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PDAA3C: An A3C-Based Multi-Path Data Scheduling Algorithm∗

Teng LIANG†, Ao ZHAN†, Chengyu WU†a), Nonmembers, and Zhengqiang WANG††, Member

SUMMARY In this letter, a path dynamics assessment asynchronous
advantage actor-critic scheduling algorithm (PDAA3C) is proposed to
solve the MPTCP scheduling problem by using deep reinforcement learn-
ing Actor-Critic framework. The algorithm picks out the optimal transmit-
ting path faster by multi-core asynchronous updating and also guarantee
the network fairness. Compared with the existing algorithms, the proposed
algorithm achieves 8.6% throughput gain over RLDS algorithm, and ap-
proaches the theoretic upper bound in the NS3 simulation.
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1. Introduction

Multipath transmission control protocol (MPTCP) [1] is an
extension of the traditional TCP, which enables full use of
the device’s multiple interfaces [2] and increases transmis-
sion efficiency, link fairness, and throughput. Currently,
users’ demands are increasing quickly for high network
bandwidth and low end-to-end transmission delay, because
of the rapid development of novel technologies such as vir-
tual reality and real-time live broadcast [3]. Mobile devices
now own multiple network interfaces to different network
access technologies, such as WiFi and cellular. MPTCP has
thus got much attention due to it aggregates multiple sub-
flows capacity and maintains single-path failures.

Scheduling is a core component of MPTCP, which con-
trols the amount of traffic transmitted over distribution pack-
age and maintains link fairness. To improve the subflow
throughput [4] and fairness of MPTCP, several scheduling
algorithms have proposed (e.g., Average-RTT and Fastest-
RTT [5]) based on traditional MPTCP scheduling algo-
rithm (for example, Round-robin [6]) distribute packets by
polling when packets come from application layer. Het-
erogeneous multi-subflow network (HMN) is different in
sub-flow service indicators vary greatly and subflow avail-
able bandwidth, which achieved desired performance hardly
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for MPTCP. On the one hand, MPTCP faces difficulties in
distributing packets to heterogeneous multiple paths rea-
sonably. Sub-flow with smaller bandwidth may severely
degrade the performance of other sub-flows in a MPTCP
connection. On the other hand, it is hard for MPTCP to
judge the subflow status accurately in HMN. Therefore, it
is an important topic for researchers to formulate a reason-
able scheduling strategy so that users feel higher bandwidth,
lower end-to-end delay and maximize throughput in HMN.

Recently, SB-FPS [7], a novel scheduling algorithm
which schedules the bottleneck scenarios shared data, im-
proves 6% throughput over the default MPTCP by varing
the window size of each sub-flow and proves that it is prop-
erly to distribute subflow data according to the state of sub-
flow. The combination of computer network optimization
research and deep reinforcement learning (DRL) [8] in the
era of artificial intelligence, which is optimized for MPTCP.

Some scheduling algorithms based on DRL like
RLDS [9], Peekaboo [10], and GAPS [11] aims to improve
the MPTCP throughput performance in a heterogeneous net-
work. This is an intuitive deduction that MPTCP bene-
fits from DRL because DRL captures and analyzes status
of MPTCP subflow precisely. Applying DRL to increase
MPTCP performance, there are two issues that need to be
thought. First of all, scheduling should be redesigned for
MPTCP to take advantage of DRL in HMN. That means
when choosing a DRL algorithm, it needs to consider
the MPTCP scheduling problem is a continuous problem.
Meanwhile, to assign number of packets accurately, the
evaluation of sub-flow status needed to redesign.

In this letter, we propose a multipath scheduling al-
gorithm for MPTCP by asynchronous advantage Actor-
Critic(A3C) and a new criterion for the evaluation of sub-
flow, named MPTCP-PDAA3C. The proposed algorithm
can achieve 26.6%-106% throughput gain over existing al-
gorithms, and improves fairness among sub-flows in NS3.

2. PDAA3C-MPTCP Design

2.1 DRL Framework

The MPTCP scheduling process can be modeled as a dis-
crete optimization problem, and A3C can obtain better con-
vergence properties than other RL algorithms for the dis-
crete optimization problem [12]. However, it is diffcult for
MPTCP to combine with the A3C algorithm that requires
redesigning the STATE, ACTION and REWARD modules.
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Therefore, PDAA3C is proposed to achieve the redesign of
three modules. The PDAA3C puts Actor-Critic into mul-
tiple threads for synchronous training, effectively utilizing
computer CPU resources and improving training effective-
ness. Multi-agent in PDAA3C interact with the environment
E over multiple discrete time steps within a DRL frame-
work. Actor takes the state S t as input and outputs the
corresponding action At by π(at |st; θ), and Critic takes the
state-action (st, at) as input and outputs the corresponding
V(st, at; θv). In return, the agent receives the next state S t+1

and receives a scalar reward V(st, at) = E[Rt |st, a], where Rt

is the value of choosing an action a in state s. π(at |st; θ) is
the retention strategy, V(st; θv) is the estimated value func-
tion, and the update gradient of strategy π is formulated as:

�′θ log π(at |st; θ
′)A(st, at; θ, θv) (1)

where the dominant function A(st, at; θ, θv):

k−1∑
i=0

γirt+i + γ
kV(st+k; θv) − V(st; θv) = Rt − V(st; θ) (2)

where Rt is the return of all states, k varies with state and the
maximum value is tmax, θ′ is the parameter of the policy π
and θ′v is the parameter of the state value function.

Critic uses J(θ) to estimate the state, which is the opti-
mization of the state function V .

J(θ) =
1
N

N∑
1

(
k−1∑
i=0

γirt+i + γ
Tn V(st+k; θv)−V(si; θ))

2 (3)

where N is batch size, Tn are steps, V(si; θ) is actual state
value.

Next, we design the states, actions and rewards of
PDAA3C-MPTCP:

STATE: At epoch t, S i,k
t = [S 1,1

t , S
i,k
t , · · · , S N,k

t ], St =
[S T i

t ,TT i
t ,C

i
t,T Pi

t, PLRi
t], where N is the fluctuation Total

number of the fluctuant subflows, k is the link state number
of the fluctuant subflows i, and S i,k

t is the substream i in link
state k at time t. S T i

t , TT i
t , Ci

t, T Pi
t, PLRi

t are the data con-
firmed from subflow i, such as free bandwidth, throughput,
congestion window, number of packets on the current link,
and packet loss rate. In experimentations, the number of
packets on the current subflow is calculated by the through-
put and Packet-size (P), the throughput is the amount of data
sent by the link at time t.

The key parameters may have a significant impact on
the end-to-end performance [13], which are selected into the
state of PDAA3C and considered in the design of some re-
lated projects. To improve the accuracy of judging the qual-
ity of subflows, the data of all subflows are considered in
this work, when designing the state space. Noting that the
values of these parameters are all measured in the past epoch
t − 1.

ACTION: Action at time period t, at = [At1 , · · · , Atk ],
where Atk is to select a link to allocate packets at each epoch
t. The positive, negative and zero actions result in the selec-
tion of the optimal subflow path, the regular sub-flow path

and the very poor subflow. Respectively, PDAA3C takes ac-
tion on an optimal MPTCP subflow of N MPTCP subflows
at each epoch t.

REWARD: The reward at epoch t, rt =
∑N

i U(i, t),
where U(I, t) gives the reward for MPTCP the fluctuant sub-
flow i. Caculating rewards have many different functions
(e.g. throughput, latency, alpha fairness). The reward should
be designed according to the actual needs of the upper-layer
application. In implementations, we choose the widely used
reward function U(I, t) = log TT i

t for the problem of accu-
rately reflecting the transmission quality [13].

2.2 Subflow Quality Evaluation

The subflow quality evaluation criteria in step 2 are com-
bined with S T i

t , TT i
t , Ci

t, T Pi
t, PLRi

t, and RTT i
t , calculating

transmission quality Q of the MPTCP path.

Qi
t =
γα(1 − PLRi

t)

S T i
t

+
ηCi

t

RTT i
t − TT i

t

(4)

S T i
t =

Ci
t

RTT i
t − TT i

t

(5)

where γ = 0.7, η = 0.3, α is the packet size, 1 − PLRi
tS T i

t
is the time required for the current subflow i to transmit a
packet of size P. This subflow evaluation criterion most
truly show the current transmission quality of the subflow
after reviewing data. PDAA3C-MPTCP combines with the
subflow quality evaluation criteria and selects the optimal
subflow to transmit packets at each time t, to improve the
subflow throughput obviously after DRL training.

2.3 PDAA3C Structure and Algorithm

Figure 1 shows the structure of PDAA3C-MPTCP algo-
rithm, which includes an MPTCP Server, an MPTCP Client,
N Sub-flows and N Sub-flows states. In order to select
the optimal subflow for packet transmission for each deci-
sion, PDAA3C-MPTCP uses actor network to select sub-
flows for data transmission and critic network to score Actor
Network’s behavior. In MPTCP client, PDAA3C-MPTCP-
Scheduler is consistent with other MPTCP scheduling al-
gorithms, realizing data scheduling and distribution with
MPTCP client.

The design goal of PDAA3C-MPTCP-Scheduler is to

Fig. 1 System framework diagram of PDAA3C-MPTCP algorithm
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Algorithm 1 Path Dynamics Assessment Asynchronous
Advantage Actor-Critic scheduling algorithm
1: Input: θ, θv, dθ, dθv, tstart , R, PLRi

t , Qi
t , S T i

t , RTT i
t , TT i

t , Ci
t

2: Output: θ′, θ′v, Qi
t+1, S T i

t+1, at+1, st+1, dθ′, dθ′v
3: Initialization: dθ←0, dθv←0, γ=0.7, α=1000, η=0.3, tstart=0, R = 0
4: repeat
5: Synchronize thread-specific parameters θ′ = θ, θ′v = θv
6: Get State S t , workersnetUpload gradient reset and analyze link statusQi

t

Qi
t =

γα(1−PLRi
t)

S T i
t
+ ηS T i

t

7: S T i
t =

Ci
t

RTT i
t−TT i

t

8: transmit the packet by Qi
t best subflow i

9: repeat
10: Perform at according to policy π(at |st; θ′)
11: Receive reward rt and new state st+1

12: t ← t + 1, T ← T + 1
13: until terminal st or t − tstart == tmax

14:

R =

{
0 f or terminal st

V(st , θ
′
v) f or non − terminal st

15: for i ∈ t − 1, · · · , tstart do
16: R← ri + γR
17: Accumulate gradients θ′ : dθ′ ← dθ + �′θ log π(at |st; θ′)(R −

V(si; θ′v))
18: Accumulate gradients θ′v : dθ′v ← dθv + ∂(R − V(si; θ′v))2/∂θ′v
19: end for
20: Perform asynochronous update of θ using dθ and of θv using dθv
21: until T > Tmax

select the optimal transmission path among multiple sub-
flows. The detailed description of its multi-path manage-
ment and scheduling are as follows:

i) Packet distribution: MPTCP server concurrently dis-
tributes data packets to established sub-flows, transmits
them to MPTCP client, and obtains the current state S i,k

t of
each sub-flow.

ii) Subflow quality ranking: PDAA3C-MPTCP-Sched-
uler combines with the subflow quality evaluation criteria
and S i,k

t to sort the quality of all sub-flows.
iii) Optimal scheduling: PDAA3C-MPTCP-Scheduler

distributes data packets to the optimal sub-flow, and obtains
the current state S i,k+1

t of each sub-flow.
iiii) Special environment: It is assumed that sub-flow

congestion does not occur in this path scheduler, which
causing the sub-flow without transmitting data.

Sum up, the proposed PDAA3C algorithm is shown as
Algorithm 1.

2.4 PDAA3C Feasibility

We perform a lot of tests for the execution steps and decision
time of the PDAA3C and RLDS algorithm on a PC with
i7-10875H CPU and 32GB RAM. We insert timestamps in
PyCharm 2020.3.5 x64 and count the execution time of DRL
algorithms for 100, 200, 300, and all the way to 2000 steps.

Figure 2 shows that the computational cost of the
PDAA3C algorithm is 18.8ms/times-40.7ms/times, and the
computational cost of the RLDS algorithm is 20.4ms/times-
63.1ms/times in 0-2000 execution steps. We see that
PDAA3C has better processing delay stability than RLDS,

Fig. 2 The computational cost of PDAA3C and RLDS algorithm

because PDAA3C gets better convergence properties than
RLDS for the discrete problems of MPTCP. The two sub-
flow processing delays are 30ms and 60ms in the 70s sim-
ulation experiment of RLDS, and the computational cost of
the RLDS is 20.4ms/times-43.9ms/times. Our simulation
considers capturing the throughput every 100ms, i.e., 1 sub-
flow selection at the sender and receiver in every 100ms,
and the interval of sub-flow throughput capture is freely set-
ting on NS3. The ACK acknowledgement is synchronized
when sub-flow selection is performing, 100ms � 29.8ms,
29.8ms is the processing delay for each of the 200 execu-
tion steps, and 100ms satisfies the maximum decision delay
of the PDAA3C algorithm. In summary the processing de-
lay of PDAA3C satisfies the requirement of acquiring ACK
every round trip.

3. Performance Evaluation

The performance evaluation of PDAA3C-MPTCP has been
determined on the network simulator NS 3.29 and PyCharm
2020.3.5 x64. The basic MPTCP module, Round-Robin and
Fastest-RTT scheduling algorithms are implemented in the
network simulator NS 3.29, PDAA3C-MPTCP and mptcp-
RLDS is implemented in PyCharm. In addition, the con-
gestion control algorithm is MPTCP-BBR, which is used
to prevent unreliable experimental data because of serious
congestion on the path during the experiment. We use Jain’s
fairness index to compare the link fairness. The equation of
Jain’s fairness index:

FI = (
n∑

i=1

(Ti/Oi))
2/(n

n∑
i=1

(Ti/Oi)
2) (6)

where FI is the fairness index, Ti is the transmission ca-
pacity of the i subflow in the network, and Oi is the actual
throughput of the i subflow when all n subflows are work-
ing. The value of FI is in the range [1/n, 1]. When FI = 1,
the system is absolutely fair. When FI = 1/n, the system is
completely unfair.

The subflow throughput simulation results are shown
in Fig. 3, comparing mptcp-RLDS, mptcp-round-robin,
mptcp-fastest-rtt, and mptcp-pdaa3. In Fig. 3, the subflow
throughput of the mptcp-pdaa3c algorithm is better than



2130
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.12 DECEMBER 2022

Fig. 3 Comparison of subflow throughput results of the four algorithms

Fig. 4 Subflow fairness simulation results of the four algorithms

mptcp-RLDS 8.6%, mptcp-round-robin 49.6% and mptcp-
fastest-rtt 52.6%, and approaches to the theoretically opti-
mal value of throughput. Mptcp-pdaa3c combines the sub-
flow quality evaluation criteria and A3C of the DRL to select
the optimal subflow, when the data packet needs to be trans-
mitted in the multipath transmission simulation experiment.
Therefore, mptcp-pdaa3c is able to obtain higher through-
put.

The subflow fairness comparison results of mptcp-
RLDS, mptcp-round-robin, mptcp-fastest-rtt and mptcp-
pdaa3c are shown in Fig. 4. The subflow fairness of mptcp-
pdaa3c is always better than others and approaches 1. The
characteristic of mptcp-pdaa3c is that when the packet needs
to be transmitted, the optimal subflow is selected by the pro-
posed scheduling algorithm and the subflow quality evalu-
ation criteria, so mptcp-pdaa3c subflow fairness is the best
among the four algorithms.

4. Conslusion

In this letter, we propose a multi-path scheduling algorithm
PDAA3C based on a DRL to enhance the throughput of
multi-path transmission and ensure the fairness of each link.
As far as we know, it is the first time to combine the A3C
algorithm of DRL with the MPTCP protocol and carry out
simulation implementation.

PDAA3C-MPTCP includes two additional mod-
ules, namely mptcp-pdaa3c-scheduler-Actor Network and

mptcp-pdaa3c-Critic Network. Mptcp-pdaa3c-scheduler-
Actor Network combines the link performance status to dis-
tribute packets concurrently to the optimal sub-flow path in
the sub-flow link. Mptcp-pdaa3c-Critic Network judges and
scores the decisions of mptcp-pdaa3c-scheduler-Actor Net-
work, and then prompts it to choose the optimal sub-flow
path each time. The simulation results show that the trans-
mission performance of mptcp-pdaa3c is better than existing
algorithms, and the link fairness of mptcp-pdaa3c is better
than that of mptcp-fastest-rtt, mptcp-roundrobin in the case
of asymmetric paths.
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