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A Visual Question Answering Network Merging High- and
Low-Level Semantic Information

Huimin LI†a), Dezhi HAN†b), Chongqing CHEN†c), Nonmembers, Chin-Chen CHANG††d), Member,
Kuan-Ching LI†††e), and Dun LI†f), Nonmembers

SUMMARY Visual Question Answering (VQA) usually uses deep at-
tention mechanisms to learn fine-grained visual content of images and tex-
tual content of questions. However, the deep attention mechanism can
only learn high-level semantic information while ignoring the impact of
the low-level semantic information on answer prediction. For such, we
design a High- and Low-Level Semantic Information Network (HLSIN),
which employs two strategies to achieve the fusion of high-level semantic
information and low-level semantic information. Adaptive weight learn-
ing is taken as the first strategy to allow different levels of semantic infor-
mation to learn weights separately. The gate-sum mechanism is used as
the second to suppress invalid information in various levels of information
and fuse valid information. On the benchmark VQA-v2 dataset, we quan-
titatively and qualitatively evaluate HLSIN and conduct extensive ablation
studies to explore the reasons behind HLSIN’s effectiveness. Experimen-
tal results demonstrate that HLSIN significantly outperforms the previous
state-of-the-art, with an overall accuracy of 70.93% on test-dev.
key words: Visual Question Answering (VQA), deep attention mechanisms,
adaptive weight learning,gate-sum mechanism

1. Introduction

The development of artificial intelligence has accelerated
the advancement of technologies related to computer vision
and natural language processing. With the two mature, in-
vloving visual and language came into being multimodal
task. In contrast to single-modal tasks, multimodal tasks re-
quire extracting and understanding information from a sin-
gle modality, which combining information from two differ-
ent modalities for reasoning. Although this is challenging,
current researchers have achieved many multimodal tasks,
for instance, image-text matching [1], [2], image caption-
ing [3], [4], and VQA [5], [6], [26]. As a typical represen-
tative of multimodal tasks, VQA requires understanding vi-
sual information and image information; what’s more, com-
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bining the two to reason about the answer. Thus, VQA re-
quires that the model must combine another modal informa-
tion when it understands single-modal information.

Inspired by this concept, many deep neural networks
based on co-attention have been applied to VQA. The dual
attention networks (DANS) proposed in [1] collect the nec-
essary information from the two feature vectors by focus-
ing on specific question words and corresponding image re-
gions. Kim et al. [2] presented the Bilinear Attention Net-
work (BAN), which generates the attention graph by calcu-
lating the bilinear interaction between each pair of images;
Moreover, from the fusion features of the attention map, the
final joint representation of the question feature is obtained.
Although shallow co-attention can highlight important vi-
sual features and textual features, it lacks deep fine-grained
multimodal interaction.

To solve this problem, some deep attention mecha-
nisms [7], [8] have been proposed and widely used. The
deep attention mechanism usually pays more attention to
feature interaction within and between modalities in mul-
timodal tasks. However, in the process of multimodal in-
teraction, the deep attention mechanism often pays attention
to the impact of high-level semantic information on the out-
put result, thereby ignoring the impact of low-level semantic
information on the output result.

We adopt two strategies to achieve the fusion of high-
and low-level semantic information while maintaining the
advantage of the deep attention mechanism. Will it be more
beneficial to reasoning about answers? Based on this idea,
we present a High- and Low-Level Semantic Information
Network (HLSIN), which employs two strategies to achieve
the fusion of high-level semantic information and low-level
semantic information.

In summary, our contributions in this article are as fol-
lows:

• We design a High- and Low-Level Semantic Informa-
tion Network (HLSIN), which employs two strategies
to achieve the fusion of high-level semantic informa-
tion and low-level semantic information—using adap-
tive weight learning as the first strategy to allow dif-
ferent levels of semantic information to learn weights
separately; The gate-sum mechanism is used as the sec-
ond to suppress invalid information in various levels of
information and fuse valid information.
• The experimental results on the VQA-v2.0 dataset
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prove the effectiveness of HLSIN under the two fu-
sion strategies. The accuracy of HLSIN on test-dev is
70.93%, and the accuracy on test-std is 71.33%.

The remaining of the article is organized as follows.
Section 2 gives an overview of the related work in relative
areas. In Sect. 3, the presented methods are discussed in
detail, include Traditional Transformer Structure, The core
Structure of MCAN and HLSIN, The Overall Structure of
HLSIN. Section 4 shows the results of our experiments using
several comparison methods. Finally, Sect. 5 concludes the
article.

2. Related Work

In this section, we will give a exhausively introduction about
the related works in attention mechanism (Sect. 2.1), deep
attention mechanism based on high-level semantic informa-
tion (Sect. 2.2), gate mechanism (Sect. 2.3), and method of
modal feature fusion (Sect. 2.4).

2.1 Attention Mechanism

Attention mechanism has become an ordinary operation in
multimodal systems. The use of attention mechanisms im-
proves the performance of multimodal tasks. It can use the
different variants of attention mechanisms to adaptively se-
lect the essential features and enhance the accuracy of VQA.
Xu et al. [9] presented the soft and hard attention mechanism
as the mainstream method for VQA. Then, Yang et al. [10]
presented a stacked attention network, which generates mul-
tiple attention maps on the image and is gradually aborbed
in the most critical visual regions. Lu et al. [11] proposed a
co-attention mechanism that focuses on image regions and
questions and learns their attention weights to interact be-
tween the two modes. On this basis, Nguyen et al. [12]
presented a closely connected VQA co-attention mechanism
that focuses on image regions and question feature through
multiple steps. At present, the most popular framework is
the transformer. The Bert [13] model is the first transformer
model to reach a human-level framework through the self-
attention mechanism, and the relationship between words in
question modes is modeled to learn the most advanced word
embedding [14], [16].

2.2 Deep Attention Mechanism Based on High-Level Se-
mantic Information

In the process of multimodal interaction, the deep atten-
tion mechanism based on high-level semantic information
is mainly used to study the common fusion intra- and inter-
modality. Gao et al. [17] believe that each model comple-
ments the other and proposed a DFAF model that includes
the co-attention of different modes as well as within the self-
attention. For image modalities, each image region should
obtain information from the lexicality of the question word
and the corresponding image regions. Subsequently, Gao et

al. [33] proposed the MLIN (Multimodality Later Interaction
Network) model structure. Compared with previous models,
the MLIN model can extract features from many individual
visual word pairs and multimodal potential summary vec-
tors, thus capturing high-level visual-linguistic interactions
with a smaller modal capacity. A deep Modular Co-attention
NetWork (MCAN) was presented by Yu et al. [11]. Based on
the previous deep collaborative attention models, a dense
self-attention model is constructed in each mode to under-
stand the relationship between regions and words in the im-
age, which further enriches the feature representation of the
image and the problem.

2.3 Gate Mechanism

In the process of multimodal task interaction, there may be
irrelevant or noisy features that hurt the interaction process,
resulting in the inaccuracy of output results. Therefore,
to effectively solve such problems, the gate mechanism is
proposed in the process of multimodal interaction. In the
MUAN model [19], a gating model based on the low-rank bi-
linear pool is designed to reweight the Query Matrix Q and
Key Matrix K features before matching the point product.
Its immediate implementation is to carry out the element
product between Q and K. In addition to multi-head self-
attention in the NMT [20] model, there is a block that per-
forms multi-head attention on the output of the contextual
encoder stack. Although the traditional VQA model using
the gate mechanism in multimodal interaction mechanism,
most of the models in the process of interaction only paid
attention to the high-level semantic information integration
and ignored the low-level semantic information to predict
the answers, therefore, in the process of multimodal task fu-
sion, gate-sum attention mechanism is adopted in this article
to fuse the features of high-level and low-level semantic in-
formation.

2.4 Method of Modal Feature Fusion

Feature fusion refers to the fusion of visual features and tex-
tual features at the feature level. The core of feature fu-
sion is to fuse cross-modal information. With computer vi-
sion and natural language processing rapidly developing in
deep learning, monomode representation has also made sig-
nificant progress. Monomode [21] has different meanings
in different semantic spaces. The VQA task is essentially
a multimodal reasoning task, so it is of great significance
to effectively integrate information for multimodal reason-
ing [22], [24]. A bilinear fusion method has been adopted
in recent research to improve the ability of cross-modal fu-
sion. The bilinear fusion method considers the relation-
ship between visual feature elements and textual feature el-
ements. However, the direct modelling of these two cor-
relations will produce a square scale of parameters, so the
performance of bilinear fusion is often limited by computa-
tional machine resources. Later, Fukui et al. [25] presented
a Multimodal Compact Bilinear (MCB) Pooling method,
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but the MCB Pooling method still requires higher dimen-
sions to ensure robustness. To solve this problem, Kim et
al. [27] proposed a Multimodal Low-rank Bilinear (MLB)
Pooling method, which is based on the matrix Hadamard
product [28] to calculate the two eigenvectors. Still, the
Multimodal Low-rank Bilinear (MLB) Pooling has low di-
mensionality and fewer parameters, and it is susceptible to
parameters and converges slowly. So at the later stage, the
Multimodal Factorization Bilinear (MFB) [29] set and Mul-
timodal sum Factorization High-order (MFH) [22] set were
proposed, which achieved better results.

3. Our Method

In this section, we present the overall structure of our pro-
posed method in Fig. 1. To better introduce the structure of
HLSIN, we will specifically introduce HLSIN from the four-
module.

3.1 The Structure of Traditional Transformer

Figure 2 displays the basic structure of the Transformer,
which mainly consists of two parts: Encoder and Decoder.
Furthermore, the Encoder and Decoder are composed of N
stacked layers. And each stacked layer includes a Multi-
Head Attention (MHA) unit and a Feed Forward (FF) unit.
The difference is that the Decoder also consists of a Masked
MHA unit for mask marking. Moreover, each unit is fol-
lowed by a residual connection [30] and layer normaliza-
tion [31] for optimization. In this section, following [35],
we give a exhaustive introduction to the relevant contents of
the Transformer.

3.1.1 Multi-Head Attention

The Multi-Head attention mechanism is designed to
strengthen the characterization ability of features. First, it
projects the Query Matrix (Q), Key Matrix (K) and Value
Matrix (V) into H sub-query matrices, sub-key matrices
and sub-value matrices of the same dimension, respectively.
Then, the attention operation is performed separately within
each head. Finally, the output within each head is spliced
to produce the final feature. We can use the formlula (1) to
present the calculation process:

F = MH(Q,K,V)

= Concat (head1, . . . . . . , headh) W0, (1)

headi = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
, (2)

= SoftMax

⎛⎜⎜⎜⎜⎜⎝
QWQ

i (KWK
i )T

√
d

⎞⎟⎟⎟⎟⎟⎠VWV
i . (3)

Where W0 ∈ Rd×hdh is the projection matrix for
all heads, Concat(·) represents concatenation of all heads,
WQ

i ∈ Rd×dh , WK
i ∈ Rd×dh , WV

i ∈ Rd×dh are the projection
matrixes for i-th head. F ∈ Rn×d is the output features.

Fig. 1 The structure of HLSIN

Fig. 2 The structure of Transformer

3.1.2 Feed Forward Network

Apart from MHA in Transformer’s Encoder-Decoder mod-
ule, each layer is also composed of a fully connected feed
forward network. The network is composed of two linear
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Fig. 3 The different attention units with multi-head attention as the dif-
ferent types of inputs.

transformations and a Relu [31] activation function. Assum-
ing that the input feature of the feed forward network can be
represented by X = [x1, x2, . . . . . . , xn] ∈ Rn×d, thus, we can
use the formula (4) to present the output feature:

FFN(X) = max(0, XW1 + b1)W2 + b2. (4)

3.2 The Core Structure of MCAN

Inspired by Transformer, the deep attention model MCAN
due on high-level semantic information was presented and
won the 2019 VQA Challenge championship in one fell
swoop. Essentially, MCAN is applying the standard Trans-
former architecture in VQA tasks. The deep co-attention part
used for multimodal information interaction uses Encoder-
Decoder as the core architecture. In this section, we present
the core content of MCAN exhaustively.

3.2.1 Self-Attention (SA) Unit and Guide-Attention (GA)
Unit

Figure 3 shows two core units designed in MCAN, each
of which has the same composition as a layer of Encoder
in Transformer. According to the different inputs, the SA
unit and the GA unit are respectively defined to simulate the
intra- and inter-modality attention relationship.

3.2.2 Encoder in MCAN

In fact, the Encoder in MCAN is the same as that of the
Encoder in the Transformer. As shown in the left part of
Fig. 4 (a), the Encoder of MCAN is composed of a pro-
foundly stacking of N layers SA units, which is used to sim-
ulate the intra-modality information interaction of problem

Fig. 4 The encoder-decoder frame of MCAN and HLSIN.

words. Specifically, take the question feature Y = Y0 =[
y1, y2, . . . . . . , yn

] ∈ Rn×512 as the initial input. After each
SA unit, an MHA operation and an FF operation are per-
formed. After N layers, the interactive question feature
YN =

[
yN

1 , y
N
2 , . . . . . . , y

N
n

]
∈ Rn×512 is obtained. The deriva-

tion process is represented by formula (5):

Yi = SA[i](Y0). (5)

Where i ∈ [1,N] represents the stacking amount of SA
units. Yi ∈ Rn×512 stands for the question feature of the out-
put of the i-th layer.

3.2.3 Decoder in MCAN

Similar to the Decoder structure in Transformer, the De-
coder in MCAN comprises a combination of SA unit and
GA unit (defined as SGA unit in MCAN) through N deep
stacking. The SA unit is used to simulate the intra-modality
information interaction of the image region, and the GA
unit affects the inter-modality information interaction be-
tween the question word and the image region. As ex-
pressed in the right part of Fig. 4 (a), the initial image feature
X = X0 = [x1, x2, . . . . . . , xn] ∈ Rn×512 and the question fea-
ture obtained in the above Encoder is used as two inputs, and
the final image feature XN =

[
xN

1 , x
N
2 , . . . . . . , x

N
n

]
∈ Rn×512 is

obtained after N-layers of SGA units. We can use the for-
mula (6) to present the process:

Xi = SGA[i](X0,Yi). (6)

Where i ∈ [1,N] represents the stacking number of
SGA units. Xi ∈ Rn×512 is the question feature of the out-
put of the i-th layer.

Obviously, in MCAN, deep co-attention based on the
Encoder-Decoder is used to simulate the intra- and inter-
modality interaction of problem-image. In addition, the
model will obtain the high-level semantic information of the
question and image for the subsequent fusion and prediction
classification. The results in the VQA task show that the at-
tention model based on Encoder-Decoder architecture is ef-
fective. However, from the overall framework of Fig. 4 (a),
it is easy to understand the features used for classification
prediction are only the last high-level semantic information.
Objectively, the intermediate process is a black-box model.
Although features can be made more fine-grained by stack-
ing layers, they also bring more noise. It is assumed that
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low-level semantic information can also play a positive role
in classification prediction. Therefore, to maintain the ad-
vantages of Encoder-Decoder architecture, it is urgent to
find a model that can effectively utilize the high- and low-
level semantic information.

3.3 The Core Structure of HLSIN

On the premise of maintaining the advantages of MCAN,
we designed a network model—HLSIN, which integrates
high- and low-level semantic information and is based on
the Encoder-Decoder framework of MCAN. Its main struc-
ture is shown in Fig. 4 (b). To realize the fusion of high- and
low-level semantic information, HLSIN usually adopts two
different methods to fuse information. We adopt adaptive
weight learning as the first strategy to allow different lev-
els of semantic information to learn weights separately. The
gate-sum mechanism is used as the second to suppress in-
valid information in various levels of information and fuse
valid information. The following will exactly introduce the
control methods of these two attention mechanisms.

(1) The adaptive weight control mode can be expressed
by formulas (7) and (8):

δi = Sigmoid(Wi[Ti + Ti] + bi), (7)

T =
N∑

i=1

(δi
⊗

Ti + (1 − δi)
⊗

Ti). (8)

Where
⊗

represents element multiplication. We use
i ∈ [1,N] to express the stacking amount of SA (SGA) units
in the Encoder (Decoder). The question feature (image fea-
ture) of the previous N layer in the Encoder (Decoder) is
represented by Ti. Ti represents the question feature (image
feature) of the N-th layer.δi represents the weight of the cor-
relation coefficient, the weight of the correlation coefficient
is obtained by Sigmoid() function. T represents the output
result of the final question feature (image feature) obtained
by summing the question feature (image feature) of the for-
mer N-1 layer and the question feature (image feature) of the
N-th layer through the accumulation of adaptive weights.

(2) The gate-sum mechanism is used to suppress in-
valid information, which is expressed in detail by formulas
(9), (10), (11), (12), and (13):

Tia =Wa
i (T a

i + T a
i ) + ba

i , (9)

Tic =Wc
i (T c

i + T c
i ) + bc

i , (10)

Tia = Sigmoid(Tia), (11)

Tic = Sigmoid(Tic), (12)

T =
N∑

i=1

(Tia ∗ Tia + Tic ∗ Tic). (13)

Where we use i ∈ [1,N] to represent the stacking num-
ber of SA (SGA) units in the Encoder (Decoder). T a

i is the
question feature of the previous N-1 layer in the Encoder,
T c

i represents the image feature of previous N-1 layer in the

Decoder. T a
i is the question feature of the N-layer in the En-

coder, T c
i is the image feature of the N-layer in the Decoder.

Tia,Ticrepresents the question of the i-th layer or the relevant
features of the image after linear operation; Tia,Tic stands
for the Sigmoid() function. Wa

i ,W
c
i denote the weight coef-

ficients when performing linear operations and ba
i , b

c
i repre-

sent the deviation vector. T represents the final output result
of the gate-sum suppression of non-keywords.

3.4 The Overall Structure of HLSIN

3.4.1 Multimodal Feature Extraction

The High- and Low-Level Semantic Information Network
(HLSIN) mainly extracts multimodal tasks features from two
aspects: images and questions. The structure of the HLSIN
is primarily shown in Fig. 1. We usually use the bottom-up
attention module [3] to pick up image features with input
size X ∈ RK×2048, where K ∈ [10, 100] indicates all amount
of the target detection features. K is generally set at 100 to
achieve better results during the experiment.

The input question words are defined as a maximum
of 14 to improve feature extraction efficiency. With pre-
trained Glove [36] for word embedding, and each word is
initialized to a 300-dimensional feature vector. Finally,
input the initialized word features into a 512-dimensional
single-layer LSTM [37] network to obtain the question fea-
ture Y ∈ R14×dy , where dy represents the feature dimension
of each problem.

3.4.2 High- and Low-Level Semantic Information Learn

HLSIN is based on the Encoder-Decoder framework of
MCAN. To solve the problem, MCAN only focuses on the
high-level semantic information in the feature extraction
process and ignores low-level semantic information on an-
swer prediction. Therefore, HLSIN is based on two different
fusion strategies to achieve the fusion of features. One is to
let different levels of semantic information learn the weights
separately by the adaptive weight learning method; the other
is to design a gate-sum mechanism to suppress the invalid
information in different levels of information and fuse the
valid information instead.

We are taking the encoder of HLSIN as an example to
introduce HLSIN in detail. The encoder usually saves the
output results of the previous N-1 layers of each S A(·) unit
in Y = [Y1,Y2, . . . . . . ,YN−1] ∈ R(n−1)·512 and then converts
Y ∈ R(n−1)·512 to Y ∈ R1×512 through linear operations. Fi-
nally, enter the final question feature YN into each S GA(·)
unit of the decoder to realise the problem feature’s guidance
to the image feature.

The Encoder-Decoder module of HLSIN usually fuses
the image-question features of the previous N-1 layer with
the image-question features of the N-th layer. HLSIN usu-
ally uses two different fusion methods to fuse these features,
and the results obtained by various fusion methods are also
different. The specific experimental results and related pa-
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rameters will be described in detail in the fourth part.

3.4.3 Multimodal Fusion

After extracting N-layer HLSI features, question feature
Y and image feature X contain rich semantic information.
Therefore, a two-layer MLP (FC(4d)-ReLU-Drop(0.1)-
FC(d)) is designed to reduce relevant information in the
multimodal feature fusion mechanism. As the following ex-
ample of question feature Y, the question feature obtained
after the fusion of multimodal features is expressed by for-
mulas (14) and (15):

ε = So f tMax(MLP(Yi)), (14)

Fu =

N∑

j=1

(ε jY
i
j). (15)

Where ε = [ε1, ε2, . . . . . . , εn] ∈ Rn is the weight learned
through the S o f tMax(·) function,and i is the number of lay-
ers stacked by HLSI layers,namely i = 7. By analogy, we
can further use layer normalization to reduce the problem
features obtained by the model, which can be expressed by
formulas (16), (17) and (18):

Z = Linear(WN
x Fu +WN

y Fu), (16)

C = Linear(Z), (17)

A = Sigmoid(C). (18)

Where Wn
x ,W

n
y ∈ R(d×dz) is the Linear projection matrix

of image features and question features, dz is the common
dimension of fusion features. Linear(·) is used to optimize
training, and S igmoid(·) is used for classification. Accord-
ing to [33], we use BCE as the Loss function to train the
variety of answers.

4. Experiments and Results

This section first describes the datasets for evaluation in
(Sect. 4.1) and hyperparameter settings in (Sect. 4.2). Then,
We present ablation results in (Sect. 4.3). Finally, the feasi-
bility analysis of HLSIN is carried out in (Sect. 4.4).

4.1 Datasets

The proposed VQA model was mainly evaluated and tested
on two well-known datasets: VQA v1.0 and VQA v2.0. Both
datasets contain many open-ended questions and more than
50% of other types of questions.

VQA v1.0 The image data in the VQA v1.0 dataset
mainly comes from the MSCOCO [38] dataset. The data
in this dataset is primarily split from the MSCOCO dataset,
which contains 248349 training questions, 121512 verifica-
tion questions, and 244302 test questions. In addition, the
questions in the dataset are divided into three categories: bi-
nary (yes/no), number, and other. For each question, differ-
ent annotators give different forms of answers.

VQA v2.0 The VQA v2.0 dataset is an updated version

of VQA v1.0, which pays more attention to linguistic bias
and requires a more fine-grained recognition capability of
the VQA model. Compared to the VQA v1.0 dataset, the
VQA v2.0 dataset has a much larger data size and contains
over 1.1 million MSCOCO image-based questions and 15
answer pairs. For two images with similar semantics, al-
though each pair of images includes the same questions, the
corresponding answer is different. To perform a better per-
formance evaluation of HLSIN, we carry on experiments on
HLSIN on the VQA v2.0 dataset. In order to reduce the pos-
sibility of overfitting, the dataset usually uses 443757 pairs
(images, questions, answers) for training, 214354 pairs for
verification, and 447793 pairs for testing.

4.2 Parameter Setting Experiments

The hyperparameter settings of the model employed in the
experiment are as follows. The input image features, the
question features, and the fused multimodal features are set
to dx = 2048, dy = 512, dz = 1024, respectively. According
to the previous work, in multi-head attention,the amount of
heads is set at 8. As described in [11], the length of the
questions is 14, and questions insufficient than 14 words are
filled to 14. The number of HLSI layers is N ∈ {6, 7, 8}.
In the experiments, we train all models with the same batch
size for 13 rounds and then select the best training results.

4.3 Ablation Studies

Many ablation experiments were conducted on the VQA v2.0
dataset to study the reasons for the effectiveness of HLSIN.

4.3.1 HLSI Variants

HLSIN employs two strategies to achieve the fusion of high-
and low-level semantic information. Adaptive weight learn-
ing is used as the first strategy to allow different levels of
semantic information to learn weights separately. The gata-
sum mechanism is used as the second to suppress invalid
information in various levels of information and fuse valid
information. From the results in Table 1, it can prove the
information fusion of HLSI by these two methods is effec-
tive. By observation, we can find that the performance of
SA(Y)-GSGA(X, Y) is significantly better than other fusion
methods. Therefore, SA(Y)-GSGA(X, Y) is used as our de-
fault HLSI in the following experiments unless otherwise
specified.What’s more,SA (x)-GSGA (X, Y) in HLSI vari-
ant means that HLSIN adopts gate-sum mechanism in de-
coder to restrain invalid information and fuse valid informa-
tion.

4.3.2 HLSI vs Depth

Since MCAN has achieved better experimental results when
the number of layers is N=6, HLSIN is based on the
Encoder-Decoder framework of MCAN, combines high-
level semantic information with low-level semantic infor-
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Table 1 Model accuracy of HLSIN under different HLSI. The first row
represents three different variants to fuse information in HLSI employing
adaptive weight. For example: WSA(X)-SGA(X,Y) indicates that HLSIN
uses adaptive weight in decoder section; to suppress the invalid informa-
tion using the gate-sum mechanism, we can use the next row to denote
three different variants of HLSI. For example, GSA(x)-SGA(x,y) indicates
that HLSIN uses the gate-sum mechanism in the decoder section; WSA(X)-
GSGA(X, Y), GSGA(X)-WSGA(X, Y) represent that two information fusion
methods are used at the same time in HLSI to conducts information fusion.

Model Test-dev Test-std
Y/N Num Other All All

WSA(X)-SGA(X,Y) 86.86 53.64 60.8 70.72 71.18
WSA(X)-SGA(X,Y) 86.96 53.13 60.96 70.78 71.13
WSA(X)-WSGA(X,Y) 86.52 53.22 60.99 70.66 70.96
GSA(X)-SGA(X,Y) 86.7 52.96 61.15 70.75 71.13
SA(X)-GSGA(X,Y) 87.09 53.17 60.95 70.83 71.16
GSA(X)-GSGA(X,Y) 86.55 52.88 61.04 70.62 71.22
WSA(X)-GSGA(X,Y) 86.73 53.3 60.83 70.64 70.92
GSGA(X)-WSGA(X,Y) 87.0 53.19 60.73 70.7 70.93

Table 2 From the results in Table 1, it can be found the performance of
SA(X)-GSGA(X, Y) is significantly better than the performance of the other
models. Therefore, we do experiments on the number of layers for HLSIN
based on SA(X)-GSGA(X, Y), where the number of layers N ∈ {6, 7, 8}

N Test-dev Test-std
Y/N Num Other All All

6 87.09 53.17 60.95 70.83 71.16
7 87.01 53.31 61.18 70.93 71.33
8 86.98 53.43 60.92 70.8 71.23

Table 3 HLSIN integrates high-level semantic information with low-
level semantic information based on MCAN. By comparing HLSIN with
the most state-of-the-art model at present, we find the effectiveness of high-
and low-level semantic information fusion.

Model Test-dev Test-std
Y/N Num Other All All

BUTD [3] 81.82 44.21 56.05 65.32 65.67
MFH [22] 85.31 49.56 59.89 68.76 NULL
BAN [2] 85.42 50.93 60.26 69.52 NULL
DFAF [17] 86.09 53.32 60.49 70.22 70.34
MCAN [11] 86.82 53.26 60.72 70.63 70.9
MUAN [19] 86.77 54.4 60.89 70.82 71.1
MEDAN [39] 87.1 52.69 60.56 70.6 71.01
DCAN [40] 60.88 88.02 53.4 70.89 71.21
HLSIN-6(Ours) 87.09 53.17 60.95 70.83 71.16
HLSIN-7(Ours) 87.01 53.31 61.18 70.93 71.33

mation. Therefore, the research of the number of HLSI lay-
ers starts from N=6. With the amount of layers N increases,
the gap of HLSI performance has appeared, too. From Ta-
ble 2, we can find when N=7, HLSIN has the best perfor-
mance.

4.3.3 Comparison with State-of-the-Art VQA Model

As shown in Table 3, we compare the best model, HLSIN,
with the current state-of-the-art. MEDAN is introduced to
capture rich and reasonable question features and image fea-
tures. Compared with MEDAN (Adam) [39], the accuracy of
HLSIN on test-std is improved by 0.32%. Next, to achieve
fine-grained interaction between question words and image
regions, MCAN model is proposed. By comparing the ac-

Fig. 5 Feasibility analysis.

curacy of HLSIN and the MCAN, we can easily find the ac-
curacy of HLSIN on test-std has improved by 0.33%, and
the accuracy on test-dev has improved by 0.3%. Therefore,
we conjecture that the attention mechanism that combines
high-level semantic information with low-level semantic in-
formation based on MCAN is instructive for the future de-
velopment of VQA.

4.4 Attention Visualization

As shown in Fig. 5, there are four examples randomly se-
lected from the dataset. The first row shows an example
where HLSIN and MCAN can choose the correct answer
in the meanwhile, while the second row shows an exam-
ple where HLSIN can choose the correct answer, but MCAN
can not select the correct answer. The textual brightness rep-
resents a keyword in the question, and the content selected
from the picture denotes the answer in the question. The
higher the probability value of the selected content in the
picture frame, the more likely the range of interest is the
correct answer. Making full use of these visualizations will
benefit us make further improvements to the model in the
future.

5. Conclusion

This article introduces a new VQA model, High- and Low-
Level Semantic Information Network (HLSIN), which em-
ploys two strategies to achieve the fusion of high-level
semantic information and low-level semantic information.
Adaptive weight learning is used as the first strategy to allow
different levels of semantic information to learn weights sep-
arately. The gate-sum mechanism is used as the second to
suppress invalid information in various levels of information
and fuse valid information. The results of the fourth section
of the ablation experiment prove that these two information
fusion methods are effective, and the HLSIN composed of
the seven-layer SA (Y)-GSGA (X, Y) unit has the best effect.

Although the accuracy of HLSIN model is greatly im-
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proved compared with that of MCAN model, the counting
of HLSIN model still needs to be greatly improved com-
pared with other models. Therefore, in the process of future
research, I will try to combine the model with graph reason-
ing to improve the counting ability of the model.

In recent years, with the continuous development of
VQA technology, a variety of new research directions have
emerged. Such as: it can help visually impaired people
“see” the world better, in particular, for example: when a
blind people in the supermarket or other place, want to know
what object in front of him or her, he or she can take a photo
and enter into a VQA system, this can be a better tool, let
them get information from outside world. VQA can also
be used for image retrieval, selecting from a large number
of images matching a question, or reasoning through the
answer to find a video containing the question, etc. Other
applications include medical question answering, intelligent
driving and virtual reality avatars.However, there are still
some problems in the development of visual VQA, such
as: the images in the dataset are not close to the reality,
the reasoning ability is not strong enough, and the seman-
tic features of the questions can not be well combined with
the image features. Therefore, how to build a VQA system
to understand the relationship between different objects and
the relationship between questions is the challenge of the
future.
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