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An Improved Real-Time Object Tracking Algorithm Based on Deep
Learning Features
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and Hai WANG†††a), Nonmembers

SUMMARY Visual object tracking is always a challenging task in com-
puter vision. During the tracking, the shape and appearance of the target
may change greatly, and because of the lack of sufficient training samples,
most of the online learning tracking algorithms will have performance bot-
tlenecks. In this paper, an improved real-time algorithm based on deep
learning features is proposed, which combines multi-feature fusion, multi-
scale estimation, adaptive updating of target model and re-detection after
target loss. The effectiveness and advantages of the proposed algorithm are
proved by a large number of comparative experiments with other excellent
algorithms on large benchmark datasets.
key words: object tracking, feature fusion, deep learning, model update,
re-detection

1. Introduction

Object tracking has very important applications and broad
development prospects in the field of computer vision, such
as: automatic driving, military, video surveillance and so
on [1]. In recent years, with the advancement of computer
vision, many excellent target tracking algorithms have been
proposed, and many of them have been successfully applied
in our real life. However, due to the complexity of the tar-
get environment, the efficiency and accuracy of the target
tracking algorithm has been affected.

In this paper, we mainly study the problems caused
by background interference, occlusion and out of view in
the task of target tracking in complex scenes, and pro-
pose an adaptive model update and lost re-detection cor-
relation tracking (MURCT) algorithm. In the feature ex-
traction [2] stage, the HOG and CN manual features and the
depth features extracted by the convolutional neural network
are adaptively fused to achieve the effect of complementary
learning. Meanwhile, we use the EdgeBox algorithm which
is used to extract candidate target boxes in target detection,
combined with the scale pyramid, and selects the optimal
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solution as the result of scale estimation to improve the fit-
ting ability of the target. The adaptive model update module
detects whether the target is occluded or lost according to
a discrimination mechanism, and stops updating the model
when the target is occluded, so as to prevent model pol-
lution. The lost re-detection module is used for activating
the re-detection module to retrieve the target position when
the target is judged to be lost. And, the proposed algorithm
was tested and compared on the OTB dataset [3], [4] and the
VOT2016 dataset [5], which proved the effectiveness of the
algorithm.

The remaining sections of the paper are organized as
follows. Some previous attempts to solve the object track-
ing problem are presented in Sect. 2. Section 3 describes
the process of our proposed MURCT tracking method. Sec-
tion 4 shows the experimental evaluation results on the test
dataset, and finally conclusions are presented in Sect. 5.

2. Related Work

The concept of object tracking was first proposed by Wax
et al. [6] in 1955. In the following decades, many excellent
object tracking algorithms were proposed by researchers
from various countries. In recent years, tracking algorithms
based on correlation filters and deep learning [7], [8] have
gradually become the most prominent research directions in
this field.

Bertinetto et al. [9] proposed a Fully-Convolutional
Siamese Networks (SiamFC) for object tracking, in which
two fully convolutional networks with the same structure
are used to extract the features of the target region. Li
et al. [10] introduced the Region Proposal Network (RPN)
in object detection into SiamFC, and divided object track-
ing into two subtasks: regression and classification. In 2010,
Bolme et al. [11] introduced correlation filters algorithms to
the field of object tracking for the first time, and proposed
the Minimum Output Sum of Squared Error (MOSSE) algo-
rithm. In 2014, Henriques et al. [12] proposed a high-speed
tracking algorithm that uses Kernelized Correlation Filters
(KCF) to train discriminant classifiers. Ma et al. [13] pro-
posed a Long-term Correlation Tracking (LCT) algorithm
that uses two filters to learn the long-term and short-term ap-
pearance of the tracked target. Danelljan et al. [14] proposed
a Continuous Convolution Operators (CCOT) tracking algo-
rithm. In the second year, Danelljan et al. [15] proposed an
Efficient Convolution Operators (ECO) for tracking, which
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optimized the CCOT algorithm in terms of speed.

3. Proposed Model

In this section, the detailed process of the proposed tracking
algorithm will be introduced, mainly from the four parts of
feature extraction and fusion, multi-scale estimation, adap-
tive model update [16], [17], and loss re-detection.

Figure 1 is the overall flow chart of the algorithm pro-
posed in this paper. Firstly, the algorithm determines the
search area of the current frame according to the tracking
results in the previous frame, and performs feature extrac-
tion, including HOG features [18], CN features [19], [20],
and CNN features. After that, the three features are adap-
tively fused based on the APCE [21] value and the response
map after fusion is calculated. Secondly, by evaluating the
confidence of the response map after fusion, it is judged
whether the target in the current frame is lost. If the tar-
get is lost, the re-detection module will be activated, that
is, the EdgeBox [22] is used to extract candidate samples,
screen and score, and select the final re-detection results. If
the target is not lost, the scale estimation is performed on
the basis of the calculated target position. The feature ex-
traction is performed through two methods of scale pyramid
and EdgeBox respectively, and the score of each candidate
result is calculated. Then the optimal solution is selected
as the tracking result of the current frame. Finally, after the
tracking result of the current frame is calculated, whether the
target is occluded or not is judged according to the previous
fusion response map confidence, if so, the updating of the
tracking model is stopped, otherwise, the model is updated
and the next frame is calculated.

Fig. 1 The overall flow chart of the algorithm

3.1 Feature Extraction and Fusion

The algorithm in this paper mainly extracts HOG features,
CN features and CNN features [23], then adaptively fuses
them. The adaptive fusion of multiple features is mainly di-
vided into three steps. Firstly, the two manual features of
HOG feature and CN feature are fused. Secondly, the re-
sponse maps calculated by multiple convolution layers in
the CNN feature are fused. Finally, the response maps cal-
culated by the two methods are adaptively fused to obtain
the final prediction result. The most important point is that
after obtaining the response map of the manual feature and
the convolution feature, they need to be fused. If the two
response maps are simply added together, the ideal com-
plementary learning effect cannot be achieved. Therefore,
an adaptive fusion method is proposed in this paper, which
can automatically determine the weight ratio between the
two according to the confidence of different feature response
maps. the APCE is used to measure the confidence of the re-
sponse map and the calculation formula of APCE is:

APCE =
|Fmax − Fmin|2

mean

⎛⎜⎜⎜⎜⎜⎝
∑

w,h

(Fw,h − Fmin)2

⎞⎟⎟⎟⎟⎟⎠
(1)

where Fmax, Fmin and Fw,h denote the maximum value, min-
imum value, and the value at the (w, h) in the response map.
According to the APCE of the response map, the fusion
weight ω of the two response maps can be calculated:
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Fig. 2 Tracking results

Fig. 3 Scale estimation results before and after improvement

α =
APCEhc

APCEhc + APCEcnn
(2)

ω =
ρ

1 + e1−α (3)

where ρ is a hyperparameter, through which the approximate
floating range of the fusion weight ω of the manual feature
response map can be set. The final fusion response map is:

resp = (1−ω)× respcnn

max(respcnn)
+ω× resphc

max(resphc)
(4)

Figure 2 shows the tracking results of 100th, 102nd and 103rd

frames in the video sequence. It can be seen from the figure
that at the 100th frame, the position of the target cannot be
accurately tracked, and there is a short target loss.

3.2 Multi-Scale Estimation

In this paper, the scale pyramid is combined with the
EdgeBox candidate bounding box proposal, and the scale
estimation is performed after the target position in the cur-
rent frame is determined. This method solves the problem
that the aspect ratio of the target box remains unchanged
when the scale pyramid is used alone for scale estimation,
and has a better scale estimation effect.

Figure 3 (a) and Fig. 3 (b) are the tracking results of
the video sequence MotorRolling using the scale pyramid
and the improved scale estimation method, respectively. It
shows that the proposed improved scale estimation method
is effective.

3.3 Adaptive Model Update

By analyzing the response map in the tracking process, it
can be concluded that the response map can reflect the con-
fidence of the tracking result to a certain extent. In order
to judge the status of the target more accurately, this paper

Fig. 4 Comparison of tracking results with and without adaptive model
update

uses the APCE value of the response map and its peak value
as two indicators to measure the confidence of the current
tracking result.

In each frame, the APCE and Fmax of the displacement
response map are calculated. If both of these values exceed
the historical average value under a certain proportion, it is
considered that the target in the current frame is in a rela-
tively good state, and the tracking result of the current frame
should be learned to adapt to the gradual change of the tar-
get. At this time, the displacement and scale filter models
are updated in the following manner:

ŷt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − η)ŷt−1 + ηŷt, APCEt ≥ β1 × APCEavg

& Ft
max ≥ β2 × Favg

max

ŷt−1, else
(5)

k̂xx
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − η)k̂xx

t−1 + ηk̂
xx
t , APCEt ≥ β1 × APCEavg

& Ft
max ≥ β2 × Favg

max

k̂xx
t−1, else

(6)

where η is the learning rate of the model, β1 and β2 are
the proportional thresholds for determining APCE and Fmax

whether to be updated respectively.
Figure 4 (a) and Fig. 4 (b) show the tracking results

in the video sequence Lemming before and after using the
adaptive model update strategy. The pictures show that from
the 320th frame to 350th frame, the target is gradually com-
pletely occluded by other surrounding objects. From the
350th frame to 385th frame, the target reappears in the field
of view.

3.4 Re-Detection after Loss

In actual applications of object tracking, target loss due to
various factors cannot be completely avoided. When the tar-
get is lost, it is difficult for the general tracking algorithm to
find the target again, mainly because there is no better re-
detection mechanism. We propose a re-detection scheme.
By training a logistic regression model and a long-term filter
model, when the target is judged to be lost, EdgeBox is used
to extract candidate target samples in the surrounding area.
The trained logistic regression model and long-term filter
are used to score each sample, and the final re-detection
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Fig. 5 Tracking result of both trackers with or without loss re-detection

result is determined by comprehensive evaluation of the
sample score and its position.

In the tracking process, a long-term filter is trained to
preserve more stable and lasting target features. The long-
term filter is trained by extracting the HOG features of the
target area in the first frame, and in order to learn more ac-
curate target features, it is updated only when the peak of
the response map is higher than a certain threshold. Af-
ter judging that the target is lost, the re-detection module
is activated. The module firstly calculates the logistic re-
gression score of the candidate samples, and then obtains a
part of the candidate samples with high scores to calculate
their scores through the long-term filter, and finally com-
pares with the previous response peak to determine whether
the target reappears.

Figure 5 (a) and Fig. 5 (b) show the tracking results in
the video sequence Human5 before and after using the tar-
get loss re-detection mechanism. It can be seen that the tar-
get box deviates slightly from the target position at the 175th

frame in Fig. 5 (a), and due to the accumulation of errors, the
target is completely lost at the 177th frame. After adding the
loss re-detection mechanism, in the 175th and 176th frames
of the video sequence, it is judged that the target is lost ac-
cording to the response map. Then the re-detection module
is activated, and the target is successfully relocated.

4. Experiment

In order to verify the effectiveness of the MURCT al-
gorithm proposed in this paper, firstly, it was com-
pared with 9 excellent tracking algorithms (MUSTER [24],
HCF [25], HDT [26], SiamFC [9], CCOT [14], ACFN [27],
CFNet [28], ECO-HC [15], and LCT [29]) on the OTB
dataset. Secondly, on the VOT2016 dataset, MURCT

Fig. 6 OPE results of 10 algorithms in OTB2013

Fig. 7 OPE results of 10 algorithms in OTB2015

was compared with 16 tracking algorithms (KCF [30],
ASMS [31], DSST [32], HCF, deepMKCF [33], DAT [34],
SODLT [35], SRDCF [36], CDTT [37], TricTRACK [38],
MDNet [39], SiamFC, CCOT, SWCF [40], DPT [41], and
SRBT [42]).

4.1 Results on the OTB Dataset

Figure 6 and Fig. 7 show the comparison results of MURCT
and 9 algorithms in OTB2013 and OTB2015, respectively. It
can be seen that MURCT ranked first in OTB2013, and com-
pared with the second-ranked algorithm CCOT, the distance
precision and overlap success rate have increased by 3.1%
and 2.5%, respectively. In OTB2015, MURCT ranked sec-
ond, and compared with the first-ranked algorithm CCOT,
the distance precision and overlap success rate were only
reduced by 1.2% and 1.9%, respectively.

Table 1 shows the distance precision, overlap success
rate and center location error of 10 algorithms at specific
thresholds in OTB2013 (I) and OTB2015 (II). It can be seen
that in OTB2013, MURCT improved the center location er-
ror by 7 pixels compared with the second-ranked algorithm
HCF. In OTB2015, MURCT ranked second in the center lo-
cation error, and was only 0.8 pixels behind the first-ranked
algorithm CCOT.

Figure 8 shows the tracking results of 10 tracking al-
gorithms in video sequences Box. The tracking results of
each algorithm are marked with different colored bound-
ing boxes. In the video sequence Box, SiamFC, LCT and
HDT lost the target at the 40th frame due to the similar-
ity of the surrounding environment. From the 465th frame
to the 500th frame, all the other algorithms except CCOT,
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Table 1 Results of 10 algorithms in OTB2013 (I) and OTB2015 (II)

Fig. 8 Tracking results of 10 algorithms in video sequence

Table 2 Results of 17 algorithms in VOT2016

MUSTER and this method could not continue to track the
target, because the target reappeared after being completely
occluded. MUSTER has the same function of target loss
re-detection as this method.

4.2 Results on the VOT2016 Dataset

Table 2 shows the evaluation results of MURCT and 16
comparison algorithms in VOT2016. The first-ranked al-
gorithm in each item is marked in bold, the second-ranked
algorithm is underlined, and the third-ranked algorithm is
marked in italics. It can be seen from the table that MURCT
ranks first among 17 algorithms in terms of accuracy, fourth
in robustness, and third in EAO. Figure 9 and Fig. 10 are the
performance rankings of tracking algorithms on the VOT
dataset and in 6 different situations, respectively. The hori-
zontal and vertical coordinates represent the robustness and
accuracy of the algorithm respectively. The closer to the
upper right corner of the figure, the better the performance
of the tracking algorithm in terms of accuracy and robust-
ness. It can be seen that MURCT is in a relatively prominent

Fig. 9 VOT comparison results

position in terms of accuracy and robustness, especially in
terms of camera motion and motion change, it has greater
advantages than most other algorithms.

5. Conclusion

Based on the correlation filter tracking algorithm, this paper
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Fig. 10 VOT comparison results under 6 different situations

proposes an improvement plan for several common prob-
lems in target tracking, such as model update and loss re-
detection. We judge the current state of the target by evalu-
ating the confidence of the tracking response map, and de-
cides whether to update the model according to whether the
target is occluded, which solves the problem of model pol-
lution. Then, for the gradual growth of video sequences, it
is inevitable that the target will be lost due to wrong esti-
mation during tracking. We judge whether the target is lost
according to the confidence of the tracking response map,
and then decides whether to activate the re-detection mod-
ule. Finally, this algorithm is compared with a variety of
excellent algorithms on OTB and VOT datasets, which
proves the effectiveness and advantages of this algorithm.
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