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SUMMARY Tool condition monitoring is one of the core tasks of intel-
ligent manufacturing in digital workshop. This paper presents an intelligent
recognize method of tool condition based on deep learning. First, the in-
dustrial microphone is used to collect the acoustic signal during machining;
then, a central fractal decomposition algorithm is proposed to extract sen-
sitive information; finally, the multi-scale convolutional recurrent neural
network is used for deep feature extraction and pattern recognition. The
multi-process milling experiments proved that the proposed method is su-
perior to the existing methods, and the recognition accuracy reached 88%.
key words: digital manufacturing, tool condition monitoring, acoustic,
deep learning, convolutional recurrent neural network

1. Introduction

As soon as the machining process starts, the tool removes
material by applying pressure and shearing forces to the
workpiece, and the tool itself gradually wears and de-
grades [1]. Tool wear is designed to be a steady, cumu-
lative process [2]. Nevertheless, at the industrial site, due
to the changes of workpiece materials, cooling and lubrica-
tion, process parameters and other working conditions, the
uncertainty of tool wear is aggravated, and the expected life
is often not achieved [3]. For complex, high-value parts, a
degraded tool that is not replaced in time can damage the
workpiece and even the machine tool [4]. As a result, ma-
chine tool technicians have to stop frequently to check the
tools and adopt a conservative strategy to retire the tools
early [5]. It will lead to increased tool costs and down-
time. Statistics show that machine downtime caused by tool
abnormalities accounts for 10% to 40% of the total down-
time [6]. Research by Kennametal shows that a sensitive
and reliable tool condition monitoring system can save 30%
of the machining cost of CNC machine tools [7], [8]. There-
fore, tool condition monitoring (TCM) is widely recognized
as an important technology to improve efficiency and reduce
consumption in the metal cutting industry [9].

Tool condition monitoring can be roughly divided
into physical-based methods and data-driven methods [10].
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Physically-based methods try to establish the degradation
model of the tool, and then determine the remaining life
based on the accumulated cutting time. However, statis-
tics prove that in the roughing or semi-finishing stage, the
actual degradation process of the tool is affected by a se-
ries of accidental factors such as the quality of the tool,
the change of the workpiece material, and the fluctuation of
the cutting allowance. It is difficult to establish a universal
mathematical model. In recent years, artificial intelligence
has achieved rapid development. Data-driven artificial in-
telligence model has achieved a series of successful cases
in structural health monitoring, mechanical fault diagnosis
and other fields [11]–[13], and many studies have tried to
apply artificial intelligence to tool condition monitoring sys-
tem [14], [15]. When the data samples are sufficient, the ar-
tificial intelligence model fits the complex mapping relation-
ship between the signal samples and the tool state through
end-to-end learning. It can not only model the degradation
process of tools, but also learn the personalized characteris-
tics of different monitoring objects.

Based on the above research, a data-driven tool condi-
tion monitoring method based on convolutional neural net-
work and recurrent neural network is proposed. The main
contributions of this paper are summarized as follows:

(1) An indirect tool condition monitoring method based
on industrial microphone is proposed, which is more suit-
able for on-line monitoring than dynamometer and acceler-
ation sensor, and more sensitive than spindle current signal.

(2) A central fractal decomposition algorithm is pro-
posed to preprocess the acoustics signal. The implicit
wavelet packets are constructed to reduce the information
loss caused by frequency band decomposition.

(3) A parallel multi-scale convolutional neural network
is constructed, and the performance of extracting multi-scale
impact features from the envelope demodulation spectrum is
enhanced via the atrous convolution.

2. Related Work

Tool condition monitoring has always been a research
hotspot in the field of advanced manufacturing, and it is an
important task of workshop informatization and intellectu-
alization. In recent years, scholars have published relevant
research results, the core content of which includes sensing
technology, data preprocess and recognition model.

Machine vision is a widely studied tool condition mon-
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itoring technology [16], but it requires stopping machining
and is difficult to overcome the interference of coolant and
chips. Vibration signal is a useful indirect monitoring signal,
which does not need to interrupt the cutting process. Zhou
developed a tool holder system with integrated acceleration
sensors [17]. Hassan extracted features from spindle vibra-
tion signals to identify tool wear conditions [18]. However,
the sensor must be mounted close to the spindle, inevitably
interfering with machine tool motion. In contrast, the acqui-
sition of spindle current is more convenient. Yuan extracted
features from the spindle current signal and then input them
into the ensemble learning classifier for analysis [19]. Shen
included machining parameters such as depth of cut as inde-
pendent variables in the monitoring model [20]. However,
under normal working condition, the spindle operates at a
low workload, and the current response to tool wear is very
weak, making it difficult to perceive tool degradation. To ad-
dress this, the acoustic signal is chosen as the sensing means
in this paper because it is more sensitive to tool degradation.
Industrial microphones can be mounted relatively far from
the spindle, protected from coolant and chips.

The advanced data processing algorithms to denoise
and decompose the original data is very important for fea-
ture extraction. Zhou utilized wavelet transform modulus
maxima estimation [21]. Jimenezde’s experiment prove that
the evolution of wavelet decomposition details is sensitive to
tool wear progress [22]. Li extracted the wear time-domain
characteristics of tool vibration signals through wavelet
packet transform [23]. Chen adapted wavelet threshold al-
gorithm to de-noise the drilling force and vibration acceler-
ation [24].

The recognition model of tool condition has experi-
enced the evolution from machine learning to deep learn-
ing. Ajayram constructed a statistical monitoring models
for indexable inserts based on decision trees and random
trees [25]. Ostasevicius adapted support vector machines
to identify the wear of endmills [26]. Oo employed ran-
dom forest and multiple linear regression [16]. However,
experiments show that the expert design of manual fea-
tures is the key to the success of machine learning algo-
rithms, which leads to the limitation of generalization. With
the development of deep learning, many researchers ap-
ply deep learning technology to tool condition monitoring.
Ou used stacked automatic encoder to adaptively extract
deep features from monitoring signals [27]. Furthermore,
Harshavardhan assigned the two tasks of feature extraction
and state recognition modeling to a single deep CNNs [28].
To observe the tool wear over a longer time span, Xu utilized
recurrent neural networks (RNNs). The life cycle of the ob-
ject is divided into several stages, and a corresponding gated
recurrent unit network is trained for each stage [29]. Cai ap-
plies the long-short-term memory network (LSTM) to the
long-distance fusion of multi-sensor information [30]. Deep
learning model can handle larger size input and adaptively
extract deep features. It reduces the dependence on feature
engineering and improves the robustness of the model. For
higher accuracy and reliability, this paper proposes a tool

condition recognition scheme based on the combination of
CNNs and RNNs, the former is responsible for feature ex-
traction from the short-term acoustic signal, and the latter is
responsible for modeling the tool degradation features in a
wider time window.

3. The Proposed Method

3.1 Overview of the Proposed Method

The flowchart of the proposed method is shown in Fig. 1.
First, an industrial microphone is used to collect the acous-
tic signal during the milling process. Then use the central
fractal decomposition algorithm to preprocess the data and
extract the feature vector. Since there are significant dif-
ferences in the degradation of different tools, the acoustic
record of the current moment are not enough to accurately
identify the condition of the tool. Therefore, segments are
cut from acoustic records at a large interval to construct
acoustic feature vector sequences. Then input the acoustic
feature vector sequence into the multi-scale convolutional
recurrent network to extract deep features. Finally, the non-
linear classifier trained with MsCRNN is used to identify the
stability state of the milling process.

3.2 Data Preprocessing via Central Fractal Decomposition

The dual-tree complex wavelet packet decomposition
(DCWPD) uses parallel dual-tree decomposition coeffi-
cients to achieve information complementarity, thereby ob-
taining approximate translation invariance and reducing the
loss of information. It has achieved many successful ap-
plications in the field of fault diagnosis. However, the fre-
quency response of the dyadic wavelet will attenuate at the
frequency band boundary. The information of the transition
band cannot be reconstructed ideally.

To address this, implicit wavelet packets are con-
structed based on DCWPD. The dyadic wavelet packets

Fig. 1 Flow chart of the proposed method.
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(wps) and the implicit wavelet packets (iwps) are combined
to perform central fractal decomposition of the acoustic sig-
nal to improve the completeness of the reconstructed signal.
Let the input acoustic signal be denoted as x(n), the implicit
wavelet packets are constructed as follows:

Step 1: Perform DCWPD on the input acous-
tic signal, such that x(n) is decomposed into a set
Dk = Dj

k(n) | j = 1, 2, . . . , 2k.
Step 2: Rearrange Dk(n). Let the resulting set be Rk(n).

Let the binary index of Dj
k be

j =
k−1∑

m=0

2mnm + 1, (1)

Let the binary index of Rj′
k be

j =
k−1∑

m=0

2mn′m + 1, (2)

The mapping between Dj
k and Rj

k is described as below:

n′m =

⎧⎪⎪⎨⎪⎪⎩
nm m = k − 1,

mod(nm + nm+1, 2) m = 0, 1, . . . , k − 2,
(3)

Step 3: Generate the implicit wavelet packet using the
following equation.

iwp j
k(n) = R2 j

k (n) + R2 j+1
k (n), 1 ≤ 2K−1 − 1, (4)

The implicit wavelet packets form a series of central
fractal wavelet packet groups, as shown in Fig. 2, which can
continuously enlarge or refine the frequency domain view
around any wavelet packet. In this paper, the wavelet basis
function employed is Q-Shift 20 introduced by Chen in [31].

3.3 Construction of Primary Data Sample

The extraction process of the primary data sample at a sin-
gle moment is shown in Fig. 3. Firstly, the original acoustic
recording in 1 second is intercepted, and then the central
fractal decomposition is performed. 15 sub-signals whose
bandwidth is one-sixteenth of the sampling frequency are

Fig. 2 Frequency-scale paving of implicit wavelet packets.

reconstructed. The Hilbert envelope demodulation spectrum
near the characteristic frequency is used to form the short-
term data sample. The characteristic frequency is set to the
spindle rotation frequency, and the 2, 3, 6, 9 times of the
spindle rotation frequency. Among them, the 6 times of the
spindle rotation frequency is exactly the 2 times the cutting
frequency. The 9 times frequency of the spindle rotation
frequency is 3 times the cutting frequency.

Taking the current time as the reference and taking 12
seconds as the interval, extract the primary acoustic feature
vectors of 5 historical moments to form the primary data
sample.

3.4 Short-Term Feature Extraction Based on Parallel
Multi-Scale Convolution

CNN has been proven to be an efficient tool for feature ex-
traction. The classic CNN adopts a serial structure. In order
to obtain a larger receptive field for the kernel, it is neces-
sary to stack convolution layers and pooling layers in suc-
cession. This strategy achieves multi-scale feature extrac-
tion, but leads to large-scale computation. In this paper,

Fig. 3 Construction of short-term data sample.
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Fig. 4 The utilized parallel multi-scale convolution module.

Table 1 The parameters of the multi-scale convolutional subnetwork.

Layers Channel number Kernel size
1 8 32
2 16 16
3 32 8
4 8 5

the short-term feature extractor is used as part of the con-
volutional RNN, thereby, the computation is limited more
strictly. Therefore, this paper uses diverse atrous convo-
lution kernels to construct parallel multi-scale convolution
module, as shown in Fig. 4. Atrous convolutions with dif-
ferent dilation rates are arranged side-by-side in the same
layer to extract multi-scale features without increasing com-
putation. Then, the feature vectors of different scales are
connected into a convolutional layer with a stride of 8 for
downsampling.

Atrous convolution, by adding holes in the convolution
kernel, the receptive field of the convolution kernel can be
expanded without the need for a pooling layer, while main-
taining low calculations. Let F : Z → R be a discrete func-
tion. Let Ωr = [−r, r]

⋂
Z and let k : Ωr → R be a discrete

filter of size 2r + 1. The discrete convolution operator ∗ can
be defined as

(F ∗ k)(p) =
∑

s+t=p

F(s)k(t). (5)

Let l be a dilation factor, then the atrous convolution ∗l can
be defined as:

(F∗lk)(p) =
∑

s+lt=p

F(s)k(t). (6)

The multi-scale convolution module is used to form the
convolution sub network, and the structural parameters are
listed in Table 1. A total of four layers are used. As the data
is transmitted forward, the channels are increased and the
convolution kernel is reduced. Each channel is a multi-scale
convolution module composed of four atrous convolution,
and the dilation rate are fixed at 1, 2, 4 and 8. After the
convolutional layers, the outputs of each channel are con-
catenated into a single feature vector. According to the data
structure of the recurrent neural network, the output size of

Fig. 5 The structure of multi-scale convolutional recurrent neural
network.

the short-term feature extractor should be consistent with
the input. Therefore, two fully connected layers are set after
the convolutional layer. The final output layer has as many
neurons as the input, and the penultimate layer has twice as
many neurons as the input layer.

3.5 Long-Term Modeling via Convolutional Recurrent
Neural Network

The acoustic signal generated by the cutting process is af-
fected by many accidental factors, and it is difficult to evalu-
ate the reliability of the tool based on a short-term sample at
a single moment. In order to solve this problem, MsCNN is
embedded in a recurrent neural network to evaluate the sta-
bility of the processing process from a wider time window.
The combination of feedforward connection and feedback
connection empowers the recurrent neural network to pro-
cess time series. The constructed multi-scale convolutional
recurrent neural network (MsCRNN) is shown in Fig. 5. xt

is the feature vector input at the current moment, and ht−1

is the output of the previous feature vector processed by
MsCRNN, which is also called the hidden cell state.

A total of 3 multi-scale convolutional neural networks
(MsCNN) are used. From left to right, they are used to deter-
mine which historical information should be inherited into
the processing of the feature vector at the current moment,
which historical information should be updated, and extract
features from the current input feature vector. The output of
MsCRNN and the operation of each gate in it are defined by
the following equations:

ht = (1 − μt) ⊗ ht−1 + μt ⊗ h̃t, (7)

h̃t = tanh(Ψo([ht−1 ⊗ rt, xt])), (8)

μt = δ(Ψμ([h
t−1, xt])), (9)

rt = δ(Ψr([h
t−1, xt])), (10)

Among them, ⊗ denotes pointwise multiplication, [·, ·]
denotes vector connection, Ψ (·) denotes multi-scale con-
volutional feature mapping, δ(·) denotes sigmoid activa-
tion function, tanh(·) denotes tanh activation function. The
sigmoid activation function maps the input to [0, 1] to real-
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ize the function of the gate. The tanh activation function is
used to adjust the range of alternative states to avoid gradi-
ent explosion.

4. Experiments Investigation

In order to verify the practicability of the proposed method,
an end milling experiment was carried out.

4.1 Experiment Set-Up and Data Acquisition

To verify the effectiveness of the proposed method, a se-
ries of milling experiments were carried out. Experiments
are conducted on DMTG VDL850A machining center, as
shown in Fig. 6. Uncoated three flute endmills with a diam-
eter of 10 mm are used, and the material is high speed steel.
The workpiece is a rolled normalized JIS S45C steel block.
It should be noted that this experiment simulates rough ma-
chining, so the oxide layer of the workpiece is retained. In-
dustrial microphones are installed on the workbench and the
sampling frequency is set to 12 KHz.

During the experiment, down milling and up milling
is performed alternately. Five process schemes are imple-
mented in turn, as listed in Table 2. Among them, ae de-
notes radial cutting depth, ap denotes axial cutting depth, a f

denotes feed rate and the spindle speed is set to 2500 r/min.
For ease of description, these five milling cycles are defined
as one test. After each test, use the tool microscope to col-
lect the image of the end face of the endmill, check whether
chipping occurs, and measure the wear width of the flank
face.

4.2 Computer Hardware and Software

The software for preprocessing acoustic records and extract-
ing primary feature vectors is based on the MATLAB plat-

Fig. 6 The set-up of endmilling experiment.

Table 2 The process parameters.

Endmill ae (mm) ap (mm) a f (mm/rev)
A 10 0.5 0.053
B 10 0.5 0.067
C 10 0.6 0.053
D 10 0.6 0.060
E 10 0.6 0.067

form and is implemented on a computer equipped with an
Intel Core i7 central processing unit and 16 Gb memory.

The MsCRNN model is constructed by Python soft-
ware. Keras application programming interface and Tensor-
flow framework are utilized. The experiments are conducted
on an Intel Core i7 central processing unit with 16 Gb mem-
ory. MATLAB is used for image processing tasks. The
cross entropy is utilized as the loss function, and the Adam
optimizer is adapted. Cross entropy is an efficient objec-
tive function for combinatorial and continuous optimiza-
tion and is now widely used to train neural networks for
classification [32]. A series of advantages of the Adam
optimization algorithm have been widely recognized, such
as straightforward to implement, high computationally ef-
ficiency, low memory space requirements and invariant to
diagonal rescaling of the gradients [33].

5. Results and Discussion

5.1 Instability Caused by Degradation of Endmill

In the experiment, 10 milling tests were performed for each
endmill. In fact, most endmills have already chipped be-
fore the tenth test. To obtain complete experimental data,
milling was continued for a period with the chipped end-
mills. Figure 7 illustrates the change of the effective value
of the acoustic signal [1, 2000] frequency band. The pur-
ple line indicates the time of chipping, and the image on the
right is the flank images of each endmill when it is chipped.

Figure 7 reveals the difference in the degradation of
endmills. Endmill C chipped in the fifth test. Endmill E de-
teriorated in the form of wear and did not chip until the 9th
test. Analyzing the milling parameters of the two, the axial
cutting depth of the two is the same, and the feed speed of
the endmill E is greater. This phenomenon prove that the
actual capacity of cutting tool is affected by many acciden-
tal factors, such as the uniformity of the workpiece material

Fig. 7 Overview of the monitoring signals and photos of damaged
endmill tips.
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Fig. 8 The accuracy and loss value evolution curve when using the data
of endmill D and E for testing.

and the accuracy of tool clamping.
For the identification experiments, label the data sam-

ples from milling test when chipping occurred as ‘critical’,
label the samples of previous tests as ‘reliable’, and label the
samples of the subsequent tests as ‘chipped’.

5.2 The Learning Process of the Proposed MsCRNN

In order to verify the generalization and practicability of the
proposed method, the samples of endmill A, B, and C are
utilized as train set, and the samples of endmill D and E are
used to test the model. The test accuracy and test loss of the
five-fold crossover experiment are shown in Fig. 8. The test
accuracy reached its highest in the 500th epochs. However,
from the 400th epoch, the test loss gradually increases and
fluctuates violently. This indicates that the model is overfit-
ting. As analyzed earlier, there are significant differences in
the individual property of endmills, and the size of the data
sample is limited. This results in that the training dataset
cannot fully cover all possibilities. As the training pro-
gresses, the model learns the detailed features of the training
samples. Since there are difference between the test sam-
ples and the training samples, the model that over-matched
to training samples is no longer suitable for the test sam-
ples. As a result, test losses gradually worsen and fluctuate
violently.

Considering the accuracy and generalization ability
comprehensively, the iterative optimization of MsCRNN is
stopped at the 400th epoch. The test accuracy rate has
reached 88%, which has certain reference value for tool
management on the production site.

5.3 Comparison with CNN and NN-Based LSTM

In this section, the performance of CNN and NN-based
GRU and the recommended MsCRNN are compared.
Among them, CNN takes the primary feature vector at the
current moment as input, and the input of GRU is the same
as that of MsCRNN. The loss function and optimizer used
in the training process of each model are also the same.
Multiple tasks are defined, as listed in Table 3, the test
set and training set are different in different tasks. Ta-

Table 3 The results of different deep models.

Task CNN NN-based GRU MsCRNN
A/B/C → D/E 0.781 0.876 0.886
A/B/D/E → C 0.790 0.889 0.895
A/B→ C/D/E 0.767 0.824 0.867
C/D/E → A/B 0.779 0.829 0.871

A/C → B/E 0.771 0.821 0.868
B/E → A/C 0.733 0.804 0.843

ble 3 lists the average test accuracy achieved by different
deep models when performing each task. First, analyze the
performance differences when performing different tasks.
All three models achieved the highest test accuracy in task
A/B/D/E → C, followed by task A/B/C → D/E. The test
accuracy achieved in tasks A/B→ C/D/E, C/D/E → A/B,
and A/C → B/E is lower, but the difference is not much.
In the execution of task B/E → A/C, the accuracy of var-
ious algorithms decreased significantly. Among the three
models, CNN achieves the lowest test accuracy. An im-
portant reason is that CNN only performs diagnosis based
on the acoustic features at the current moment. With the
degradation of the tool, the acoustic characteristics show
unpredictable fluctuations. It is necessary to synthesize the
acoustic characteristics at multiple time points in a period
of time to make an accurate diagnosis. The performance
of NN-based GRU is between CNN and MsCRNN. In task
A/B/C → D/E and task A/B/D/E → C, the test accu-
racy of NN-based GRU and MsCRNN is not much different.
However, in the last four tasks where the working conditions
of the test set and the training set are much different, the test
accuracy of the NN-based GRU is significantly lower than
that of the MsCRNN.

Summarizing the results, the ability of MsCRNN to
recognize the reliability of endmills is significantly better
than that of CNN, and at the same time, it has stronger gen-
eralization ability than NN-based GRU.

5.4 Comparison with Other Methods

In this section, the proposed method is compared with
the methods disclosed in recent literatures. One machine-
learning-based algorithm and three deep-learning-based al-
gorithms participated in the comparative experiment.

Zhou introduced a machine-learning-based method in
[21]. This method first uses wavelet transform modulus
maxima (WTMM) estimation to de-noise the raw signal,
then extracts features such as means and standard devia-
tions, and finally uses support vector machine (SVM) to
identify tool wear status.

Duan proposed an WPD+CNN method of tool wear
monitoring in [34], which performs wavelet package de-
composition (WPD) of the original monitoring signal to
construct a multi-band feature map, then employed CNNs
to extract deep features.

In [35], Zeng proposed a method for converting tempo-
ral monitoring signals into two-dimensional images based
on triangular matrix of angle summation (TMAS). Then ex-
tract the deep features and identify the tool condition via
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Fig. 9 Confusion matrix of test results achieved by various methods.

ResNet.
Zhang proposed a CNN+LSTM tool wear prediction

method in [36]. This method uses a variety of sensors to
collect monitoring signals, and then uses CNN to extract
deep feature from the raw signal records of various sen-
sors. The deep features of various monitoring signals are
connected into a fusion feature vector, which is input into
LSTM for further analysis. This method is also the com-
bination of CNN and RNN, but it is significantly different
from the method proposed in this paper. In the proposed
method, CNN is embedded in RNN for learning. The in-
put of MsCRNN is the sequence composed of instantaneous
data, while in reference 38, the input of LSTM is the moni-
toring data at a single time.

Take the data samples of endmill B, C, and E as the
training set, and take the data samples of endmill A and D
as the test set. Implement five-fold crossover experiment
to verify the applicability of each algorithm to the research
case in this paper. Figure 9 illustrate the confusion matrix,
where, label ‘1’ denotes ‘reliable’, label ‘2’ denotes ‘criti-
cal’, and label ‘3’ denotes ‘chipped’. Considering the sig-
nificant difference in the number of samples under the three
wear states, the confusion matrix display the proportion of
each part of the sample to the total number of each category.
For example, in the leftmost confusion matrix, the value in
the cell with the true label ‘1’ and the predicted label ‘2’ is
0.15. The meaning is that, fifteen percent of the sample of
reliable states were incorrectly predicted to be critical. The
diagonal lines from the lower left corner to the upper right
corner illustrate the recall of various category.

Among the five methods, the accuracy of the WTMM+
SVM algorithm using manual features and machine learn-
ing is the lowest, and is lower than the accuracy reported
in the literature. The possible reason is that the acoustic
signal in this paper has severe fluctuations, and statistical
features such as mean and kurtosis are contaminated by un-
known noise. Using a deep learning model to adaptively ex-
tract deep features, the recognition accuracy of WT+CNN
and TMAS+ResNet is more than 80% for both reliable and
chipped samples, which has reference value. The algorithm
proposed by Zhang uses CNN to extract deep features, and
then uses LSTM for further analysis. The combination of
the two deep models improves the recognition accuracy of
the algorithm. However, this method is still based on the

short-term signal samples at a single time, so the identifica-
tion accuracy of the samples in the critical state is still not
ideal.

The proposed method clipped short-term records from
the raw monitoring signal at a longer time interval to form
long-short-term data samples. The convolutional RNN is
used to model the tool degradation process in a wider time
window. The tool state is observed from a wider perspec-
tive, and the recognition recall of the critical state sample is
improved by 12%.

Nevertheless, the recall of the proposed method is still
less than 80% for identifying critical-state samples. Accord-
ing to the author’s analysis, there are two reasons. On the
one hand, the critical state is a transitional stage between sta-
ble wear and sharp chipping, which is similar to both states.
On the other hand, the critical state has the fewest samples,
and the data imbalance leads the model to pay more atten-
tion to the reliable and chipped types. It is accepted that
only 8% of the critical-state samples were misidentified as
reliable, and more were misidentified as chipped. Identify-
ing a critical endmill as a tipping only slightly reduces tool
utilization. However, a chipped endmill will damage the
workpiece, and if it is not replaced in time, it will lead to
more serious losses.

6. Conclusion

A deep-learning-based tool condition monitoring for digi-
tal manufacturing is proposed in this paper. The acoustic
signal is firstly decomposed by the center fractal algorithm
and then projected to the envelope demodulation space,
which effectively removes the complex noise. Compared
with ANN, MsCNN have fewer parameters and learn more
features. MsCRNN integrates MsCNN and RNN and ex-
tracts deep features with higher adaptability and robustness.
Fusing the current acoustic features and historical acoustic
features, the model’s ability to resist interference from un-
known factors is significantly improved. The milling ex-
periment reveals the uncertainty of endmill degradation and
also verifies the advantage of the proposed method. Based
on a single acoustic signal, the proposed method achieves a
recognition accuracy of 88%, and the recall rate of chipped
endmills reaches 90%.

The limitation of the proposed method is that the recog-
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nition accuracy of critical state samples is still not ideal,
mainly because of the lack of ability to deal with the im-
balance of data sets. In the next phase, research on data en-
hancement algorithms will be carried out, such as the use
of generative adversarial models to generate critical-state
samples. And research will be conducted on optimizing
the adaptability of this method to adapt to other processing
methods, such as forming milling, gear shaping, etc.
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