual field of high-speed railway scene image is very open,
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Fig. 1 An example image of high-speed railway.

which has the features of many foreground objects and vari-
able backgrounds. Unfortunately, the anti-bird thorn that
needs to be located is very small. Therefore, the traditional
visual location methods are difficult to deal with such a com-
plex situation.

Recently, many deep learning-based object detection
methods have achieved promising results both in academic
and industry. These methods can be divided into one-
stage methods and two-stage methods according to differ-
ent generative mechanisms of object proposal. YOLOv3 [3],
SSD [4] and RetinaNet [5] are popular one-stage methods,
which greatly improve the detection speed by using the
bounding boxes regression method to detect objects. How-
ever, these methods will miss the detection for small ob-
jects. Two-stage methods have high accuracy of object
detection, such as R-CNN [6], Faster R-CNN [7] and Cas-
cade R-CNN [8]. In addition, some scholars have proposed
methods to detect coupled objects including VTransE [9]
and YOLO+MP [10]. Such two models are devised to pre-
dict the relations between coupled objects for deeper inter-
pretation on pixels. Differently, in this work, the support
detection (auxiliary task) is used to facilitate the anti-bird
thorn detection (main task) based on the dependency be-
tween such two coupled objects.

Due to the limited computational resources of the de-
vice deployed in high-speed trains and the stringent re-
sponse requirement of railway inspection, inference time is
critical for the task of anti-bird thorn detection. To detect
small objects (e.g. anti-bird thorns) at a fast inference time,
we first present a double-head network, which can reduce
the searching scope of anti-bird thorns. And then, we de-
sign a symbiotic loss function to embed the object position
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Fig. 2 Overall framework of the proposed OPENnet.

into the network using the symbiotic relationship between
the anti-bird thorn and the support device. Comparative ex-
perimental results show that our method achieves optimal
performance and significantly improves the precision of the
anti-bird thorn location box.

2. Object Position Embedding Network

Based on the symbiotic relationship between the support de-
vice and the anti-bird thorns, we propose an innovative ob-
ject position embedding network, which can simultaneously
locate the support and the anti-bird thorn shown in Fig. 1.
The input of the method is a high-speed railway image, and
the output is the coordinates of the support device and the
anti-bird thorn. The model is optimized by our proposed
symbiotic loss.

2.1 Double-Head Network

To avoid runaway gradients, instabilities, and infinite losses,
as same as YOLOv5 [11], our network also predicts offsets
instead of coordinates to make it easier to learn. The net-
work predicts four offsets x, y, w, h for the support and a
confidence o. The predictions shown in Fig. 3 correspond
to:

sx = 2σ(x) + cx − 0.5 (1)

sy = 2σ(y) + cy − 0.5 (2)

sw = 4pwσ
2(w) (3)

sh = 4phσ
2(h) (4)

so = σ(o) = CIoU(T g,T p) (5)

where pw, ph are the bounding box prior’s width and height.
sx, sy, sw, sh and so are center point coordinates, height,
width and confidence of the bounding box of support. The
cell is offset from the top left corner of the image by (cx, cy).

Fig. 3 The relative position relationship between the anti-bird thorn
bounding box and the support bounding box. A and B are the center points
of support and anti-bird thorn prediction boxes, respectively.

T g and T p are ground truth and predict the bounding box
of anti-bird thorn. Four main parameters kx, ky, kw, kh are
used to learn the relative position between anti-bird thorn
and support shown in Fig. 2. Meanwhile, we also design a
function between o and to, which is the confidence of the
anti-bird thorn predicted bounding box. The position of the
anti-bird thorn bounding box is defined as follows:

tx = sx + sw (σ (kx) − 0.5) (6)

ty = sy + sh

(
σ
(
ky

)
− 0.5

)
(7)

tw = 2swσ (kw) ∗min (1 − σ (kx) , σ (kx)) (8)

th = 2shσ (kh) ∗min
(
1 − σ

(
ky

)
, σ
(
ky

))
(9)

σ(ko) = RPIoU (S p,T p) (10)

to = σ(ko) ∗ so (11)

where tx, ty, tw, th and to are center point coordinates, height,
width and confidence of the anti-bird thorn bounding box.
σ(·) function was used to constrain (tx, ty) appear inside
the box of support. S p is predicted support bounding box.
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RPIoU is shown in Alg. 1.

2.2 Symbiotic Loss

The loss of object detection is commonly an IoU-based loss
function, including IoU loss [12], GIoU loss [13], DIoU loss
and CIoU loss [14]. But they are used between ground truth
and predict bounding boxes for the same class. They do
not consider the symbiotic relationship between different
classes. For this reason, based on our dataset, we proposed
a symbiotic loss function for the relative positional relation-
ship between the support and the anti-bird thorn. It is de-
fined as follows:

Lsym = LCIoU + α(1 − RPIoU) (12)

where α is the coefficient of the second part, which is used

Algorithm 1 RPIoU
Input:

Predicted support box S and predicted thorn box T

S = (xs
1, y

s
1, x

s
2, y

s
2),T = (xt

1, y
t
1, x

t
2, y

t
2)

Output: RPIoU
1: For the predicted box S and T , ensuring xs

1 < xs
2, ys

1 < ys
2, xt

1 < xt
2,

yt
1 < yt

2.
2: Calculating area of S : As = (xs

2 − xs
1) × (ys

2 − ys
1).

3: Calculating area of T : At = (xt
2 − xt

1) × (yt
2 − yt

1).
4: Finding the coordinate of smallest enclosing box C;

xc
1 = min(xs

1, x
t
1), xc

2 = max(xs
2, x

t
2)

yc
1 = min(ys

1, y
t
1), yc

2 = max(ys
2, y

t
2)

5: Calculating area of C: Ac = (xc
2 − xc

1) × (yc
2 − yc

1).
6:

RPIoU =
As

Ac

Fig. 4 There are four different relative positive relationships between the
blue predicted bounding box of support S and the red predicted bounding
box of anti-bird thorn T . C is the coordinate of the smallest enclosing box
of S and T , which is a black dashed box.

to represent the second part importance. RPIoU explained
in Alg. 1 is a metric of the extent of the anti-bird thorn inside
the support.

To explain RPIoU more intuitively, we list four dif-
ferent kinds of relative position between the ground truth
bounding box of support and the predicted bounding box of
anti-bird thorn, which are shown in Fig. 4, respectively. The
area of the red parts reflects the size of the 1 − RPIoU. Es-
pecially when the predicted anti-bird thorn bounding box is
inside the support bounding box, C = S , RPIoU = 1. In the
other cases, Lsym > LCIoU .

3. Experiment and Evaluation

3.1 Dataset and Implement Details

The dataset consists of 2064 training images and 516 testing
images at 640 × 640 resolution. The number of anti-bird
thorns is 1101, and the number of supports is 3536.

We utilize the stochastic gradient descent with a start
learning rate of 0.012 to train the proposed OPENnet. The
training set is shuffled, and each mini-batch consists of 16
images. We use the symbiotic loss as the objective func-
tion when training our network. For baseline, we keep the
original implementation as released by the authors.

To evaluate the performance of our method, We ex-
ploit four widely-used metrics in object detection evalua-
tion: Average Precision (AP), Average Precision when inter-
section over union threshold is 0.5 (AP50), Average Preci-
sion when intersection over union threshold is 0.75 (AP75),
and Frames Per Second (FPS).

3.2 Results and Discussion

To get the best of hyper-parameter α in Eq. (12), we test
the hyper-parameter α in the range of {0, 0.1, · · · , 1.0}. The
results are shown in Fig. 5. It shows that a value of 0.4 lead
to the best AP scores, which is the optimal trade-off between
two parts of symbiotic loss in Eq. (12).

Secondly, we compare OPENnet with four object
detection methods on our dataset and the corresponding
quantitative results are shown in Table 1. The meth-
ods are the representative one-stage models, YOLOv3 [3],
YOLOv5 [11] and the two-stage models, Faster R-CNN [7],

Fig. 5 The performance of YOLOv5 with different alpha
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Table 1 Anti-bird thorn testing set results. (OPENnet- represents OPENnet without double-head
network, and SymLoss- represents predicting anti-bird thorn directly instead of predicting anti-bird
thorn with equations 6-9 indirectly. All experiments were running on Geforce RTX 3090.)

Method Backbone Loss function AP AP50 AP75 FPS
Faster R-CNN [7] ResNet-50 Smooth L1 [15] 37.50 80.00 22.30 27.7
Cascade R-CNN [8] ResNet-50 Smooth L1 [15] 42.30 86.70 30.43 22.5
YOLOv3 [3] Darknet53 MSE 37.20 85.61 23.21 51.2
YOLOv5 [11] CSPDarknet53 IoU loss [12] 38.90 85.57 31.38 77.5
YOLOv5 [11] CSPDarknet53 GIoU loss [13] 39.57 85.69 27.10 76.3
YOLOv5 [11] CSPDarknet53 DIoU loss [14] 39.67 86.67 24.52 77.5
YOLOv5 [11] CSPDarknet53 CIoU loss [14] 38.77 86.41 22.80 74.1
OPENnet- CSPDarknet53 SymLoss- 41.43 87.45 28.36 73.1
OPENnet CSPDarknet53 SymLoss 43.22 88.80 32.60 71.4

Cascade R-CNN [8]. Specifically, several observations are
drawn from the experimental results:

• Overall, Our method (OPENnet) consistently outper-
forms the other four methods. Such an observation il-
lustrates the importance of symbiosis loss and double-
head network for detecting anti-bird thorn.
• Both OPENnet and OPENnet- only drop a few frames

per second compare with fastest YOLOv5 in exchange
for higher AP, AP50, and AP75.

We further compare OPENnet with its one degenerated
variant (OPENnet-) for demonstrating the effectiveness of
the double-head network. Both “OPENnet” and “OPEN-
net-” take the relative position between support and anti-
bird thorn into consideration in designing their loss func-
tions. The main difference between them is that “OPEN-
net” first predicts support and then searches for anti-bird
thorn within the bounding box of support, while “OPEN-
net-” independently predicts both. The ablation experiment
shows that, due to reducing the searching scope of anti-
bird thorn, “OPENnet” with the double-head network out-
performs “OPENnet-”, thus proving the effectiveness of the
double-head network.

Benefiting from the fact that our model can handle the
symbiotic relationship between the anti-bird thorn and the
support device, its results are significantly better than those
obtained by other comparative models.

4. Conclusion

In this paper, we proposed a novel Object Position
Embedding Network (OPENnet), which includes double-
head network and a symbiotic loss function. OPENnet can
simultaneously predict the location boxes of the support de-
vice and anti-bird thorn and the relative position between
them by using proposed the double-head network. The ex-
perimental results show that our proposed method improves
AP, AP50, and AP75, up to a 9% improvement. In the fu-
ture, we plan to enhance the image quality to improve the
discrimination of anti-bird thorns based on our model.
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