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SUMMARY Running IoT applications on edge computing infrastruc-
tures has the benefits of low response times and efficient bandwidth usage.
System verification on a testbed is required to deploy IoT applications in
production environments. In a testbed, Docker containers are preferable
for a smooth transition of tested application programs to production envi-
ronments. In addition, the round-trip times (RTT) of Docker containers to
clients must be ensured, according to the target application’s response time
requirements. However, in existing testbed systems, the RTTs between
Docker containers and clients are not ensured. Thus, we must undergo
a large amount of configuration data including RTTs between all pairs of
wireless base station nodes and servers to set up a testbed environment. In
this paper, we present an edge computing testbed system with simple ap-
plication programming interfaces (API) for testbed users that ensures RTTs
between Docker containers and clients. The proposed system automatically
determines which servers to place Docker containers on according to vir-
tual regions and the RTTs specified by the testbed users through APIs. The
virtual regions provide reduced size information about the RTTs in a net-
work. In the proposed system, the configuration data size is reduced to one
divided by the number of the servers and the command arguments length is
reduced to approximately one-third or less, whereas the increased system
running time is 4.3 s.
key words: edge computing, testbed, Kubernetes, low response time

1. Introduction

Edge computing is a crucial computing paradigm for IoT ap-
plications. Edge computing offers ultra-low response times
and efficient bandwidth usage by leveraging a server’s prox-
imity to the client hosts. These features are preferable for
IoT applications, e.g., augmented reality [1] and surveil-
lance systems [2], because such applications generate a large
amount of video data and require low latency for data anal-
ysis.

To encourage the deployment of IoT applications in
production environments, a testbed system of edge comput-
ing has important roles that reveal system bugs and evaluate
system effectiveness and performance. We propose a testbed
system that allows IoT application developers (i.e., testbed
users) to run server programs of the IoT applications in ex-
perimental edge computing environments. Instead of bur-
dens such as server and network configuration, the testbed
users can obtain the experimental edge computing environ-
ments through resource requests via an application program-
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ming interface (API) of the testbed system.
The edge computing testbed system needs to provide

an experimental environments, in which the network round-
trip time (RTT) between a server and a client satisfies a
condition specified by a testbed user. The response time
to a client is one of the significant performance metrics of
IoT applications and the required response time varies, e.g.,
16 ms for augmented reality and 2 ms for remote-controlled
robots [3]. The response time consists of the network RTT
between a server and a client, and the processing time in the
server. To observe an impact of the network RTT on the
response time, the testbed system must support providing
an experimental environment, in which the RTT between a
server and a client is specified by a testbed user.

Both EdgeNet [4] testbed system and Akraino [5] in-
frastructure system support Docker containers [6] by uti-
lizing Kubernetes (k8s) [7] to manage Docker containers
across multiple servers. However, the systems do not sup-
port satisfying RTT conditions between clients and servers
running Docker containers. Krishnaswamy et al. [8] pro-
posed a method to determine servers to place Docker con-
tainers on according to the disclosed latency and the RTT
condition for IoT applications. However, this method forces
the users to use large configuration data including network
latency. Here, the data size is proportional to the product of
the numbers of wireless base station nodes and servers.

In this paper, we propose an easy-to-use edge com-
puting testbed system providing experimental environments
via APIs. In the provided environments, the network RTTs
between Docker containers and wireless base station nodes
are less than and close to the RTTs of conditions specified
by testbed users. The proposed system employs the virtual
region-based APIs [9], which reduces the amount of con-
figuration data for testbed users to satisfy RTT conditions.
For the RTT input by a testbed user, the testbed system
provides the virtual regions presenting relation between the
edge clouds and the wireless base station nodes under the
RTT condition. For a request of a Docker container in the
virtual region by the testbed user, the testbed system auto-
matically determines the server that satisfies the RTT con-
dition and configures the Docker container. Compared to
the conventional method, the configuration data size is re-
duced to one divided by the number of the servers and the
command argument length is reduced to approximately one-
third or less, whereas the system running time merely in-
creases by approximately 4.3 s.

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers
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This paper is an extended version of the previous
work [10]. The extensions in this paper are the network iso-
lation function to accept multiple testbed users (Sects. 3.2.2
and 4.2.4) and the quantitative evaluation using real machine
(Sects. 5.4–5.6).

The remainder of this paper is organized as follows.
Section 2 introduces previous work involving edge comput-
ing infrastructure systems. Sections 3 and 4 describe de-
sign considerations and the implementation of the proposed
edge computing testbed, respectively. Section 5 evaluates
the testbed using the implementation. Finally, Sect. 6 con-
cludes the paper.

2. Related Work

2.1 Real-World Testbed Deployments

EdgeNet [4] is a set of globally deployed edge clouds run-
ning at sites across the US, Canada, and the EU. EdgeNet
is a master node that manages a k8s cluster, i.e., all worker
nodes at the sites. Here, a testbed user obtains Docker con-
tainers using the Kubernetes Dashboard of EdgeNet. Ed-
geNet allows testbed users to select the geographical loca-
tions of servers to create Docker containers on; however, the
RTTs between the servers and wireless base station nodes
are not disclosed to the testbed users. Thus, testbed users
cannot ensure the RTT between the Docker containers and
clients.

2.2 Application-Level Proximity Control

Chiu et al. [11] proposed a server task allocation algorithm
to obtain a short response time for clients, where the dis-
tributed tasks are allocated to multiple servers according to
the communication latency to the servers and the tasks’ pro-
cessing times. In addition, CEF [12] provides an API for IoT
application programmers to specify the geographical loca-
tion of Docker containers running processes in a program.
The methods improve the response time while leveraging
the task scheduling of an application program. However,
with these methods, testbed users are limited to using the ap-
plication programming frameworks or middleware that are
supported by these methods. In contrast, with the proposed
testbed system, testbed users have no such limitation be-
cause Docker containers are accepted, and they can package
arbitrary application programming framework and middle-
ware.

2.3 Infrastructure Systems without Proximity Control

KubeEdge [13] extends k8s to servers in cloud data centers
and edge clouds in a single virtual network. This feature
allows testbed users to use both cloud and edge resources
in an integrated manner. However, the KubeEdge scheduler
does not control the RTT between Docker containers and
wireless base station nodes. Dreibholz [14] proposed a vir-
tual network function (VNF) testbed on OpenAirInterface-

based [15] evolved packet core networks, i.e., software-
based LTE mobile core networks. This testbed simplifies
and automates the configuration of VNF and OpenAirInter-
face using the Open Source Management and Orchestration
(OSM) framework [16]. In this testbed, the server programs
for IoT applications are deployed as VNFs. This testbed
assumes LTE networks; thus, the VNFs are always placed
in the same packet data network gateways, where the RTTs
to wireless base station nodes are always the same. Both
the KubeEdge and Dreibholz testbed systems are unsuit-
able for edge computing testbed systems. In these systems,
testbed users cannot change the RTT between Docker con-
tainers and clients; however, user-defined experimental RTT
conditions vary according to tested IoT applications, e.g.,
16 ms for augmented reality and 2 ms for remote-controlled
robots [3].

2.4 Infrastructure Systems with Proximity Control

The method proposal by Haja et al. [17] extends the k8s
scheduler to ensure RTT among Docker containers. This
method measures the RTTs among servers to k8s, and the
scheduler uses the measured RTTs to determine where to
place a Docker container. However, the scheduler does not
ensure the RTTs between Docker containers and clients.

The method proposed by Ceselli et al. [18] fixes an
edge cloud to host Docker containers for each wireless base
station. The edge cloud for the wireless base station is de-
termined according to the target RTT to the wireless base
station node. However, the RTT between Docker containers
and wireless base station nodes may not match the testbed
user’s preferences because the target RTT is predetermined
by the testbed administrator rather than the testbed users.

FocusStack [19] is a cloud-edge orchestrator that uti-
lizes Docker containers. According to a client request,
the orchestrator seeks nearby servers that satisfy the given
computation performance criteria (e.g., CPU cores, mem-
ory size, and geographical area), and then a Docker con-
tainer image is sent and instantiated on the selected server.
Akraino [5], which is a Linux Foundation project, integrates
open source computing and networking resource manage-
ment software, including k8s, and encourages the smooth
deployment of edge computing environments in production
networks. FocusStack and Akraino allow testbed users to
specify the geographical location and the tier of the location
(e.g., client devices, public buildings, and teleco network)
of servers to host Docker containers, respectively. However,
these systems only loosely ensure response times because
not consider the actual RTTs in a network to select servers.

Krishnaswamy et al. [8] proposed an infrastructure
framework for network function virtualization that discloses
the RTT between wireless base station nodes and edge
clouds to testbed users. The testbed user can specify an
edge cloud to host a Docker container. However, to ensure
the RTT to clients, the testbed user must deal with a large
amount of RTT data whose size is linear to the product of
the number of wireless base station nodes and the number



1518
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.9 SEPTEMBER 2022

Fig. 1 Testbed system components.

of edge clouds.

2.5 Infrastructure System with Easy Proximity Control

The virtual region-based interface [9] ensures the RTT be-
tween edge clouds and wireless base station nodes while
reducing the configuration data. This method determines
groups of wireless base station nodes, which are referred to
as virtual regions. Here, a virtual region has the same edge
cloud, where the RTTs to the wireless base station nodes in
the virtual region are the same or less than the threshold of
the testbed user’s application. Here, the testbed user selects
the virtual region to request a Docker container. The data
size of the virtual regions is bound by the number of wire-
less base station nodes. For the request, the Docker con-
tainer is created in the edge cloud, and the RTTs to the wire-
less base station nodes in the virtual region do not exceed the
threshold. In the proposed testbed system, we use the virtual
region-based interface to ease the setup of the experimental
environment, which is described in the following.

3. Proposed Edge Computing Testbed System

We developed an edge computing testbed that enables a sim-
ple system operation to satisfy the RTT conditions between
Docker containers and clients in provided experimental en-
vironments.

3.1 System Components and Operation

The proposed edge computing testbed system provides net-
worked Docker containers [6] and client hosts to testbed
users. The Docker containers and client hosts include server

and client programs, respectively. As shown in Fig. 1, the
proposed testbed system comprises a testbed manager, a net-
work, edge clouds, wireless base station nodes, and client
hosts. The testbed manager is the original module interfac-
ing with the testbed users and managing the edge clouds.
Each of the edge clouds is a k8s [7] cluster with additional
modules for compatibility with the testbed manager. The
k8s cluster includes servers to run the Docker containers.
The network connects the edge clouds and wireless base sta-
tion nodes. The client host accesses the Docker container
through the wireless base station node and the network. In
our testbed deployment, although the wireless base station
nodes are wired network nodes, we refer to those nodes as
the “wireless base station” nodes because their positions in
the network correspond to wireless base stations in a mobile
backhaul network.

The networked edge clouds in the proposed testbed
system imitate an edge computing infrastructure. The net-
work corresponds to a mobile backhaul network. This im-
itated infrastructure is compatible with the edge computing
infrastructure model in the 5G network proposed by ETSI
ISG MEC [20]. As UPF (user plane functions) in the 5G
network infrastructure model do the edge clouds locate at
any node in the edge computing testbed’s network.

The proposed testbed system is operated according to
the following processes.

1. The testbed user prepares an original Docker image and
sets the client hosts.

2. Using interface U-1 (Fig. 1), the testbed user requests
the creation of virtual regions with a condition of the
RTT rv between the wireless base station nodes and a
Docker container.
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Fig. 2 Example virtual regions.

3. The testbed manager determines the virtual regions and
presents them to the testbed user.

4. Using interface U-2 (Fig. 1), the testbed user requests a
Docker container for each virtual region.

5. The Docker container is created and allocated to the
testbed user.

6. The testbed user experiments using communication
among the client hosts and the Docker container.

In process 2, the testbed user determines the condition of the
RTT rv so that the RTT between client hosts and provided
Docker containers is short enough to keep the response time
from the Docker containers to the client hosts acceptable for
an experiment. The condition of the RTT rv is determined
as follows:

rv = rc
d − rc

w,

where rc
w is the RTT between the client hosts and their con-

necting wireless base station nodes, and rc
d is the maximum

allowable network latency in the acceptable response time
in the experiment.

3.2 Design Approach

3.2.1 RTT Condition Satisfaction

To satisfy RTT conditions, edge clouds to place Docker con-
tainers need to be selected appropriately. The RTT between
the selected edge clouds and the wireless base station nodes
must be the same or less than rv. As described in Sect. 2.4,
direct selection of the edge clouds forces testbed users to
deal with a large amount of network RTT data whose size
is linear to the product of the numbers of the wireless base
station nodes and the edge clouds. Instead, we employ the
virtual region-based interface [9], which reduces the size of
the configuration data to be bounded by the number of the
wireless base station nodes.

The virtual regions are groups of wireless base station
nodes. Here, the virtual regions are determined, according
to the condition of the RTT rv such that the nodes in a group
are associated with the same edge cloud reachable within
rv. Figure 2 shows a testbed environment for two different

RTT conditions in the network. Here, four edge clouds ec4–
ec7 are associated with the four individual virtual regions
of the four wireless base station nodes (ap1–ap4), where the
condition of the RTT is rv. Edge clouds ec2 and ec3 are
associated with the two virtual regions of ap1 and ap2, and
ap3 and ap4, where the condition of the RTT is r′v. For a
testbed user’s request to create a Docker container for a vir-
tual region, the proposed testbed system creates the Docker
container in an edge cloud associated with the virtual re-
gion. The details of the virtual region-based interface are
described in Sect. 4.1.1.

Although the proposed testbed system takes away the
configurability of a k8s system due to using the virtual
region-based interface, it is enough for testbed users who
are IoT application developers. The main lost configura-
bility is direct server selection to place Docker containers
and network policy setting to control communication among
Docker containers. However, IoT application developers do
not need this configurability because, typically in IoT appli-
cations, communication occurs between clients and servers
nearby proximity while the proposed testbed system sup-
ports that communication pattern.

In terms of human resources for testbed system man-
agement, the proposed testbed system has extra maintenance
costs in addition to that of the k8s system because a system
administrator needs to maintain both the k8s and the testbed
manager. However, both systems keep running without hu-
man operations. Thus, in normal operations, the human re-
sources for maintaining the proposed testbed system are al-
most the same as that of k8s.

3.2.2 Multi-Tenancy

To isolate experimental environments of different testbed
users (i.e., multi-tenancy), communication among Docker
containers and client hosts of different testbed users is
blocked. Figure 3 illustrates the communication control.
This example assumes the Docker containers of testbed
users A and B. Here, Dockers α-1, α-2, and α-3 belong to
testbed user A, and Dockers β-1 and β-2 belong to testbed
user B. In addition, client hosts α and β belong to testbed
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Fig. 3 Summary of communication control.

users A and B, respectively.
To allow communication among the Docker contain-

ers of the same testbed users (P-1 and P-3 in Fig. 3) and
deny that of different testbed users (P-2 and P-4), we use a
function of a network plugin of k8s, i.e., Calico [21]. To al-
low communication between the client hosts and the Docker
containers of the same testbed users (F-1) and deny that of
different testbed users (F-2), IP address-based filtering by
iptables [22]. A testbed system manager assigns IP address
ranges for the client hosts to the testbed users. A firewall by
iptables at an edge cloud allows to access the Docker con-
tainer if the source IP address is in the range assigned to the
testbed user of the Docker container. Otherwise, the access
is denied (see Sect. 4.2.4).

In addition, we deploy Open vSwitch [23] at the wire-
less base station nodes (i.e., network ingress for client hosts)
to block data packets from client hosts with IP addresses
outside the assigned range of the testbed user (C-1 and C-
2 in Fig. 3). Because root privileges on the client hosts are
given to the testbed users to allow installing arbitrary soft-
ware, the testbed users can set arbitrary IP addresses of the
client hosts. The blocking in the wireless base station nodes
prevents unauthorized access by changing the IP addresses
to be in the range of another testbed user.

4. Details of Implementation

4.1 Testbed Manager

The testbed manager determines the virtual regions and edge
clouds on which to place the Docker containers according
to requests from testbed users through the APIs. Here, the
APIs for the testbed users are the REST APIs of the virtual
region creation and Docker container request, as shown in
Table 1. We programmed the testbed manager using Python.

4.1.1 Determine Virtual Regions

When a testbed user requests to obtain virtual regions

through API U-1 (process 2 in Sect. 3.1), the testbed man-
ager determines the virtual regions for the condition of the
RTT rv in the message body. Virtual region determination
(process 3 in Sect. 3.1) is described as follows. Here, let
W = w1, · · · , w|W | be the set of the wireless base station
nodes. The computation is clustering of wireless base sta-
tion nodes W. The “distance” d(wi, w j, rv) between wireless
base stations wi, w j ∈ W for the condition of the RTT rv is
defined as follows:

d(wi, w j, rv) =

{ 1
s(wi,w j,rv)

(s(wi, w j, rv) > 0)
∞ (s(wi, w j, rv) = 0)

,

where s(wi, w j, rv) is the total number of allocatable Docker
containers in the edge clouds that can communicate with wi

and w j within RTT rv. The RTTs between the edge clouds
and wireless base station nodes are obtained from the edge
clouds through API I-1 in Fig. 1 (see Sect. 4.2.1). The wire-
less base station nodes are divided into the virtual regions
via hierarchical clustering computation [24], where clusters
are updated by iterations. Here, let vk = {c1 ⊆ W, · · · , c|vk | ⊆
W : cl ∩ cm = ∅ (l � m), c1 ∪ · · · ∪ c|vk | = W} be the clus-
ter after the kth iteration. In this clustering process, each
of the wireless base station nodes is a cluster at initial, i.e.,
v0 = {{w1}, {w2}, · · · , {w|W |}}. The clusters are integrated by
the following iterations. In an iteration, the two clusters with
the minimum distance but not∞ are integrated into a single
cluster. The distance dc(cl, cm) between clusters cl, cm ∈ vk
is expressed as follows:

dc(cl, cm) =

∑
wl∈cl,wm∈cm

d(wl, wm, rv)

|cl| · |cm|
when d(wl, wm, rv) � ∞,∀wl ∈ cl,∀wm ∈ cm. When
there are wireless base stations wl ∈ cl, wm ∈ cm such that
d(wl, wm, rv) = ∞,

dc(cl, cm) = ∞.
The iterations stop when no clusters are integrated, i.e., all
distances among clusters are ∞. When the iteration stops,
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Table 1 REST APIs for testbed users.

Objective URL Method Message body
Virtual region cre-
ation (U-1 in Fig. 1)

/ <testbed user name>/virtual regions POST latency: <RTT rv (ms)>

Docker container re-
quest (U-2 in Fig. 1)

/<testbed user name>/virtual regions/
<virtual region name>/containers

POST name: <container name>
image: <container image name>
num: <the number of containers>
protocol: <TCP or UDP used for the container service>
port: <the port number of the container service>

the resulting clusters are the virtual regions.
According to the determined virtual regions, the

testbed manager notifies the condition of the RTT rv to the
edge clouds corresponding to the virtual regions through
API I-2 in Fig. 1. Here, the RTT between the correspond-
ing edge cloud and all wireless base station nodes in the vir-
tual region is not greater than rv. The notified edge clouds
use the RTT rv for future Docker container placements (see
Sect. 4.2.2).

After receiving the responses for the notifications from
the corresponding edge clouds through API U-1 in Fig. 1,
the testbed manager responds to the testbed user with the
determined virtual region.

4.1.2 Determine the Edge Cloud to Place a Docker Con-
tainer

When the testbed user requests a Docker container through
API U-2 as process 4 in Sect. 3.1, the testbed manager de-
cides on an edge cloud to create the Docker container. Here,
the virtual region is specified by the URL of API U-2. The
RTTs between the decided edge cloud and all the wireless
base station nodes in the virtual region are not greater than
rv. The testbed manager requests the determined edge cloud
using an API of the edge cloud (I-3 in Fig. 1) to create the
Docker container (see Sect. 4.2.3). The RTTs between all
edge clouds and all wireless base station nodes are periodi-
cally notified from the edge clouds through API I-1 in Fig. 1
(see Sect. 4.2.1).

4.2 Edge Cloud

An edge cloud comprises a k8s cluster with a virtual region
plugin and a gateway node (Fig. 4). The k8s cluster com-
prises a master node and worker nodes. The master node
has a scheduler to decide on a worker node to place a Docker
container. The k8s cluster uses the k8s REST API to receive
requests to create the Docker container. The virtual region
plugin interfaces with the k8s cluster and the testbed man-
ager. The gateway node includes the functions of network
isolation and measuring RTTs between the worker nodes
and the wireless base station nodes.

4.2.1 Measure Network RTT

The gateway node periodically sends ICMP requests to all
the wireless base station nodes and all the worker nodes, re-
ceives ICMP replies, and obtains the RTTs to those nodes.

Fig. 4 Edge cloud components.

Then, the gateway node calculates the minimum sum of the
RTTs to the worker nodes and the RTT to each of the wire-
less base station nodes. We call the minimum sum as the
RTT between the edge cloud and the wireless base station
node, which implies that at least one worker node in the
edge cloud can communicate with the wireless base station
node within that RTT. The RTTs between the edge clouds
and all the wireless base station nodes are notified to the
testbed manager via the virtual region plugin and interface
I-1 (Fig. 1).

4.2.2 Virtual Region Configuration

According to the virtual regions determined by the testbed
manager, the virtual region plugin determines candidate
worker nodes for future Docker container creation. The
condition of the RTT rv and the wireless base station nodes
in the virtual region are notified through API I-2 in Fig. 1.
Using the RTT measurement results (Sect. 4.2.1), the vir-
tual region plugin instructs the master node to label worker
nodes with the name of the virtual region, where the RTT
to the wireless base station nodes in the virtual region is not
greater than rv. After labeling the candidate worker nodes,
the virtual plugin responds to the testbed manager through
API I-2. We used the labeling process of a k8s function. To
instruct the labeling, the virtual region plugin employs the
k8s REST API of the master nodes. We used the Python k8s
client library [25] to program the virtual region plugin.

4.2.3 Docker Container Creation

The virtual region plugin sends a request to the master
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node to create a Docker container through API I-3 in Fig. 1
when the testbed manager sends a request as described in
Sect. 4.1.2. The request message includes the image name,
the service port number, and the service protocol. Here, the
master node randomly selects a worker node from among
worker nodes labeled with the virtual region name. The RTT
between any selected worker node and the wireless base sta-
tions in the virtual region is not greater than rv because all
labeled worker nodes are. Then, the Docker container is cre-
ated on the worker node. During the creation of the Docker
container, the Docker container image is downloaded from
the private registry if the worker node has not downloaded
the image previously.

4.2.4 Network Setting of Edge Clouds for Multi-Tenancy

Access control from client hosts: To control access from
client hosts, an original Python program in the gateway node
dynamically configures rules of iptables to accept access
from authorized client hosts while a default rule to block
all access from client hosts is set. When a Docker con-
tainer is created, the virtual region plugin inserts a rule to
accept data packets of the source IP address range assigned
to the testbed user of the created Docker container. This rule
also includes the service port number of the gateway node
corresponding to those of the created Docker container to
accept the access from the client hosts because the gateway
node functions as a network address port translation (NAPT)
node. Note that the service port number of the gateway node
is selected randomly by the virtual region plugin when the
Docker container is created.
Access control inside an edge cloud: Here, the k8s net-
work plugin, Calico [21], is used to control the network in-
side a k8s cluster. The virtual region plugin configures Cal-
ico to allow communication of Docker containers labeled by
the same testbed user name in the same edge cloud, i.e., the
same k8s cluster. In addition, Calico is set to deny the com-
munication of Docker containers labeled by different testbed

Fig. 5 Testbed system constructed in StarBED.

user names. Here, when Docker containers are created, they
are labeled with the requesting testbed user name.
Access control for Docker containers in different edge
clouds: The virtual region plugin dynamically configures
Calico to allow a Docker container to access Docker con-
tainers in other edge clouds while the default configura-
tion for Docker containers is denying access outside the
edge clouds. When a Docker container is created in an
edge cloud, the virtual region plugins of the remaining edge
clouds allow Docker containers of the same testbed user to
access the external IP address and the service port number
corresponding to the created Docker container.

5. Evaluation

We evaluated the proposed edge computing testbed system
experimentally using real machines to investigate its effec-
tiveness and overhead. Here, effectiveness refers reducing
the amount of the settings required by a testbed user to ob-
tain a Docker container, and overhead refers to the system’s
running time to obtain a Docker container.

5.1 Experimental Infrastructure

In this experiment, we deployed the proposed testbed sys-
tem using a server and network experimental system in a
data center, i.e., StarBED [26]. We constructed an edge
computing testbed comprising 11 edge clouds (ec1–ec11),
six wireless base station nodes (ap1–ap6), 12 client hosts,
the testbed manager, and the testbed user hosts (Fig. 5).
Here, a tree topology was used for the edge network, in
which ec1 was the root and ap1–ap6 were the leaves. Two
client hosts of different testbed users were connected per
wireless base station node, and the testbed user hosts used
the testbed API of the testbed manager. All hosts were vir-
tual machines running the Ubuntu 20.04 LTS operating sys-
tem. Here, the testbed user hosts, gateway nodes in the edge
clouds, and the wireless base station nodes had two virtual
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CPU (vCPU) cores of Intel Xeon E312xx at 1.99 GHz and
2 GB of memory. The testbed manager, master nodes in the
edge clouds, and the client hosts had four vCPU cores of
the same model and clock frequency and 8 GB of memory.
There were three worker nodes in each of ec1 and ec2, and
each worker node had 20 vCPU cores of Intel Core Proces-
sor (Broadwell, IBRS) and 2.09 GHz, and 100 GB of mem-
ory. In each of ec3–ec5, there were two worker nodes with
the 10 vCPU cores of the same model and clock frequency
and 50 GB of memory. In each of ec6–ec11, there was one
worker node with the same vCPU cores and clock frequency,
and the same amount of memory.

To emulate edge clouds deployed over a wide-area net-
work, we added latency to interfaces of the bridges forming
the edge network using Linux tc command [27] while the
StarBED network was a local network. By adding latency,
the RTT between an edge cloud (i.e., a gateway node) and
the wireless base station nodes in a sub-tree whose root was
the edge cloud was set as shown in Fig. 5. For example, the
RTTs between ec1 and wireless base station nodes ap1–ap6
were 100 ms, the RTTs between ec3 and wireless base sta-
tion nodes ap1 and ap2 were 10 ms, and the RTT between
ec6 and wireless base station node ap1 was 2 ms. The RTTs
100 ms and 20 ms assumed communication with the cloud
data center in a foreign country and the same country, re-
spectively. The RTT 10 ms assumed communication with
edge cloud in the same prefecture in Japan. The RTT 2 ms
assumed communication with an edge cloud directly linked
to a wireless base station.

The experimental infrastructure had 240 vCPU cores
in all the worker nodes in total and could offer 240 Docker
containers to testbed users in total when each Docker con-
tainer used a single vCPU core and each testbed user set rv
to 100 ms or greater. According to the edge network topol-
ogy and the network RTT, the RTT between any edge cloud
and wireless base station node was 100 ms or less.

To evaluate system loads versus system scales, we con-
ducted the same experiments using experimental infrastruc-
tures of different scales. We call the infrastructure described
above (Fig. 5) the “large-scale infrastructure”, in below. We
call an infrastructure, in which ec5, ec10, ec11, ap5, and
ap6 with their connecting links and client hosts are from
the large-scale infrastructure, a “middle-scale” infrastruc-
ture. We call an infrastructure, in which ec4, ec8, ec9, ap3,
and ap4 with their connecting links and client hosts are from
the middle-scale infrastructure, a “small-scale” infrastruc-
ture.

5.2 Compared Conventional System

We compared the proposed testbed system to a conventional
system (CS), in which a testbed user directly decided k8s
worker nodes to place Docker containers and set up Docker
containers using k8s (i.e., kubectl) and iptables commands.
Because state-of-the-art systems described in Sect. 2 have
no schedulers for Docker container placement to satisfy the
RTT conditions, the testbed user directly decided worker

nodes to place Docker containers, seeing the network RTTs
between all worker nodes and wireless base station nodes.

5.3 User Costs on Docker Container Creation

We evaluated user costs on creating a Docker container by
estimating command argument length, the number of values
to be considered to decide the arguments, and the number
of times to run the commands. We believe that the lengths
of the argument values (i.e., the numbers of characters) af-
fect the user’s working time of input. This is because the
argument values are different according to each Docker con-
tainer while the commands and default values of arguments
and options can be written in script files. The number of
values to be considered and the number of times to run the
commands also affect the user’s working time. We com-
pared those of CS and the proposal. Table 2 summarizes
the results. In the estimation, we assumed that the length
of the arguments defined by strings, which were names of a
worker node, a Docker image, a testbed user, and a virtual
region, was five, i.e., five characters. The maximum service
port number was 49151 (i.e., five characters), according to
port number assignment by Internet Assigned Numbers Au-
thority [28].

In the CS, the testbed user ran three kubectl commands
in master nodes and one iptables command in a gateway
node when creating a Docker container. The first kubectl
command was to create the Docker container and had argu-
ments of the testbed user name, the worker node, the service
port number, and the Docker image name. The testbed user
name was used to label the Docker container. Because di-
rectly specifying the worker node to place the Docker con-
tainer, the testbed user needed to know the RTTs between
all the worker nodes and all the wireless base station nodes
to satisfy an RTT condition. The number of the RTT values
was |W | · m, where |W | and m were the numbers of wire-
less base station nodes and worker nodes in the testbed sys-
tem, respectively. For example, in the large-scale experi-
mental infrastructure, |W | was 6 and |W | ∗m was 108, which
had a large impact on the number of values seen by a hu-
man. The second kubectl command allowed communica-
tion among Docker containers of the same testbed user in
the same edge clouds and required the testbed user name
for labeling the Docker containers to identify their owner.
The iptables command configured the external service port
number of the gateway node to allow the created Docker
container to accept access from client hosts of the testbed
user. The command had the argument of the external ser-
vice port number. The testbed user needed to select the ser-
vice port number that was not used for other Docker con-
tainers in the same edge cloud. The third kubectl command
allowed Docker containers of the same testbed user in the
remaining edge clouds to access the created Docker con-
tainer. The arguments were the testbed user name, external
IP address, and service port number of the created Docker
container. The argument length of the IP address and the
service port number was 20 consisting of 15 characters of
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Table 2 User commands and costs on creating a Docker container.

Command Argument length Values to be considered to decide
the arguments and their number

Required number of times to
run the command

CS kubectl for Docker con-
tainer creation

Testbed user name: 5
Worker node: 5
Service port number: 5
Docker image name: 5

The RTTs between a all the wire-
less base station nodes and all the
edge clouds: |W | · m, where |W | is
the number of and m is the number
all the worker nodes

Once

kubectl for network pol-
icy in the same edge
cloud

Testbed user name: 5 None Once.

iptables configuration External service port number: 5 Used listening ports for Docker
containers in the same edge cloud:
the number of existing Docker con-
tainers in the same edge cloud

Once

kubectl for network pol-
icy in other edge clouds

Testbed user name: 5
External IP address and ser-
vice port number of the created
Docker containers: 20

None The product of the number of
created Docker containers and
the remaining edge clouds

Proposal REST API for virtual
region creation

Condition of the RTT: 3 None Once

REST API for Docker
container creation

Virtual region: 5
Service port number: 5
Docker image name: 5

Virtual region names: |W | at most Once

an IPv4 address including dots and five characters of a ser-
vice port number.

In the proposal, the testbed user employed the two
REST APIs. The first REST API had the argument of the
RTT condition and provided virtual regions. Because the
RTT condition was an original requirement of the testbed
user, the testbed user did not need to see any data to decide
the argument. The second REST API created a Docker con-
tainer. The testbed user needed to see at most |W | virtual
region names provided by the first REST API to select the
virtual region included in the arguments of the second REST
API.

According to the results, the total argument length of
CS was at least 55 while that of the proposal was 19. The
length of CS becomes longer as existing Docker containers
in the remaining edge clouds increase. Thus, the proposal
reduces the argument length to approximately one-third or
less.

5.4 System Load of RTT Measurement

We measured the CPU load of a gateway node. In the im-
plementation, at every three minutes, the gateway nodes sent
ICMP request packets to the worker nodes in the same edge
clouds and the wireless base station nodes ten times, calcu-
lated the average RTT, and determined the RTTs between
the worker nodes and the wireless base station nodes, as de-
scribed in Sect. 4.2.1.

We measured CPU load of gateway nodes using sys-
stat tools [29] at every one second in the RTT measurement
process. Figure 6 shows the CPU loads averaged over ten
measurement processes in gateway nodes, ec1, ec2, ec3,
and ec6 in the large-scale experimental infrastructure. The
gateway nodes were at different levels of the edge network
tree. The average CPU load increased as the total waiting

Fig. 6 CPU load of gateway nodes during RTT measurement.

time of ICMP replies during the measurement process de-
creased. The average total RTTs of ICMP replies over ten
measurement processes were 611.7 ms, 128.3 ms, 156.7 ms,
and 190.9 ms for ec1, ec2, ec3, and ec6, respectively. The
RTTs between the edge cloud and the wireless base stations
nodes mainly affected the total waiting time. The maximum
CPU load was 3.0% at most, which had a small impact.

Network traffic loads in the edge network by ICMP
packets were the maximum when all the 11 gateway nodes
sent ICMP packets simultaneously. The Ethernet frame
length of an ICMP request or reply was 64 B. Thus, the
maximum data size sent to a wireless base station node in
the large-scale experimental infrastructure was 704 B, which
had a small impact on the typical link bandwidth, e.g.,
1 Gbps or more.

5.5 System Load of Virtual Region Creation

We measured the time of the virtual region creation pro-
cesses in the large, middle, and small-scale experimental
infrastructures. Here, the measured time was between send-
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Fig. 7 Virtual region creation time: the times were merely several sec-
onds.

ing a request to create virtual regions using the API from
the testbed user host and receiving the reply. In this evalu-
ation, the condition of the RTT rv was 5 ms, 15 ms, 30 ms,
or 110 ms. The RTT conditions of 5 ms and 15 ms corre-
sponded to connected cars [30] and AR applications [3], re-
spectively. The RTT conditions of 30 ms and 100 ms as-
sumed cloud environments just for testing server programs
of IoT applications in the cloud environments, e.g., perfor-
mance comparison of the same server program running in
edge and cloud environments. Figure 7 shows the measured
times versus the condition of the RTT rv. For each, the av-
erage, maximum, and minimum over the ten same experi-
ments are shown. Within the measured time, the average
time of configuring edge clouds according to the created vir-
tual regions (Sect. 4.2.2) is shown by dashed line as a part of
the average time. The configuration time was measured in
the testbed manager program.

In a comparison of the times versus the condition of
the RTTs in the same experimental infrastructures, the API
response time primarily depended on the time of configur-
ing the edge clouds while the remainder including virtual
region computation time was almost the same for all the
RTT conditions. The time required to configure the edge
clouds increased as the number of configured edge clouds
increased. Edge clouds to be set for a virtual region are all
the edge clouds, where the RTT to all wireless base stations
in the virtual region is not greater than the specified rv. For
instance, when rv was 5 ms, six edge clouds needed to be
set in the large-scale experimental infrastructure. Here, the
six wireless base station nodes (ap1–ap6) were individual
virtual regions. The corresponding edge clouds of the vir-
tual regions were ec6–ec11. In addition, when rv was set to
15 ms, three edge clouds were set. Here, there were three
virtual regions, i.e., ap1 and ap2 were in a virtual region,
ap2 and ap3 were in another virtual region, and ap4 and ap5
were in a third virtual region. ec3–ec5 were the correspond-
ing edge clouds, respectively. When rv was set to 30 ms,
there were four edge clouds to set. Here, there was a sin-
gle virtual region including all wireless base station nodes,
and the four edge clouds were ec2–ec5. When rv was set to
110 ms, all the 11 edge clouds were set for a single virtual

Fig. 8 CPU load of testbed manager during virtual region creation.

Fig. 9 CPU load of master node during virtual region creation.

region.
A testbed user creates virtual regions merely once in

advance of Docker container creation. Thus, the time of
virtual region creation has a negligible impact on the testbed
user.

In a comparison of the times of the different experi-
mental infrastructure scales in the same RTT conditions, the
time increased as the scale became large. As a result, the
times of the virtual region computation and the edge cloud
configuration became longer because there were more edge
clouds in a larger scale infrastructure.

In addition to the time measurements, we measured av-
erage CPU usage at every second in the processes in the
testbed manager and the master nodes. Figure 8 shows the
average CPU usage of the testbed manager process versus
the RTT conditions in the different experimental infrastruc-
ture scales. The CPU usage of the testbed manager had
the same tendency of the processing time results in Fig. 7.
The CPU load became large when the experimental infras-
tructure or the number of configured edge clouds increased.
Figure 9 shows the CPU loads of the master nodes includ-
ing the load of the virtual region plugin processes versus the
number of worker nodes in the edge clouds. The remaining
CPU load included the CPU load of k8s processes. The CPU
load increased as the number of worker nodes in the same
edge clouds increased. When a virtual region was config-
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Fig. 10 Docker container creation time: the increased ratio of the pro-
posal to CS was small for increased number of requested Docker contain-
ers.

ured for the edge cloud, each worker node was labeled with
a virtual region name. The load for the labeling increased in
both the virtual region plugin and the k8s processes. All the
CPU loads on virtual region creation in a testbed manager
and master nodes were less than 15%, which had a small
impact.

5.6 System Load of Docker Container Creation

We measured the Docker container creation time and com-
pared it to that of the CS. In the proposed testbed system
experiment, the measured time was between sending a re-
quest to create a Docker container using the API from the
testbed user’s host and receiving the corresponding reply. In
the CS experiment, the measured time was the running time
of the kubectl commands on the master nodes and the ipt-
ables commands on the gateway nodes in the edge clouds.
Here, the kubectl commands created Docker containers and
configured the network policy, and the iptables commands
configured to control clients’ access, as the proposed sys-
tem did. The number of requested Docker containers (i.e.,
“num” specified in the request API in Table 1) was 1, 5,
10, 15, or 20. Note that “image,” “protocol,” and “port”
specified in the request API were an original image running
httpd, TCP, and 80, respectively. In the experiments, the
used image was downloaded from the private registry on all
worker nodes in advance. Thus, the measured Docker con-
tainer creation time did not include the time of downloading
the Docker image.

Figure 10 shows the Docker container creation times
versus the number of requested Docker containers on the
large-scale experimental infrastructure. The times are the
average over the ten same experiments. The overhead time
by the proposed system was about 1.3 s when one Docker
container was requested. The overhead time increased up
to about 1.5 s as the number of requested Docker containers
increased.

Figure 11 shows the Docker container creation time
versus the experimental infrastructure scales. The number
of requested Docker containers was one. As the scale be-

Fig. 11 Docker container creation time vs. the experimental infrastruc-
ture scales.

Fig. 12 CPU load of the testbed manager during Docker container cre-
ation.

came larger, the times of both of the methods became longer
because the remaining edge clouds to be configured to al-
low access to the created Docker container increased. The
overhead time by the proposal was 1.0 s, 1.1 s, and 1.2 s for
the small, middle, and large-scale experimental infrastruc-
tures, respectively. The total overhead time was the sum of
1.2 s for Docker container creation and 3.1 s for virtual re-
gion creation in the large-scale experimental infrastructure,
i.e., 4.3 s. The overhead time has a negligible impact on
testbed users.

Figure 12 shows the average CPU load of the testbed
manager during the Docker container creation versus the
number of requested Docker containers in the large, middle,
and small-experimental infrastructures. The average CPU
load decreased as the number of requested Docker contain-
ers increased because the time of waiting for Docker con-
tainer creation in an edge cloud increased. When the number
of requested Docker containers was the same, the CPU load
increased as the experimental infrastructure became large
because of configuring the remaining edge clouds to allow
accessing the created Docker containers. Figure 13 shows
the average CPU load of the master node that created the re-
quested Docker containers versus the number of requested
Docker containers. The shown CPU load includes that of
the virtual region plugin process while the remaining CPU
load includes that of the k8s processes. As the number of
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Fig. 13 CPU load of the master node during Docker container creation.

requested Docker containers increased, the CPU loads of
the virtual region and the k8s processes increased. All the
CPU loads on the Docker container creation processes in the
testbed manager and the master node were less than 15%,
which had a small impact.

6. Conclusion

In this paper, we have proposed a testbed system to ex-
perimental environment setup and facilitate IoT applica-
tion deployment in production environments. The virtual
region-based interface and automated k8s configuration of
the proposed testbed system enable easy configuration of
experimental environments, in which the RTTs between the
Docker containers and clients are ensured to guarantee re-
sponse times for tested applications. In addition, the pro-
posed testbed system supports multi-tenancy by isolating
the network communication of different testbed users. The
experimental results demonstrate that the testbed user bur-
den is reduced by reducing the amount of configuration data
that must be considered to run commands when creating ex-
perimental environments. In addition, the experimental re-
sults demonstrate that the overhead of the proposed system
in terms of system run time is small.

In the future, the proposed system must provide a more
realistic edge computing environment. The current sys-
tem network is created using all wired links; however, in
real-world environments, clients communicate using wire-
less communication technologies. Thus, we plan to con-
sider using a wireless emulation technique to simulate wire-
less communication in the experimental environment. We
will consider techniques to guarantee the required RTT, e.g.,
network QoS control. We will also consider guaranteeing
system performance according to testbed user preferences.
For example, resource allocation and isolation techniques
could be applied to provide guaranteed CPU, memory, and
storage resources for Docker containers, as well as network
bandwidth.
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