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A Novel SSD-Based Detection Algorithm Suitable for Small Object

Xi ZHANG†, Yanan ZHANG††, Tao GAO†, Yong FANG†, and Ting CHEN†a), Nonmembers

SUMMARY The original single-shot multibox detector (SSD) algo-
rithm has good detection accuracy and speed for regular object recogni-
tion. However, the SSD is not suitable for detecting small objects for two
reasons: 1) the relationships among different feature layers with various
scales are not considered, 2) the predicted results are solely determined by
several independent feature layers. To enhance its detection capability for
small objects, this study proposes an improved SSD-based algorithm called
proportional channels’ fusion SSD (PCF-SSD). Three enhancements are
provided by this novel PCF-SSD algorithm. First, a fusion feature pyra-
mid model is proposed by concatenating channels of certain key feature
layers in a given proportion for object detection. Second, the default box
sizes are adjusted properly for small object detection. Third, an improved
loss function is suggested to train the above-proposed fusion model, which
can further improve object detection performance. A series of experiments
are conducted on the public database Pascal VOC to validate the PCF-SSD.
On comparing with the original SSD algorithm, our algorithm improves the
mean average precision and detection accuracy for small objects by 3.3%
and 3.9%, respectively, with a detection speed of 40FPS. Furthermore, the
proposed PCF-SSD can achieve a better balance of detection accuracy and
efficiency than the original SSD algorithm, as demonstrated by a series of
experimental results.
key words: object detection, deep learning, neural networks, SSD, feature
pyramid

1. Introduction

Object detection is widely explored due to its numerous ap-
plications in computer vision fields [1]–[5], such as intel-
ligent transport systems, computer-aided diagnosis, image
retrieval, and military reconnaissance.

The traditional object detection process is generally di-
vided into three steps: 1) selection of few candidate re-
gions in the given images, 2) extraction of the corresponding
features from these regions, and 3) classification using the
trained classifiers. Traditional algorithms have two major
issues: 1) when designing a region selection strategy based
on the sliding window for different object images, the united
optimal standard is not available. This results in redundant
window scans and high temporal complexities and 2) fea-
tures extracted using artificially designed algorithms are not
very robust considering the diversity of object profile, vary-
ing background and illumination, and so on. Thus, the tra-
ditional algorithms are incapable of meeting the demands of
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reliable object detection in real time. Deep learning based
on neural networks is a potential candidate because it can
quickly detect objects with high accuracy.

Deep learning is a promising methodology for object
detection. Thus, a series of superior algorithms has been
proposed; current popular algorithms can be classified into
two categories: 1) two-stage detection based on candidate
regions and 2) one-stage detection based on regression.
Two-stage detection algorithms based on candidate regions
include R-CNN [6], Fast R-CNN [7], and Faster R-CNN [8].
These algorithms usually extract the candidate region at the
predicated object position on a certain feature map. In con-
trast, in one-stage detection, the candidate region extraction
stage is eliminated. It inputs the entire image into the net-
work directly and outputs the object’s box boundary and
corresponding classified result by regression analysis. Such
algorithms include single-shot multibox detector (SSD) [9]
and YOLO series [10]–[12] representatively.

Nevertheless, a series of R-CNN algorithms cannot
make any image scaling on the original object. In fact, in
certain deeper layers of the neural network, few pixels are
left for the small object itself. Therefore, considerable edge
information is easily lost on the extracted feature map, sig-
nificantly decreasing the detection accuracy. Meanwhile,
the extracted feature map is divided into n × n blocks by the
YOLO series. When a single block contains a large number
of small objects, it may result in detection failures with a
high probability. Different from the YOLO series, the origi-
nal SSD algorithm groups multiple candidate regions into a
single block, from which the bounding boxes are extracted
using a multiscale feature pyramid model. It can make a
better balance between efficiency and accuracy. However,
only the underneath layer conv4 3 of SSD is used to detect
the small object. Thus, it always has insufficient information
and does not fully consider the relationships among different
feature layers with different scales, leading to poor detection
performance. Therefore, it is necessary to investigate meth-
ods to enhance the original SSD for small object detection.
In this respect, several research and explorations have been
conducted in recent years.

Based on the original SSD, several optimized algo-
rithms have been proposed to overcome the drawbacks of
small object detection. Although the original SSD algorithm
uses a single feature layer of different scales to participate
in object detection, consider the inherent relationships be-
tween feature maps of different scales. Therefore, several
algorithms have been developed since 2017 to improve the
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detection accuracy [13]–[21]. Small objects are difficult to
detect because they occupy tiny pixels in a picture. To solve
this problem, several researchers proposed improved algo-
rithms [22]–[26]. When considering the fusion of different
feature layers, the interdependence among each feature map
channel is frequently overlooked, resulting in difficult detec-
tion of small objects with poor detection performance. To
solve this problem, a nonlocal channel attention block [27]
is introduced into small objects detection network, which
can enhance the contextual semantic information of small
objects in the shallow features. Further, based on the real-
ization principle of one-stage detectors, a small object de-
tection algorithm guided by a dual attention model [28] is
proposed. It introduces two attention models to improve the
detection performance, particularly for small objects. More-
over, in a faster region convolutional neural network (Faster-
RCNN), an attention mechanism [29] was added to prevent
other useless information from adapting to the background
of the large range of remote sensing image vision, resolving
the complex problem of small objects.

In summary, despite the advancements, there are sev-
eral challenges that need to be solved: 1) the dependent
relationships among different feature layers in the feature
pyramid model are neglected during the process of feature
fusion; 2) feature fusion with the introduction of deconvolu-
tion may increase the algorithm complexity; and 3) the ob-
ject detection does not meet the real-time requirement. To
address the aforementioned challenges, we propose an im-
proved SSD-based algorithm called proportional channels’
fusion SSD (PCF-SSD), which includes the following en-
hancements: (1) to better use the relationships among fea-
ture maps with different scales, bilinear interpolation is in-
troduced to create feature fusion of upper and lower layer
maps. This can enrich feature maps’ detailed and semantic
information for accurate prediction; (2) during the process
of feature fusion, the number of feature map channels is ad-
justed by convolution. The weight ratio of the fused upper
and lower layers is set to 2 : 1, which can further enrich
the detailed information of a small object; (3) the number of
prior anchor boxes and the size ratio of the prior anchor box
to the original image are adjusted, making the network mod-
ule more suitable for small objection detection; and (4) an
improved loss function is suggested for training the model
to obtain a better training model. For further improvement,
the detection performance of the model while ensuring the
real-time detection.

2. Related Work

2.1 Original SSD Model

Figure 1 presents the characteristic comparisons between
feature maps with a single layer and pyramid feature map
with multi-scale layers. As shown in Fig. 1 (a), only features
from the deepest layer are utilized for prediction. These
features are the network structures adopted by the YOLO
algorithm as well as can always acquire higher detection

Fig. 1 (a) Single feature map prediction model. (b) Feature pyramid pre-
diction model

Fig. 2 The structure of SSD algorithm

speed, but relatively lower accuracy. Different from fea-
ture maps with a single layer, the pyramid feature map in
Fig. 1 (b) adopted by SSD, which can utilize features from
several multi-scale layers to perform softmax classification
and location regression. This function is aimed to improve
the detection accuracy for small objects.

SSD is based on a feed-forward convolutional network
that produces a fixed-size collection of bounding boxes and
scores for the presence of object class instances in those
boxes. The structure of SSD is shown in Fig. 2. SSD al-
gorithm followed by a non-maximum suppression step to
produce the final detections. It utilizes VGG-16 as the back-
bone network after adjusting its original fully connected
layer FC6 to Conv 6 by the convolution operation with the
kernel size of 3 and filter depth of 1024, as well as FC7 to
Conv 7 by the convolution operation with the kernel size of
1 and filter depth of 1024. Then, SSD adds the auxiliary
structure to obtain multi-scale feature maps, including the
cascade feature convolutional layers of Conv8 2, Conv9 2,
Conv10 2, and Conv11 2, to further strengthen SSD detec-
tion accuracy. The default boxes in SSD is different. At
meanwhile, SSD has different aspect ratios on each fea-
ture map cell, for multiple feature maps including Conv4 3,
Conv7, Conv8 2, Conv9 2, Conv10 2, Conv11 2. The de-
fault boxes tile the feature map in a convolutional manner,
so that, the position of each box relative to its corresponding
cell is fixed. At each feature map cell, both of the offsets
relative to the default box shapes in the cell, and the per-
class scores that indicate the presence of a class instance in
each of those boxes can be predicted. The idea of default
boxes in SSD is very similar to the Anchor of Faster R-
CNN, which can reduce the network’s training complexity
to some extent and make it easier to converge. Therefore,
the idea of Anchor is significant to improve the accuracy
of the One-stage detection algorithm. If no Anchor, SSD
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directly obtains the position coordinates and width and
height of the object through regression. Nevertheless, the
wide and high difference of various objects on the dataset
is large. If regression is directly utilized, this will make the
model difficult to converge and even fall into a poor local
optimal state.

2.2 SSD Algorithm Performance Drawbacks

Although SSD has achieved good results on two crucial in-
dictors, mean average precision (MAP) and frame per sec-
ond (FPS). Its recall rate for small objects is still low and
lags behind algorithms with two-stage detection. In addi-
tion, occasional detection failures cannot be avoided partic-
ularly for tiny objects. If the input image contains some
small objects, after convolution and pooling, these small ob-
jects only occupy very few pixels on feature map Conv4 3
with little information. These make it impossible to locate
them accurately, even know whether they are background
pixels or corresponding detection object pixels. Since small
objects on the large-scale feature map are relatively easy to
detect, SSD utilizes Conv4 3 that is far from the top layer
of the feature pyramid for prediction. However, the detec-
tion ability of Conv4 3 for small objects is still insufficient.
On the other hand, SSD uses six feature maps with different
sizes to predict the objects independently, but information
from different feature maps are not fused effectively. In fact,
the high-resolution feature maps from the lower layer al-
ways contain certain key details about the small object that
can help to accomplish accurate object locating. But it is not
very easy to discriminate the object from the background,
because the underlying feature map experiences fewer con-
volution operations, and fails to extract adequate advanced
features without sufficient semantic information. On the
contrary, the low-resolution feature maps from the upper
layer undergoes many convolution operations and can ex-
tract rich semantic information, but due to over-sampling,
much detail information is lost. After a series of pooling op-
erations from lower layers to upper layers, key feature infor-
mation especially small objects maybe disappeared, it lead-
ing to mismatching between the real object and its default
bounding box. These are suffering the detection accuracy
deterioration. Moreover, during the samples’ training pro-
cess, small object samples cannot be trained adequately for
the reason as the following: SSD utilizes the indicator called
Intersection over Union (IoU) to decide whether the samples
are positive or negative. Since the small object always oc-
cupies too few pixels, if the value of IoU between it and the
default bunding box is less than the threshold value of 0.5,
the small object cannot be easily matched with the correct
default bounding box successfully, and thus be judged as a
negative one.

3. The Proposed PCF-SSD Algorithm

3.1 Fusion Strategy for Feature Maps

The original SSD algorithm only utilizes feature maps with
different scales independently to detect objects, doesn’t fully
consider the relationships among layers from the feature
pyramid. In fact, feature maps with relatively large scales at
lower layers always contain amounts of location and other
detailed information, whereas feature maps with relatively
small scales at upper layers include much advanced seman-
tic information that is extracted by multiple convolution op-
erations layer by layer. To further develop the respective ad-
vantages of information from upper layers as well as lower
layers, a fusion algorithm called PCF-SSD is proposed to ac-
complish feature maps’ effective fusion by different propor-
tional channels. There are two effective fusion methods [20]
for image classification and detection: concatenation and
element-wise summation. By combining several certain
channels, concatenation inevitably increases images’ feature
numbers. Different from concatenation, element-wise sum-
mation can increase feature information by adding the cor-
responding feature maps. Both of the feature fusion meth-
ods are beneficial to the final image classification and detec-
tion. However, element-wise summation requires that the
fusion feature maps should have the same scale and channel
number, which seriously limits its flexible applications. In-
spired by the experiments of FSSD [20], if compared with
the element-wise summation, concatenation is more helpful
to recognize objects and enhance detection accuracy more
effectively. Therefore, our proposed algorithm adopts con-
catenation to accomplish the fusion of feature maps with
different scales.

Since the size of feature maps at the lower layer are
larger than that of maps at the upper layer, it is necessary
to resize them with the same scales by sampling, which is
the premise for feature fusion. The proposed fusion strategy
is given as follows. By max-polling operation, the original
feature map with a size of 76×76 at layer Conv3 3 is down-
sampled to two new maps with sizes of 38× 38 and 19× 19,
and then respectively fused with maps at layer Conv4 3 and
Conv7. By bilinear operation, the original feature map with
a size of 10 × 10 at layer Conv8 2 is up-sampled to a new
map with a size of 19 × 19. Afterward, the newly fused
map at Conv4 3 is used for prediction directly, whereas the
newly fused map at Conv7 still needs to be further fused
with the newly resized map at layer Conv8 2. As shown
in Fig. 3, a series of similarly resized and fused operations
for feature maps are done, including fusion at Conv8 2 and
Conv9 2, as well as fusion at Conv9 2 and Conv10 2. These
newly fused feature maps with multiple scales are finally
combined for object prediction. Furthermore, the channel
relationship among the two feature maps that will be fused is
fully considered during fusion, and convolution by 1× 1 are
utilized to guarantee that any two fused maps have a certain
feature dimension, which also means two fused maps are
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Fig. 3 The network structure of the PCF-SSD

merged according to the ratio of channel number 2 : 1. It is
worth noting that a series of newly generated maps definitely
contain more detailed information as well as sematic feature
information, and as the input features, they are very helpful
to enhance the object recognition capability in the object
detector. The structure of our proposed SSD is illustrated in
Fig. 3.

3.2 Scale Adjustment for Default Box

As shown in Fig. 3, there are 6 newly fused feature maps
utilized for detection in our proposed PCF-SSD algorithm,
including Conv4 3, Conv7, Conv8 2, Conv9 2, Conv10 2
and Conv11 2, respectively with sizes of 38 × 38, 19 × 19,
10 × 10, 5 × 5, 3 × 3, and 1 × 1, then the numbers of their
corresponding default boxes are set as 9, 6, 6, 6, 4, and 4.
The size change of the default box is linear, and its scale size
can be calculated in Eq. (1):

Sk =min
w

Sw+

max
w

Sw−min
w

Sw

m−1
(k−1), ∀k ∈ {1, . . . ,m}

(1)

Where m is the number of feature maps, Sk represents the
scale ratio between the default box and original image.
max

w
Sw and min

w
Sw respectively represent the maximum size

and the minimum size. During the training stage, the real la-
bel may not be matched with its corresponding default box

Table 1 Default frame size of each scale feature layer after improvement

easily. In order to solve that problem caused by the object’s
tiny size, the proposed values of min

w
Sw and max

w
Sw are ad-

justed from the original 0.2 and 0.9 to 0.1 and 0.9. This
way effectively avoids the problem that the real label cannot
find the corresponding prior box to match with it because
the object is too small.

Table 1 shows the default frame size of each scale fea-
ture layer after the improvement what mentioned above.

3.3 Loss Function Improvement for Object Detection

The loss function of PCF-SSD and SSD is basically sim-
ilar. The defect location coordinates are output through
the regression function, and the Softmax function pre-
dicts the classification confidence. The total loss function
L(x, c, l, g) is defined as the weighted summation of localiza-
tion loss Lloc(x, l, g) and classification loss Lcla(x, c), shown
as Eq. (2):

L(x, c, l, g) =
1
N

[Lcla(x, c) + αLloc(x, l, g)] (2)

Where x indicates whether the prediction box is matched
with the default box successfully, c is the confidence level,
l is the location information of prediction box, g is the lo-
cation information of actual box, N is the number of de-
fault boxes matched with actual boxes. Lcla(x, c) utilizes
SoftmaxLoss1 [9], and Lloc(x, l, g) utilizes SoftmaxLoss1 [9]
α is the weighed coefficient for adjusting proportion rela-
tionship between classification loss and location loss, here
set to 1. βL1

(
lmi − ĝm

j

)
represents the smooth L1 norm, l rep-

resents the prediction box, g represents the ground truth box,
and d represents the prior box.
βL1(lmi − ĝm

j ) is given in Eq. (3):

βL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

(3)

Localization Loss Lloc(x, l, g) can be given in Eq. (4):

Lloc(x, l, g) =
N∑

i∈Npos,m∈{cx,cy,w,h}

∑
xk

i j βL1

(
lmi − ĝm

j

)
(4)

Where xk
i j ∈ {0, 1}, if the i-th default box can be matched

with the j-th actual box successfully for the k-th category,
xk

i j = 1, else xk
i j = 0. Npos is the set of positive samples.

cx, cy respectively represent the center coordinates of the
bounding box, whereas w and h are respectively the width
and height of the bounding box. lmi is the predictive value of
default box. ĝm

j is the location parameter of the actual box,
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defined as Eq. (5):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ĝcx
j =

gcx
j − dcx

i

dw
i

ĝ
cy

j =
g

cy

j − d
cy

i

dh
i

ĝw
j = log

gw
j

dw
i

ĝh
j = log

gh
j

dh
i

(5)

Classification Loss Lcla(x, c) can be given in Eq. (6):

Lcla(x, c) = −
N∑

i∈POS

xp
i, j log

(
ĉp

i

)
−

N∑
j∈NEG

log
(
ĉ0

j

)
(6)

Where i ∈ POS and j ∈ NEG are the prediction box of the
i-th positive sample and the prediction box of j-th negative
sample, respectively. ĉp

i is defined in the following Eq. (7):

ĉp
i =

exp
(
cp

i

)
∑

q exp
(
cq

i

) (7)

If there is relatively higher proportion between the positive
samples and negative samples, the model becomes conver-
gence. What’s more, adding network layer functions may
bring overfitting problems. To avoid those mentioned above,
inspired by a newly improved loss function proposed by
Zhang Siyu in 2019 [32]. In this paper the regularization
term L2 is introduced into our Loss Function, and then the
modified L′(x, c, l, g) is presented in Eq. (8):

L′(x, c, l, g) = Lcla(x, c) + Lloc(x, c, g) + ϕL2 (8)

Where ϕ is the L2 normalizing factor, we set ϕ = 0.1 to
guarantee the penalty value close to the original loss.

3.4 Algorithm Description

The flowchart of our proposed algorithm is illustrated in
Fig. 4. Firstly, the original SSD framework is improved: six
feature maps with different scales are selected to resize by

Fig. 4 PCF-SSD algorithm flowchart

up-sampling or down-sampling and are further fused to gen-
erate new feature maps by channel combinations. Next, the
scales of default boxes for different fused feature maps and
Loss functions are adjusted, which can help to train our im-
proved SSD algorithm quickly reaching the maximum num-
ber of iterations, and then preserving the training parame-
ters; finally, our well-trained PCF-SSD is utilized to extract
features of the input image, predict the location and cate-
gory of each object, and output the recognition objects with
their corresponding category labels.

4. Experiments

In order to verify the strength of our proposed PCF-SSD
algorithm on small object detection, experiments are con-
ducted on the PASCAL VOC dataset. A series of data aug-
mentation strategies are adopted including horizontal flip,
random crop, color distortion and random patch sampling.

4.1 Evaluation Indicators

Accuracy and detection efficiency are utilized to evaluate the
performance of our proposed PCF-SSD algorithm. There
are two key indicators for accuracy measurement, one is av-
erage precision (AP) and the other is MAP (mean Average
Precision). AP is a comprehensive evaluation indicator for
a certain category that can be calculated approximately ac-
cording to the area enclosed by the precision and recall (PR)
curve and the axis. PR curve is the precision curve about
recall [33]. The bigger the area is, the higher the AP value
is. MAP is the mean value of APs from all the different
categories, and it can be used to evaluate the whole detec-
tion performance of the given model. The above-mentioned
indicators can be calculated in the following Eqs. (9-12):

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

AP =
∫ 1

0
P(R)dR (11)

MAP =
N∑

i=1

APi

N
(12)

Both the precision (P) rate and recall (R) rate are two key
classification evaluation indicators, calculated by several pa-
rameters listed in Table 2. True positives (TP), true neg-
atives (TN), false positives (FP), and false negatives (FN),
are the four different possible outcomes of a single predic-
tion for a two-class case with classes “1” (“yes”) and “0”

Table 2 Classification evaluation
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(“no”). An FP is when the outcome is incorrectly classified
as “yes” (or “positive”), when it is in fact “no” (or “nega-
tive”). An FN is when the outcome is incorrectly classified
as negative when it is in fact positive. TPs and TNs are ob-
viously correct classifications.

Frames per second (FPS) is a key indicator of detection
efficiency, which is defined as the number of pictures that
can be recognized in one second. The more FPSs are, the
smoother the detection speed will be. When the frame rate
is generally above 24, it can be considered to be basically
smooth.

4.2 PCF-SSD Model Training

4.2.1 Experimental Environment

The experimental environment used in this paper is
Windows 10 operating system, Lenovo 30BGA0N400. The
CPU model is Intel Xeon E3-1225, the GPU model is
NVIDIA Quadro P40000, whose memory size is 8G, and
the RAM is 16GB. The proposed PCF-SSD model is trained
in the framework of TensorFlow [35].

4.2.2 Dataset of PASCAL VOC

Our proposed PCF-SSD algorithm is compared with other
object detection algorithms based on the public dataset of
Pascal VOC. As one of the very commonly used public
datasets, Pascal VOC [36] contains 20 object categories with
abundant samples, especially with large number of small
samples, and it has been an authoritative dataset of a com-
prehensive evaluation for small objects. Most object de-
tection algorithms are tested and compared on Pascal VOC
to verifying their detection performances for small objects.
Since adopting random initial learning features may in-
crease the training difficulty of the algorithm model, we uti-
lize the pre-trained VGG16 model with default settings to
overcome that problem. Moreover, we use stochastic gradi-
ent descent (SGD) [34] to further optimize the loss function
and then seek the optimum solution. After conducting a se-
ries of parameter adjusting experiments, the optimum net-
work super parameters are concluded, which are more suit-
able for our proposed algorithm model. The corresponding
super parameters are listed in Table 3.

After the model is constructed and the parameters are
determined, the PCF-SSD network model is trained. The
process of network training is recorded in the following fig-
ure. Figure 5 records the whole process of network model
training, as can be seen from the figure, the loss reduction
of the verification set is very close to that of the training
set. During the first 5000 steps of training, the loss value of
the model decreased rapidly. From 5000 to 40000 steps, the
model tends to be stable gradually; After 40000 steps, the
model began to stabilize.

Table 3 The corresponding superparameters utilized in PCF-SSD model
traing

Fig. 5 Model training loss value

4.3 Experimental Results and Analysis

To verify the performance of PCF-SSD, we compare it
with other existing excellent object detection algorithms by
conducting a series of experiments. Following the regular
practice of most researchers, all the tests are based on the
datasets of Pascal VOC, where PASCAL VOC2007 trainval
and PASCAL VOC2012 trainval are utilized as the training
set, while the PASCAL VOC2007 test is utilized as the test-
ing set. There are 20 object categories in PASCAL VOC
dataset, where the categories of “Boat”, “Bottle”, “Plant”,
“Chair”, “Table”, “Bird”, “Sheep”, “Tv” have few object
samples, and the size of the object is small, resulting in
relatively poor detection. Therefore, our proposed PCF-
SSD algorithm is evaluated by calculating the MAP value
of those samples from the above-mentioned 20 object cat-
egories. During the following testing process, the value of
intersection over union (IOU) is set as 0.5.

4.3.1 Visual Comparison and Analysis

Figure 6 shows a series of visual detection comparisons be-
tween the original SSD algorithm and our proposed PCF-
SSD algorithm. In Fig. 6, there are 6 groups of detection
results for different small objects, where the left image of
each group is the detection result of the original SSD algo-
rithm, and the right of each group is the result of our pro-
posed PCF-SSD algorithm. It can be seen that PCF-SSD
can detect more small objects if compared with the origi-
nal SSD algorithm under the same conditions. Furthermore,
PCF-SSD can identify the object category more accurately.

Table 4 shows the comparisons of the identified object
numbers between SSD and PCF-SSD. It can be seen that
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Fig. 6 Visual detection comparisons between SSD and PCF-SSD

Table 4 Comparisons of the detected object numbers between SSD and PCF-SSD
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Table 5 Comparison results of different algorithms on VOC2007 dataset

Table 6 MAP (%) comparisons on VOC2007 dataset

Table 7 Comparison of the MAP of small object detection in VOC2007 dataset (MAP%)

our proposed PCF-SSD can detect more objects than orig-
inal SSD. Moreover, small objects can be recognized more
easily by PCF-SSD if compared with SSD. Therefore, PCF-
SSD has better detection performance, especially for small
objects.

4.3.2 Numerical Comparison and Analysis

In order to further verify PCF-SSD has better detection per-
formance on the training dataset with small samples, we
trained our algorithm model as well as other algorithm mod-
els based on VOC2007 and VOC2012 datasets and con-
duct a series of testing experiments based on the VOC2007

dataset. The comparison results between PCF-SSD and
some other representative algorithms are listed in Table 5,
and our proposed algorithm has verified its own superior-
ity. It can be seen that the MAP of PCF-SSD is 8.30%,
5.1%, 1.9% and 2.7% higher than that of Fast R-CNN,
Faster R-CNN (VGG), Faster R-CNN (Residual-101) and
Fast R-CNN-based ION respectively. Meanwhile, the de-
tection speed of PCF-SSD also presents a superiority be-
cause of its relatively few time cost. Although PCF-SSD
detection speed is slightly lower than that of the regression-
based YOLOv2, its MAP is improved by 4.6%. MAP of the
original SSD and PCF-SSD achieves 74.8% and 78.3% re-
spectively. Obviously, PCF-SSD MAP is greatly improved
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by 3.5% at the cost of only 6 fps what losing on the detec-
tion speed, which can definitely meet the real-time detection
requirement completely. PCF-SSD also has good perfor-
mance if compared with some other SSD-based algorithms
including DSSD, FPEF-SSD, C-SSD, DFSSD. The MAP of
PCF-SSD is slightly lower than that of DSSD, but it really
has a relatively much faster detection speed. The detection
accuracy comparisons of different algorithms are also given
in Table 6.

As for SSD algorithm there are 8 categories of objects
whose recognition accuracy is lower than 75% in the above
experiments and are viewed as small objects that are difficult
to detect correctly. Table 7 lists comparisons of the detec-
tion accuracy between several algorithms with our proposed
PCF-SSD, and the corresponding MAPs show that our pro-
posed PCF-SSD can greatly improve small objects’ recog-
nition capability. MAP of PCF-SSD is 4.4% higher than
that of the original SSD. Compared with other region-based
object detection algorithms, PCF-SSD has great advantages
in terms of both detection accuracy and speed. If com-
pared with the regression-based one-stage algorithms such
as YOLOv2, PCF-SSD has much higher detection accuracy
at the cost of losing some detection speed. If compared with
other SSD-based small objects detection algorithms, PCF-
SSD has verified its superior for almost all the 8 categories
of small objects in terms of MAP.

5. Conclusions

In this study, we propose an improved algorithm PCF-SSD
for improving the detection performance of the original
SSD-based algorithms. The upper layers of the feature pyra-
mid typically contain abstract and rich semantic informa-
tion, whereas the lower layers typically contain high reso-
lution and information that is more detailed. The proposed
PCF-SSD algorithm uses a novel feature fusion method to
fuse specific upper layers with specific lower layers in ap-
propriate proportions, resulting in fused feature maps with
rich semantic and detailed information. Furthermore, the
prior box size is adjusted to improve the detection capabil-
ity of PCF-SSD for small objects. Finally, an enhanced loss
function is suggested to train the network model for accel-
erating its rapid convergence. A series of experiments are
performed to validate the proposed algorithm. A significant
improvement with a relatively high value of MAP for ob-
ject recognition is obtained. The detection speed of PCF-
SSD meets real-time requirements. Although PCF-SSD has
proven to be superior, there is still room for advancement.
In following future works, we will perform super-resolution
reconstruction of the upper feature layers and optimize a se-
ries of network parameters for obtaining better recognition
accuracy and fast recognition speed.
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