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Detection Method of Fat Content in Pig B-Ultrasound Based on
Deep Learning
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SUMMARY In the pork fat content detection task, traditional physi-
cal or chemical methods are strongly destructive, have substantial technical
requirements and cannot achieve nondestructive detection without slaugh-
tering. To solve these problems, we propose a novel, convenient and eco-
nomical method for detecting the fat content of pig B-ultrasound images
based on hybrid attention and multiscale fusion learning, which extracts
and fuses shallow detail information and deep semantic information at mul-
tiple scales. First, a deep learning network is constructed to learn the salient
features of fat images through a hybrid attention mechanism. Then, the
information describing pork fat is extracted at multiple scales, and the de-
tailed information expressed in the shallow layer and the semantic informa-
tion expressed in the deep layer are fused later. Finally, a deep convolution
network is used to predict the fat content compared with the real label. The
experimental results show that the determination coefficient is greater than
0.95 on the 130 groups of pork B-ultrasound image data sets, which is 2.90,
6.10 and 5.13 percentage points higher than that of VGGNet, ResNet and
DenseNet, respectively. It indicats that the model could effectively iden-
tify the B-ultrasound image of pigs and predict the fat content with high
accuracy.
key words: B-ultrasound image, convolutional neural network, deep learn-
ing, fat content detection, nondestructive testing

1. Introduction

With the notable improvement of material life, people’s de-
mand for pork quality is growing rapidly. Because the con-
tent of pork fat and its distribution are uniform or not deter-
mine the quality of meat, thus affecting the quality of pork
varieties, pork fat content detection is a major issue of great
significance for scientific research on pig breeding.

In the traditional breeding process, in addition to
experienced animal husbandry staff who make observa-
tions based on appearance, technical personnel are also re-
quired to carry out layer-by-layer detection after slaughter-
ing pigs [1]. This process requires a closed professional
environment. The slaughterhouse and storage need to be
closely linked with a laboratory, and no error is allowed.
Once the sample is contaminated during collection, it will
be invalid. This traditional method of artificial or physical
and chemical detection after slaughter is strongly destruc-
tive, has substantial technical requirements and cannot eval-
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uate the meat traits of pigs in vivo [2].
To solve this problem, this paper proposes a fat con-

tent prediction method based on deep learning for pig B-
ultrasound images. B-ultrasound is an economical and prac-
tical technology. [3] analyzes the comparative effect of B-
ultrasound and MRI, and points out that B-ultrasound is not
only easier to obtain and use, but also has the same effect as
MRI, and has the advantages of reproducibility. Our model
skillfully combines B-ultrasound images with convolutional
neural networks to complete the task of pork fat content de-
tection, adding a novel, convenient and economical nonde-
structive detection method. It makes efficient use of frontier
computer technology, will greatly assist in solving practi-
cal market application problems, simplify the detection pro-
cess, reduce labor costs, save detection time, reduce detec-
tion costs, improve detection accuracy and improve breed-
ing effects. It will have great significance in industrial pro-
duction and human life.

In the second part, we introduce the development of
pork fat detection technology, from a simple linear model
to a complex machine learning model and then to a deep
learning model. The third part proposes the overall frame-
work of our convolutional neural network, HAFFNet. The
fourth part is the experiment carried out on pig B-ultrasound
images, and the last part is the summary.

2. Related Work

2.1 Detection Technology for Fat in Live Pork

Compared with traditional detection technology, live detec-
tion technology is more scientific. At present, a widely used
live detection method is ultrasonic detection [4], [5]. There
is a significant difference in resistance between the fat and
lean meat of pigs. Thus, the reflection wave will be ex-
tremely different. Depending on ultrasonication, we can ob-
tain effective parameters of fat content, backfat thickness,
eye muscle area and other related traits of live pigs. How-
ever, this technology has problems such as obvious noise in
images and distortion in transmission displays, so accurate
fat content cannot be obtained only by ultrasonic technol-
ogy.

To achieve more effective nondestructive testing, many
scholars have conducted relevant research. A prediction
model based on statistical analysis was proposed by [6].
However, this method only selects several parameters, such
as the area of porcine eye muscle, backfat thickness and

Copyright c© 2023 The Institute of Electronics, Information and Communication Engineers



DONG et al.: DETECTION METHOD OF FAT CONTENT IN PIG B-ULTRASOUND BASED ON DEEP LEARNING
727

depth of eye muscle, to construct a linear model with fat
content, which cannot effectively use the complete features
of B-ultrasound images. The determination coefficient (R2)
is still at a low level, cannot achieve high accuracy, and has
great limitations for practical applications. In addition to the
prediction of pork fat content based on certain parameters,
some scholars also analyzed pork fat content based on the
overall traits of pigs. For example, there are some studies
to detect pork fat content based on shape [7], but these re-
searches rely on a variety of measurement parameters, such
as body length, body height, chest depth, abdominal length,
hip width, and waist width. The sampling process is com-
plex, and there are errors in the determination, so it may not
be the most ideal method.

2.2 Application of Machine Learning

A pig fat content detection technology based on a support
vector machine (SVM) was proposed by [8]. SVM is one
of the better supervised learning models and can effectively
deal with high-dimensional data sets. This technique can be
used to classify the fat categories in B-ultrasound images of
pigs, but an important drawback of the model is that it can-
not directly provide probability estimation. Otherwise, the
feature extraction rules of the support vector machine are
set manually, which cannot be applied to the feature extrac-
tion of large data. In practical applications, an excessively
small amount of data is not representative and cannot make
the model learn well. If a large amount of data is only ex-
pected to manually extract feature variables, the workload is
too large and does not have practical significance.

2.3 Application of Deep Learning

To date, image prediction methods in computer vision can
be roughly divided into two types: the method of manu-
ally extracting features based on traditional machine learn-
ing and the method of convolutional neural networks (CNN)
based on deep learning [9], [10]. Traditional methods usu-
ally rely on manual extraction of features such as scale
invariant feature transform (SIFT), histogram of oriented
gradient (HOG), and then a traditional neural network or
support vector machine classifier [11]–[14] to complete the
classification; however, such algorithms, as previously an-
alyzed, have strong dependence on manual extraction fea-
tures, and it is often difficult to handle deeper and more
abundant information from the image. Thus, the main diffi-
culty is often low recognition accuracy.

A convolutional neural network is a kind of feed-
forward neural network with convolution calculations and
deep structures and is one of the representative algorithms
of deep learning [15], [16]. The study of convolutional neu-
ral networks began in the 1980s and 1990s. LeNet was the
earliest convolutional neural networks in practice [17]. After
the turn of the twenty-first century, with the proposal of deep
learning theory and the improvement of numerical comput-
ing equipment, CNNs have been developed rapidly.

In recent years, deep learning methods have gradually
been widely used in the field of computer vision. AlexNet
won the championship in the 2012 ImageNet large-scale
visual recognition challenge (ILSVRC12). The error rate
of Top-5 was only 15.3%, which was significantly im-
proved compared with those previous works from 26.2%
[18]. Since then, various advanced convolutional neu-
ral network structures, such as GoogLeNet, VGGNet and
ResNet [19]–[22], have been proposed, and they have made
great progress in tasks related to the field of computer vi-
sion. Some scholars have carried out research on the detec-
tion of pig body size using deep learning [23]. A method
based on deep learning can automatically learn image fea-
tures in the case of a large amount of data indeed.

In view of the limitations of the support vector ma-
chine method for detecting pig fat content, this paper will
apply deep learning methods to detect pig fat content in
B-ultrasound images. Compared with traditional machine
learning, CNN has a deep hidden layer network structure
and rich feature expression and does not require much
manual information extraction. With the help of forward
and backward propagation, it automatically learns image
features from data sets and obtains more accurate, high-
dimensional and abstract features on the basis of a deep net-
work architecture. These features will be more conducive to
improving the accuracy of regression prediction.

3. The Overall Architecture

The structure of CNN is mainly divided into a convolution
layer, pooling layer and full connection layer. Each layer
plays a different role, where the convolution layer extracts
features from the input image by convolution, the pooling
layer reduces the size of the input feature map, accelerates
the calculation and reduces the probability of overfitting,
and the full connection layer connects all learned features
and maps them into the markup space. Based on the above,
we proposed HAFFNet (hybrid attention feature fusion net-
work), which is a convolutional neural network model.

Our improved model is based on VGG16. However,
in the last two stages, we use two continuous convolutions
to replace the original three convolutions, which can reduce
the number of parameters and accelerate network training on
the basis of maintaining simplicity and efficiency. To further
improve network performance, HAFFNet uses a depthwise
overparameterized convolutional (DO-Conv) [24] layer in-
stead of traditional convolution. To obtain more important
fat feature information from pig B-ultrasound images, the
model adds the CBAM [25] feature extraction module. We
also adopt upsampling on the small feature map and fuse it
with the previous feature map. With this design, the fea-
ture map, to be learned at different stages, is endowed with
both shallow and deep features, which will strengthen the
generalization ability of the model. To overcome overfit-
ting to some extent, we have tried the adaptive activation
function ACON [26], L2 regularization [27] and the dropout
algorithm [28].
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Fig. 1 Overall network structure of HAFFNet.

3.1 Construction of HAFFNet

Since 245 pixels and 309 pixels is the original resolution
of the image, we reduce the width and height to a uniform
value considering the size inconsistency caused by the odd
value during the process between downsampling and up-
sampling. The final dimension of the B-ultrasound image
is 224×224×3. The numbers of residual layers, feature fu-
sion layers, global average pooling layers and full connec-
tion layers used in our model are 5, 5, 1 and 1, respectively.
The CBAM module is added between the convolution layer
and feature fusion layer. Each residual module contains two
DO-Conv operations and will connect the input to the out-
put after convolution. ACON, the activation function, will
be added behind the third residual module. The final feature
fusion is followed by a global average pooling layer. Addi-
tionally, ReLU and dropout are added behind the first fully
connected layer. Finally, the predicted fat content of pig B
ultrasound images is output by a full connection. The over-
all model network structure of HAFFNet is shown in Fig. 1.

3.2 Residual Module with DO-Conv

In the residual module, we not only add the residual struc-
ture to prevent network degradation, but also use DO-Conv
to replace the traditional convolution filter, so that the net-
work will converge faster and can converge to a lower er-
ror. DO-Conv enhances the convolution layer by additional
depthwise convolution. The size of the input feature map is
W×H×C, and the size of the output feature map remains un-
changed, where W represents the width of the feature map, H
represents its height, and C represents the number of chan-
nels. There are two continuous DO-Conv in our residual
module. DO-Conv has two equivalent training methods, and
we use kernel composition with less computation, as shown
in Fig. 2. In the process, o represents the deep convolu-
tion, * represents the traditional convolution, D represents
the depthwise convolution trainable kernel, K represents the
traditional convolution trainable kernel and P represents the
area of convolution applied to the corresponding size of the

Fig. 2 Residual module with DO-Conv.

Fig. 3 Hybrid domain feature extraction mechanism.

feature map. Dmul is often referred to as the depth multi-
plier. In terms of kernel composition, K′ = (DT oK) is ob-
tained by deep convolution, and then the output feature map
O = (K′ ∗ P) is obtained by traditional convolution.

3.3 Hybrid Domain Feature Extraction Module: CBAM

CBAM is a hybrid domain attention mechanism. It mainly
imitates the important characteristics of human selective at-
tention in the visual system, so that the network pays more
attention to the recognition of the target area. In view of the
complexity of fat content in B-ultrasound images of pigs, we
add the CBAM feature extraction module to assign weights
to each channel and each pixel, as shown in Fig. 3. In the
channel dimension, a weight is used to represent the impor-
tance of the channel in the next step, and then in the spatial
dimension, a weight is used to represent the importance of
a pixel in the space. The two steps help the network obtain
more important feature information.

In this paper, the CBAM is set between each residual
layer and feature fusion layer, which can not only stim-
ulate the fat features from the dataset but also amplify
the difference between the fat features and nonfat features,
which is conducive to better prediction of pork fat content.
In CBAM, the dimension of the input feature map, F, is
W×H×C, and the output feature map, F2, is W′×H′×C′.
These dimensions remain unchanged. For F, two 1×1×C
features are obtained by average pooling and maximum
pooling, respectively. Then, they are respectively sent to
a neural network with two layers.

The number of neurons in the first layer is C/r, where r
is the reduction ratio, and the second layer is C. ReLU is the
activation function. The neural network is shared. Then, the
weight coefficient Mc is obtained by adding the two obtained
features to a sigmoid. Finally, the new feature, F1, can be
obtained by multiplying the weight coefficient with the orig-
inal F. For feature map F1 with H×W×C, we first perform
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Fig. 4 Feature fusion mechanism.

average pooling and maximum pooling among the channels
to obtain two feature maps with H×W×1 and connect them
together according to the dimension of the channel. Then,
after 7×7 convolution, the weight coefficient Ms is obtained
from the sigmoid. Finally, the new feature F2 is obtained by
multiplying Ms and F1.

3.4 Multilayer Feature Fusion Module

To strengthen the feature learning, in different stages after
DO-Conv convolution, feature extraction and max-pooling,
the small feature map is upsampled and fused with the fea-
ture map before max-pooling, as shown in Fig. 4, which will
give the feature map to be studied with both shallow and
deep features and strengthen the recognition ability of the
model. If the size of the feature map before maximum pool-
ing is H×W×C, the size after that will be H/2×W/2×C, and
after upsampling, the size will be restored to H×W×C. How-
ever, the feature at that time will be a deep feature. After
fusing with those shallow features before maximum pool-
ing in a dimension, the size of the feature map will become
H×W×2C. That is, the feature map at this time has both
shallow and deep features, and the features learned by the
network will be more abundant.

3.5 Adaptive Activation Function

Activation functions are divided into saturated activation
functions, such as sigmoid and tanh, and unsaturated acti-
vation functions, such as ReLU and its variants. The unsat-
urated activation function, such as ReLU, sets all negative
numbers in the matrix to 0, which can solve the gradient
disappearance problem to a certain extent and accelerate the
convergence; therefore, it is widely used. Although ReLU is
commonly used, ReLU has the problem of training vulnera-
bility. When a large gradient flows through a ReLU neuron
and the parameters are updated, the neuron gradient will al-
ways be zero. The neuron will no longer activate any data.
To avoid such a problem and to improve the nonlinear ex-
pression ability of the network, we try to use the adaptive
activation function ACON to replace the traditional ReLU.
The expression of ACON is shown in (1).

(p1 − p2)x · σ(β(p1 − p2)x) + p2x (1)

p1 and p2 are two learnable parameters used for adap-
tive adjustments that are represented by two 1×1 traditional

Table 1 Parameter configuration.

name type
kernel
size

strides
kernel

number
output

I(data) Input
Conv1 1 DO-Conv 3×3 1 32 224×224×32
Conv1 2 DO-Conv 3×3 1 32 224×224×32
CBAM 224×224×32
Concat1 Concatenate 112×112×64
Conv2 1 DO-Conv 3×3 1 64 112×112×64
Conv2 2 DO-Conv 3×3 1 64 112×112×64
CBAM 112×112×64
Concat2 Concatenate 56×56×128
Conv3 1 DO-Conv 3×3 1 128 56×56×128
Conv3 2 DO-Conv 3×3 1 128 56×56×128
CBAM 56×56×128
Concat3 Concatenate 28×28×256
Conv4 1 DO-Conv 3×3 1 256 28×28×256
Conv4 2 DO-Conv 3×3 1 256 28×28×256
CBAM 28×28×256
Concat4 Concatenate 14×14×512
Conv5 1 DO-Conv 3×3 1 512 14×14×512
Conv5 2 DO-Conv 3×3 1 512 14×14×512
CBAM 14×14×512
Concat5 Concatenate 7×7×1024

GAP
GlobalAverage

Pooling
1024

FC1 Dense 1024
Out Dense 1

convolutions in the network. The value of β will control
whether neurons are activated (β = 0, i.e., not activated). σ
is the sigmoid activation function.

3.6 Dropout Algorithm

Dropout can reduce the amount of calculation of the network
to a certain extent and improve the efficiency of the network
to predict the fat content of pig B-ultrasound images. The
specific content of the algorithm makes the neurons in the
network stop working at a certain probability when train-
ing. However, when the next sample is input, since the neu-
rons stop working at a certain probability, the neurons that
last did not work may start working again in this training
process. Therefore, each input of the sample is equivalent
to randomly selecting a different network from the original
network for training. In other words, dropout can reduce
the probability of overfitting to a certain extent. In this pa-
per, each neuron has a 50% probability of temporarily not
working at each training so that the emergence of one neu-
ron does not depend on another neuron and further improves
the generalization ability of the network.

3.7 Parameter Configuration of HAFFNet

The model parameter configuration is shown in Table 1. The
I(Data) layer is the input layer. It will prepare three-channel
color images with 224 pixels and 224 pixels for the whole
network. Conv1 1 is the first convolution layer, which is
composed of 32 feature maps, and its convolution kernel
size is 3 pixels and 3 pixels. Conv1 2 is the second con-
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nected convolution layer of 3 pixels and 3 pixels, and the
number of convolution kernels in this layer is set to 32.
Since the number of convolution kernels needs to be con-
sistent with the number of channels, the output is 32 fea-
ture maps of 224 pixels and 224 pixels. For the first CBAM
module added, because the output dimension processed by
CBAM is consistent with the input dimension, the output
is also 32 feature maps of 224 pixels and 224 pixels. Con-
cat1 represents the first feature fusion layer, and the output
dimension should satisfy the logical relationship described
in (2). FC1 and Out are full connected layers. Finally,
HAFFNet will output a one-dimensional vector to predict
the fat content of pig B-ultrasound images.{

Wi = Wi−1+2×R−F+S
S

Hi = Hi−1+2×R−F+S
S

(2)

In (2), (Wi−1, Hi−1) means the feature map of the pre-
vious convolution layer as the input to the current layer. R
is the boundary width added to the current feature map. F
is the size of the convolution kernel of the current convolu-
tion layer. S is the step length of the pooling layer. (Wi, Hi)
stands for the feature map of the current layer after pooling.

3.8 Model Optimization

Ideally, we hope that their model can quickly correct errors
and obtain more accurate results, but it is often difficult to
achieve the expected results in practice. The loss function
can estimate the distance between the predicted results and
the correct labels. The smaller the value of the loss function,
the better the effect of the model prediction. The selection of
the loss function needs to be based on the specific network
and the problems to be solved.

The mean squared error (MSE), one of the regression
loss functions, is the average of the squared distance be-
tween the estimated value and the correct value, as shown
in (3). In (3), y is the actual output of the network structure
model, and the probability distribution ŷ is the expected out-
put (i.e., real label). However, MSE will give the unreason-
able average due to outliers and reduce the overall perfor-
mance of the network model.

MS E =
1
n

n∑
i=1

(yi − ŷi)
2 (3)

MAE, as another regression loss function shown in (4),
is used to measure the average value of the distance between
y and ŷ of the sample. Compared with MSE, MAE is more
inclusive for outliers with data damage or wrong sampling.
However, due to the existence of non differentiable cusps,
MAE is not completely conducive to the convergence of
functions and the training of models.

MAE =
1
n

n∑
i=1

|yi − ŷi| (4)

In HAFFNet, we chose Huber loss, like (5). δ is a pa-
rameter, usually 0.1 or 1. Huber combines the advantages

of MSE and MAE, and has strong anti-interference ability
to outliers. At the same time, it can provide convenience for
obtaining derivative everywhere, which is more conducive
to model training.

H(y, ŷ) =

{
1
2 (y − ŷ)2

δ · (|y − ŷ| − 1
2δ)

, for |y − ŷ| ≤ δ
, otherwise.

(5)

4. Experiments

To better predict and analyze the fat in the B-ultrasound im-
ages of pigs, we collected images from the Key Laboratory
of Pig Science, Academy of Animal Husbandry Sciences,
as the experimental data in this paper. Then, several groups
of experiments were conducted. The first group of experi-
ments compares those loss functions to our model. The sec-
ond group of experiments compares the detection accuracy
of multiple network models to verify that the network struc-
ture proposed in this paper has a good effect. In the third
group of experiments, ablation was carried out in our model
to compare and analyze how different structures influence
the whole model and to tell us whether they have a greater
impact on the overall performance.

4.1 Dataset

The original data set used has a total of 130 groups of B-
ultrasound images of porcine eye muscles, which are sam-
pled by animal full digital B-ultrasound instruments. Pigs
are slaughtered 24 hours after live B-ultrasound image ac-
quisition. After slaughter, eye muscles of the 10th-12th tho-
racic vertebrae of each test pig were collected, and the data,
such as pig number, measurement time and place, were la-
beled and sent to the Academy of Animal Science. The
Soxhlet extraction method was used to determine and an-
alyze the fat content of porcine eye muscle to form labels
for fat content prediction.

The analysis of the collected samples shows that the
original data have noise or low contrast due to the small
range of gray levels of the image. To solve these problems,
we first tried method A, contrast-limited adaptive histogram
equalization.

Part a of Fig. 5 is one of the original images of the pig
B-ultrasound image dataset, and Part b is the image after
method A. Figure 6 shows the change in the gray histogram.
It was obvious that the range of gray values became larger
after treatment, increasing from 0 to 100 and 0 to 150, and

Fig. 5 Image comparison after cpplication method A.
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Fig. 6 Histogram comparison after application method A.

Fig. 7 Comparison of image data before and after enhancement.

the middle area was also more dispersed and uniform. This
shows that the contrast of the image is more obvious and the
image is clearer. Figure 5 confirmed our analysis.

Due to the complex structure of convolutional neural
networks, a large amount of training data are needed to sup-
port training to avoid overfitting. However, it is difficult to
obtain large amounts of image data for practical applica-
tions, so data enhancement, as an effective method to obtain
large amounts of data, arises at a historic moment. Cur-
rently, data enhancement is a very common and effective
method to improve robustness and reduce overfitting. In this
paper, the dataset is expanded by translation, rotation, mir-
roring, sharpening, changing pixel values and brightness.
An example is shown in Fig. 7.

Each image enhancement method can double each im-
age of the original data set. If the original image has 130
sets of image data, after image enhancement and then after
six kinds of image enhancement steps including five random
translations, five random rotations, five random mirrors, five
random sharpenings, five random changes in pixel value and
five random changes in brightness, the 130 sets of data will
be expanded to 130+130×5×6=4030 sets of image data. In
addition, we divide the data set into training, verification and
testing according to the ratio of 6:2:2. In other words, there
are 2580 images in training, 806 in verification and 806 in
testing.

4.2 Comparative Experiment of Loss Function

To achieve a fair comparison between algorithms and pre-
vent the network from reaching the error threshold and end-
ing the training in advance, the minimum value of the net-
work loss function should be set as 0, and the updated mini-
batch size can be 32. There are 500 training epochs to better
observe the change in the loss value of different loss func-

Fig. 8 Comparison on three loss functions.

tions when the number of epochs increases. In this paper,
MSE, MAE and Huber are added to HAFFNet for com-
parative experiments, and the results are shown in Fig. 8.
Combined with the changes between loss value (part a) and
accuracy (part b) in Fig. 8, the loss values of MSE, MAE
and Huber decrease with the increase of epoch times. Fig-
ure 8 shows that the loss value of Huber decreases rapidly,
the loss value tends to zero after 125 epochs, and the net-
work converges quickly. However, the loss values for the
other two functions still fluctuated after 200 epochs. Af-
ter the change in accuracy, when the network with Huber is
trained, the prediction accuracy of the training set can reach
98.34%, and the verification set can reach 96.49%. In the
experiment, it can be observed that Huber is more suitable
for HAFFNet.

4.3 Comparative Experiment and Analysis

We chose the current mainstream deep learning networks
VGG16, ResNet, DenseNet and HAFFNet to compare the
prediction accuracy. The structure of VGG16 is famous for
its neat and concise structures, and there are few hyperpa-
rameters. The improvement of performance is due to deep-
ening of the network structure. ResNet maintains perfor-
mance by stacking a large number of residual structures.
DenseNet uses concatenation to learn huge features in ex-
change for performance.

Based on the regression loss function, we add regular-
ization to further reduce the risk of overfitting. Here, we
adopt L2 regularization, and the calculation is shown as (6).

‖ỹ‖2 = (
n∑

i=1

|ỹi|2)
1
2 , ỹ = yi − ŷi (6)

The optimization algorithm used in this paper is Adam
(Adaptive Moment Estimation) instead of random gradient
descent, which is a traditional method. It can iteratively up-
date the weights of neural networks based on training data.
The essence of Adam is to dynamically adjust the learning
rate of each parameter by using the first-order and second-
order matrix estimates of the gradient. The main advantage
is that after bias correction, each iterative learning rate has
a range so that the parameters do not undergo a large shock
but a more stable change.
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Fig. 9 Changes of R2.

Table 2 Validation R2 comparison under different epochs.

epoch VGGNet ResNet DenseNet HAFFNet
300 0.9370 0.9174 0.9184 0.9597
400 0.9357 0.8970 0.9236 0.9710
500 0.9361 0.8983 0.9177 0.9649

mean 0.9362 0.9042 0.9139 0.9652

The determination coefficient (R2) is used for our main
evaluation criterion. R2 is a very common statistical method
in regression analysis and is often used as a standard to mea-
sure the prediction ability of the model. The range of R2

varies from 0 to 1, as shown in (7), indicating the percent-
age of squared correlation between the predicted value and
the actual value of the target. R2 may be negative at the
beginning when training, and the prediction may not be as
good as the average value if directly calculated.

R2 = 1 −
∑

(yi − ŷi)2∑
(yi − ȳ)2

(7)

With the same number of epochs, the learning rate is
1e−4, and the dropout rate is 0.5. NVIDIA 3070 GPU was
used to accelerate training. The specific prediction accuracy
on validation and testing of each network after 300, 400, and
500 epochs is shown in Fig. 9 and Table 2. In contrast, there
are fluctuations in model training, but our model is better in
terms of accuracy and stability. Our model is the optimal
choice at present.

After 4-fold cross validation, the mean value of R2

reached 0.9382 and best value reached 0.9629 on test data
with HAFFNet. Besides, the mean value of MSE reached
0.3937, best value reached 0.2382. The mean value of MAE
reached 0.2489, best value reached 0.2223. It shows that our
model performs well on various evaluation metrics.

Considering the parameters and FLOPs from Table 3,
the computational time cost of HAFFNet is lower than that
of VGG16 and ResNet50. Although the computational time
cost of HAFFNet is not the best scheme to control, it can
improve the prediction accuracy as much as possible, and
the overall effect of HAFFNet is better.

Table 3 The computational time cost under different models.

Model Total params FLOPs
HAFFNet 7.48M 8.48 G
VGG16 38.53M 30.8 G

ResNet50 22.50M 7.7 G
DenseNet121 6.71M 5.7 G

Table 4 Comparison with different detection strategies.

Fat content detection strategy R2

B-ultrasound+Deep Learning (HAFFNet) 0.93(cross validation)
CT+PLSR(2019) [30] 0.83(optimal value) [30]

Hyperspectral Imaging+MLR(2017) [31] 0.87(cross validation) [31]
Hyperspectral Imaging+

MSC+CARS+PLSR(2021) [29]
0.96(optimal value) [29]

Table 5 Parameter control of ablation experiment (A).

condition
√

means selected
A

√
B

√
C

√
D

√
R2 0.8848 +0.33% +3.98% +2.00% +1.65%

timea(s) 6 6 14 9 10
aThe time of each epoch.

Table 6 Parameter control of ablation experiment (B).

condition
√

means selected
A

√ √ √ √
B

√ √ √ √
C

√ √ √ √
D

√
R2 +3.52% +0.21% +4.81% +0.79% +8.01%

time(s) 14 10 17 19 22

Comparing the method of this paper with the method
of pig fat content detection in recent years, as shown in
Table 4, it can be found that the method of this paper is a
quite well supplement to the task, and for the index of cor-
relation coefficient, the method of this paper can achieve a
relatively ideal effect. Although the multivariate scattering
correction (MSC) and competitive adaptive reweighed sam-
pling (CARS) are used in [29] and the determination coeffi-
cient of 0.962 can be obtained by combining better quality
hyperspectral images, the hyperspectral equipment lacking
price advantage is not conducive to promotion at this stage.
In contrast, the economic benefit of research is higher on the
basis of sampling using B-ultrasound equipment.

4.4 Ablation Experiment

To verify the effect of each part on the performance of our
overall model, we designed ablation experiments. As shown
in Table 5 and 6, in the Baseline, we restore DO-Conv to
ordinary convolution, temporarily shield CBAM, and do not
perform feature fusion. The activation function is unified as
ReLu.

To simplify the description, A is used to represent DO-
Conv, B is a hybrid domain feature extraction module, C
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is feature fusion, and D is an adaptive activation function.
Considering the individual effects on the test set, it can be
observed that the effect of B is the most obvious. The com-
bined effect of B with C greatly improves the network per-
formance compared with A+B and A+C. Of course, we ob-
served that the effect of the last column is best.

5. Conclusion

In this paper, we combined the self-defined deep learn-
ing model on the B-ultrasound images to realize a conve-
nient, economical and popularized pork fat content detec-
tion method. Through a comparative test of multiple net-
work structures, such as VGG16, ResNet and DenseNet,
the advantages of HAFFNet in predicting fat content in B-
ultrasound images of pigs were verified. Through ablation
experiments, it was found that different modules have dif-
ferent effects on the entire network. Flexible use of multiple
modules can make the entire model have better convergence
and improve the accuracy of the model. Compared with the
current better fat detection scheme, further research based
on B-ultrasound is the most economically feasible strategy.
In future research, the network level can be improved on the
basis of the network model HAFFNet, the network structure
can be improved, and more abundant and representative fat
features of pig B-ultrasound images can be extracted to fur-
ther improve the prediction accuracy. However, this means
that the network is more complex and has more parameters,
so optimizing the algorithm and improving the processing
speed are problems that should be solved.
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