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Metacognitive Adaptation to Enhance Lifelong Language Learning
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SUMMARY Lifelong language learning (LLL) aims at learning new
tasks and retaining old tasks in the field of NLP. LAMOL is a recent
LLL framework following data-free constraints. Previous works have been
researched based on LAMOL with additional computing with more time
costs or new parameters. However, they still have a gap between multi-task
learning (MTL), which is regarded as the upper bound of LLL. In this pa-
per, we propose Metacognitive Adaptation (Metac-Adapt) almost without
adding additional time cost and computational resources to make the model
generate better pseudo samples and then replay them. Experimental results
demonstrate that Metac-Adapt is on par with MTL or better.
key words: lifelong learning, metacognition, adaptation, pseudo data,
catastrophic forgetting

1. Introduction

Lifelong learning [1], which is one of the cornerstones of the
continuous development of human civilization, is the ability
of humans to learn new knowledge while strengthening old
knowledge [2]. We hope that a machine can learn and update
itself like a human over a long period of time. However, tra-
ditional machine learning paradigms forget what they have
learned before while learning a new task because of data
shift, which is referred to as catastrophic forgetting [3].

In the field of NLP, lifelong learning is also known as
lifelong language learning (LLL) which learns NLP tasks in
the stream. LAMOL [4], which is a LLL framework follow-
ing data-free constraint [2], applies a single language model
to learn various NLP tasks where data are formatted as QA-
style. LAMOL alleviated catastrophic forgetting by gener-
ating and replaying pseudo data of previously learned tasks
instead of replaying real data. However, LAMOL still has a
gap between multi-task learning (MTL) which is regarded as
the upper bound [1], [5] of LLL. Many works have been re-
searched based on LAMOL. L2KD [6], DnR [7], DFSD [8]
improved LAMOL by distilling the parts or all layer of the
model. Rational-LAMOL [9] applied rationale information
of samples to critical freezing parts of the module. [10] and
Adaptive Compositional Modules (ACM) [11] applied the
Adapter [12] for each task to improve LAMOL. Although
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these methods mentioned above shorten the gap between
the MTL, there is still space for improvement, especially in
conditions of insufficient pseudo samples. In addition, all of
them need much more time-cost or computational resources.

The reason why there is a gap between the above LLL
methods and the MTL we analyze is detailed below: pseudo
samples of earlier learned tasks are harder to be generated,
resulting in the quality of pseudo data being worse than real
data. The pseudo samples can be judged to belong to which
tasks based on their contexts and questions. By way of judg-
ment, it can be found that, in pseudo samples, the number
of each task is the long-tail distribution which means that
the earlier the task is learned, the fewer pseudo samples are
generated. The model is easy to forget earlier learned tasks
when jointly learning the long-tailed [13] distributed pseudo
data with the new task. Then, as the number of learned tasks
increases, the cycle of long-tail distributed pseudo data gen-
eration and joint training without limits leads to worse catas-
trophic forgetting.

In this paper, we propose Metacognitive Adaptation
(Metac-Adapt) for making the model generate higher qual-
ity pseudo data to improve LAMOL almost without addi-
tional time cost and computational resources. Metacogni-
tion [14]–[16], which aims to help the learner study better
through conscious supervision, control and regulation, has
been researched in the field of education and psychology.
Inspired by metacognition, to bias the model towards bet-
ter semantic space for generating pseudo samples, Metac-
Adapt adapts the model with a mini subset of previous tasks’
questions before generating.

The contributions of our paper are listed below: (1) We
proposed Metac-Adapt to alleviate catastrophic forgetting
almost without additional time cost and computational re-
sources. (2) We analyzed which type of pseudo samples is
better for LLL. (3) We validated the effectiveness of Metac-
Adapt is origin from improving the quality of pseudo sam-
ples.

2. Methodology

2.1 LAMOL

LAMOL [4] is a lifelong language model that applies a sin-
gle GPT-2 [17] to learn various tasks in a stream by the lan-
guage modeling (LM) task and question-answering (QA)
task. From the second task on, before learning a new task,
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pseudo samples of previous tasks are generated and then
jointly trained with a new task. In LAMOL, all task data
are formatted in QA-style. Each sample consists of a begin-
ning token (B), context (C), question (Q), and answer (A).
There are two choices for the B: the task-specific token and
the task-independent token. The LM task is to input “B” and
then output “CQA”. The QA task is to input “CQ” and then
output “A”. Let T = {T1, . . . ,Ti, . . . ,TN} denote a stream
including N tasks. Before learning Ti (i > 1), the model
generates γ|Ti| pseudo samples Pi for previous tasks, where
γ is sampling ratio. When applying the task-specific token,
there are γ

i−1 |Ti| for each previous task. Therefore, the ob-
jective can be calculated as Eq. (1).

L(Di,Pi)base = L(Di,Pi)QA + λL(Di,Pi)LM (1)

L(Di,Pi)QA =

|CQA|∑

t=|CQ|
log P(xt |x<t) (2)

L(Di,Pi)LM =

|BCQA|∑

t=|B|
log P(xt |x<t) (3)

where Di denotes the dataset of Ti, λ denotes the weight of
the LM task, xt denotes the t-th words of the sample, and x<t

denotes all words prior to xt.

2.2 Metacognitive Adaptation

We propose Metacognitive Adaptation (Metac-Adapt) for
generating pseudo samples that evenly cover learned tasks
to alleviate catastrophic forgetting. Firstly, we analyze the
types of pseudo samples and their effects during lifelong
language learning. Let X = {s1, . . . , si. . . . , sM} denote a
sample with M segments. In GPT-2, a sample can be fac-
torized as the product of conditional probabilities [18]:

p(X) =
M∏

i=1

p(sM |s1, . . . , sM−1) (4)

As described in Sect. 2.1, there are four segments {B, C, Q,
A} in a sample. Therefore, the p(BCQA) can also be calcu-
lated by Eq. (4). In p(BCQA), it can be found that B and
Q are bridged by C. Since GPT-2 is a uni-directional auto-
regressive language model, much more information about
the B is diminished with the increase in length of the C
when generating the Q. As a result, the Q is easy to not
correspond to what the B represents the task. Therefore, all
types of pseudo data are detailed below: (1) Serious Non-
conformity (SN): Both the C and the Q are not correspond-
ing to the B. (2) Question-based Non-conformity (QN):
The C is corresponds to the B but the Q is not. (3) Question-
based Conformity (QC): The Q corresponds to the B but
the C is not. (4) Normal Conformity (NC): Both the C and
the Q correspond to the B.

Based on the principle of question answering, the ques-
tion is more important to judge which task a sample be-
longs to because a certain context can be asked various ques-
tions about tasks. Therefore, the model learning the SN and

Fig. 1 The framework of lifelong language learning with Metac-Adapt.

QN pseudo samples will suffer from catastrophic forgetting.
Theoretically, the upper bound of learning NC pseudo sam-
ples is learning the real data of previous tasks. The QC
pseudo samples can be regarded as data augmentation for
what their B represents tasks. Therefore, learning both the
NC and the QC pseudo data makes the model have the po-
tential to outperform learning real data of previous tasks dur-
ing LLL.

However, during actual generation, the QC pseudo
samples are hardly generated because both the contexts and
questions are distinct for various tasks. For example, the
contexts of WOZ are mainly about the restaurant search do-
main, but those of SST are mainly about movie reviews.
There are significant differences between these two tasks in
terms of words and speaking styles. Moreover, their con-
texts are strongly coupled to questions. Therefore, it is diffi-
cult to achieve forward transfer of knowledge between tasks
with different styles to generate QC pseudo samples.

L(DQ)Metac-Adapt =

|BQ|∑

t=|B|
log P(xt |x<t) (5)

The objective of our Metac-Adapt is to make the model
generate QC pseudo samples. Since a certain Q can be next
to the ever-changing C, we just focus on generating the Q
corresponding to what the B represents tasks. As shown
in Eq. (5), Metac-Adapt is to learn how to generate the Q
with the beginning of the B before generating all the pseudo
samples of previous tasks. The process of Metac-Adapt is
illustrated in Fig. 1 and detailed as follows:

(1) Judging the number of learned tasks |Tlearned | = n.
If n > 0, we sample m questions from the question database
for each the learned task KBQ to build a subset of learned
task questions KBQ. |KBQ| = n × m. Otherwise, train the
model with the first task dataset.

(2) Concatenate the KBQ with their corresponding B to
obtain the question training set DQ.

(3) Creating the model M∗n by copying the learned n
tasks modelMn. Then trainingM∗n with DQ in k epochs.

(4) ApplyingM∗n to generate pseudo samples Pn+1 for
n learned tasks.

(5) Training theMn with the n+ 1-th task datasetDn+1

and Pn+1 by the LM task and QA task.

3. Experimental Setting

3.1 Datasets and Implementation Details

For a fair comparison, we select three tasks from deca-



88
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.1 JANUARY 2023

NLP [19] following previous LAMOL-based methods: (1)
SST is a sentiment analysis dataset with two classes and is
evaluated by the exact match (EM). (2) SRL is a seman-
tic role labeling dataset and is evaluated by normalized F1
(nF1). (3) WOZ is a goal-oriented dialogue dataset and is
evaluated by the turn-based dialogue state EM (dsEM).

All experiments are run on a single Tesla P100 (12 GB)
five times and averaged. We implement our methods based
on LAMOL†. We also select GPT-2 with 12 layers. The
learning rate is 1e-4. All pseudo samples are generated with
greedy decoding. Each task order is trained with 9 epochs.
Other hyper-parameters are the same as LAMOL. All base-
lines are implemented based on the open-source code in
their papers.

3.2 Baselines

LAMOL [4]: Apply a single language model trained with
the LM task and QA task. LAMOLT and LAMOLG de-
notes the LAMOL applying task-specific token and task-
independent token as the beginning token, respectively.
LAMOLR denotes that the LAMOL samples real data of
previous tasks instead of generating pseudo data. L2KD [6]:
Distill the output layer of GPT-2 in word-level or seq-level
to improve LAMOL. L2KD applies the task-specific token
as the beginning token. We use L2KD as the representative
of the distillation method for improving LAMOL. Adap-
tive Compositional Modules (ACM) [11]: ACM adap-
tively adds new adapters and composes both old and new
modules for new tasks. We use ACM as the representa-
tive of the adapter-based method for improving LAMOL.
Mulit-task: Jointly train all tasks with the QA task.

Metac-Adaptm×k
T and Metac-Adaptm×k

G are used to rep-
resent Metac-Adapt applying task-specific token and task-
independent token as the beginning token, respectively. The
superscript denotes that Metac-Adapt samples m questions
for each previous task and then adapt the model k epochs.

4. Experimental Results

4.1 Experiments on Three Tasks

To validate the effectiveness of our proposed Metac-Adapt,
following LAMOL, we run experiments on all permutations
of three decaNLP tasks. Each permutation is evaluated on
three tasks after learning the third task and then gaining the
average score of the three tasks. The final score of a method
is the average and standard deviation (std.) of all permu-
tations. As demonstrated in LAMOL, the performance is
positively related to the value of sampling ratio γ but the
gain disappears when γ > 0.3. We choose γ ∈ {0.2, 0.05} as
pseudo samples are sufficient and insufficient where γ = 0.2
is the best setting in previous LAMOL-based methods.

As shown in Table 1, no matter whether the pseudo
samples are sufficient or insufficient, Metac-Adapt not only

†https://github.com/jojotenya/LAMOL

Table 1 The summary results on [SST, SRL, and WOZ]. Average and
Std. mean the average score and the standard deviation on six permutations
of three tasks, respectively. The Time is the summary of training time on
six permutations.

Methods
γ = 0.2 γ = 0.05

Average Std. Time (min.) Average Std.

LAMOLT 79.5 0.5 802 76.0 1.6
LAMOLG 79.7 0.8 801 74.9 3.7
LAMOLR 81.0 0.5 797 79.4 1.3

L2KD 79.9 0.3 1632 77.0 1.9
ACM 78.9 1.3 1345 77.9 1.1

Metac-Adapt8×1
T 81.6 0.5 797 79.2 1.0

Metac-Adapt8×5
T 81.2 0.3 797 79.6 0.6

Metac-Adapt8×1
G 80.8 0.6 799 76.5 2.6

Metac-Adapt8×5
G 80.7 1.1 799 77.1 2.6

Multi-task 81.5

beats all previous LAMOL-based methods but also outper-
forms LAMOLR which replays real data of previous tasks.

When γ = 0.2, Metac-Adapt8×1
T outperforms LAMOLT

by 2.1 percentage points. Metac-Adapt8×1
G has an improve-

ment of 1.1 percentage points over LAMOLG while the
std. decreases 0.4. Metac-Adapt8×1

T is 1.7 percentage points
higher than L2KD, indicating that Metac-Adapt is better
than the distillation method. Metac-Adapt8×1

T/G is better than

Metac-Adapt8×5
T/G. It demonstrates that Metac-Adapt is a

training-efficient method where the model can be biased to a
better semantic space for generating pseudo data with only
training one epoch. We counted the total training time of
each method on all permutations. As shown in Table 1, the
training time required by other LAMOL-based baselines is
1.68–2.04 times that of LAMOL, but Meta-Adapt is nearly
the same as LAMOLR. Metac-Adapt takes less time than
LAMOLT and LAMOLG. We analyze this because Metac-
Adapt can generate better pseudo-data from which models
can learn faster and better.

When γ = 0.05, the improvement of Metac-Adapt is
more significant. Metac-Adapt8×5

T is 3.6 percentage points
higher than LAMOLT while the std. decreases by 1.0. Meta-
Adapt8×5

G is 2.2 percentage points higher than LAMOLG

while the std. decrease 1.1. Metac-Adapt8×5
G outperforms

L2KD and ACM by 2.6 and 1.7 percentage points, respec-
tively, indicating that Meta-Adapt8×5

G can alleviate catas-
trophic forgetting better than distillation and adapter-based
methods when pseudo samples are insufficient.

The above are the results of each model with replay-
ing pseudo data. Since Metac-Adapt aims to generate and
replay better pseudo data instead of real data, we compare
it with LAMOLR. When γ = 0.2, Metac-Adapt8×1

T is 0.6
percentage points higher than LAMOLR. When γ = 0.05,
Meta-Adapt8×5

T outperforms LAMOLR by 0.2 percentage
points while the std. decreases by 0.7. It demonstrates that
our proposed Meta-Adapt surpasses LAMOLR in terms of
performance and is more robust for learning order.

Notably, when γ = 0.2, Metac-Adapt8×1
T is higher than

MTL by 0.1 percentage points, indicating that Metac-Adapt
has the potential to apply LLL to real-world scenarios.
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4.2 The Quality of Pseudo Samples

In this section, we analyze whether the improvement of
Metac-Adapt comes from generating better pseudo samples.
We apply the CPS [8] to evaluate the quality of pseudo sam-
ples. The CPS is a BLEU-based method that calculates
sample-averaged BLEU scores between the pseudo samples
and the training dataset of each learned task to obtain the
distribution of knowledge of learned tasks, and then cal-
culates the Jensen-Shannon divergence between the BLEU
distribution and the uniform distribution. As described in
[8], the lower the value of CPS represents better pseudo
samples, which are beneficial to prevent catastrophic forget-
ting. CPS-n represents the quality of pseudo-data generated
after learning n tasks.

In order to correspond with the results in Table 1 and
analyze the influence of different tasks, we calculate CPS-
2 on three task orders where the first two tasks are differ-
ent (SST-SRL-WOZ (Order I), SRL-SST-WOZ (Order III),
WOZ-SST-SRL (Order IV)). As shown in Table 2, Metac-
Adapt generates better pseudo data than other LAMOL-
based baselines, which indicates that the gain of Metac-
Adapt really comes from improving the quality of pseudo
data. In addition, it can also be found that using the task-
specific token is better than using the task-independent to-
ken, which is also in line with the performance of the corre-
sponding method in Table 1.

When γ = 0.05, compared with LAMOLT and
LAMOLG, Metac-AdaptT and Metac-AdaptG can reduce
CPS-2 by 30.4–95.8% and 0.8–12.8%, respectively. In
the results of SST-SRL-WOZ, the CPS-2 of Metac-AdaptG
is higher than LAMOLG, but the performance is bet-
ter. This opposite result is because both BLEUS S T =

0.1704 and BLEUS RL = 0.264 in the pseudo samples gen-
erated by LAMOLG are greatly reduced, but in Metac-
AdaptG only BLEUS S T = 0.111 dropped significantly while
BLEUS RL = 0.4358 remained high. When γ = 0.2, com-

Table 2 The CPS-2 results on task orders: SST-SRL-WOZ (Order I),
SRL-SST-WOZ (Order III), WOZ-SST-SRL (Order IV).

γ Methods Order I Order III Order IV

0.05

LAMOLT 0.0203 0.1303 0.1110
L2KD 0.1110 0.0805 0.0080

Metac-Adapt8×1
T 0.0043 0.0908 0.0067

Metac-Adapt8×5
T 0.0038 0.0587 0.0047

LAMOLG 0.0236 0.6682 0.5258
Metac-Adapt8×1

G 0.1253 0.8016 0.5218

Metac-Adapt8×5
G 0.2029 0.5828 0.4651

0.2

LAMOLT 0.0613 0.0647 0.0109
L2KD 0.1317 0.0511 0.0223

Metac-Adapt8×1
T 0.0330 0.0355 0.0172

Metac-Adapt8×5
T 0.0224 0.0375 0.0112

LAMOLG 0.1163 0.2898 0.1641
Metac-Adapt8×1

G 0.0168 0.1557 0.0841

Metac-Adapt8×5
G 0.0293 0.1774 0.0808

pared with LAMOLT and LAMOLG, Metac-AdaptT and
Metac-AdaptG can reduce CPS-2 by 41.9–63.6% and 38.8–
85.5%, respectively.

5. Conclusion

In this paper, we proposed Metac-Adapt to alleviate catas-
trophic forgetting during LLL almost without additional
time cost and computational resources. Before generating
pseudo samples of previously learned tasks, we adapt the
model with a mini-subset of previous tasks’ questions to-
wards better semantic space for generating. Experimental
results demonstrate that Metac-Adapt is on par with MTL or
even slightly higher, indicating that Metac-Adapt has the po-
tential to be applied to real-world scenarios. In future work,
we will explore longer task orders that cover more fields of
NLP.

References

[1] G.I. Parisi, R. Kemker, J.L. Part, C. Kanan, and S. Wermter, “Contin-
ual lifelong learning with neural networks: A review,” Neural Net-
works, vol.113, pp.54–71, 2019.

[2] R. Polikar, L. Upda, S.S. Upda, and V.G. Honavar, “Learn++: An in-
cremental learning algorithm for supervised neural networks,” IEEE
Trans. Syst. Man Cybern. Part C, vol.31, no.4, pp.497–508, 2001.

[3] R.M. French, “Catastrophic forgetting in connectionist networks,”
Trends in Cognitive Sciences, vol.3, no.4, pp.128–135, 1999.

[4] F.K. Sun, C.H. Ho, and H.Y. Lee, “Lamol: Language modeling for
lifelong language learning,” Proc. ICLR 2020, 2019.

[5] Z. Chen and B. Liu, Lifelong Machine Learning, Second Edition,
Morgan & Claypool Publishers, 2018.

[6] Y.-S. Chuang, S.-Y. Su, and Y.-N. Chen, “Lifelong language knowl-
edge distillation,” Proc. EMNLP, pp.2914–2924, 2020.

[7] J. Sun, S. Wang, J. Zhang, and C. Zong, “Distill and replay for con-
tinual language learning,” Proc. COLING, pp.3569–3579, 2020.

[8] H. Wang, R. Fu, C. Li, X. Zhang, J. Zhou, X. Bai, Y. Yan, and
Q. Zhao, “Reminding the incremental language model via data-free
self-distillation,” Applied Intelligence, 2022.

[9] K. Kanwatchara, T. Horsuwan, P. Lertvittayakumjorn, B. Kijsirikul,
and P. Vateekul, “Rational LAMOL: A rationale-based lifelong
learning framework,” Proc. ACL, pp.2942–2953, 2021.

[10] A. Madotto, Z. Lin, Z. Zhou, S. Moon, P. Crook, B. Liu, Z. Yu,
E. Cho, P. Fung, and Z. Wang, “Continual learning in task-oriented
dialogue systems,” Proc. EMNLP, pp.7452–7467, 2021.

[11] Y. Zhang, X. Wang, and D. Yang, “Continual sequence generation
with adaptive compositional modules,” Proc. ACL, pp.3653–3667,
2022.

[12] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. de
Laroussilhe, A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-
efficient transfer learning for NLP,” Proc. ICML, 2019.

[13] X. Wang, L. Lian, Z. Miao, Z. Liu, and S.X. Yu, “Long-tailed recog-
nition by routing diverse distribution-aware experts,” Proc. ICLR,
2021.

[14] J.H. Flavell, “Metacognition and cognitive monitoring: A new
area of cognitive-developmental inquiry,” American Psychologist,
vol.34, no.10, pp.906–911, 1979.

[15] L. Bowler, “Talk as a metacognitive strategy during the information
search process of adolescents,” Inf. Res., vol.15, no.4, paper 449,
2010.

[16] D.W. Braithwaite and L. Sprague, “Conceptual knowledge, procedu-
ral knowledge, and metacognition in routine and nonroutine problem
solving,” Cogn. Sci., vol.45, no.10, e13048, 2021.

[17] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,

http://dx.doi.org/10.1016/j.neunet.2019.01.012
http://dx.doi.org/10.1109/5326.983933
http://dx.doi.org/10.1016/s1364-6613(99)01294-2
http://dx.doi.org/10.2200/s00832ed1v01y201802aim037
http://dx.doi.org/10.18653/v1/2020.emnlp-main.233
http://dx.doi.org/10.18653/v1/2020.coling-main.318
http://dx.doi.org/10.1007/s10489-022-03678-y
http://dx.doi.org/10.18653/v1/2021.acl-long.229
http://dx.doi.org/10.18653/v1/2021.emnlp-main.590
http://dx.doi.org/10.18653/v1/2022.acl-long.255
http://dx.doi.org/10.1037/0003-066x.34.10.906
http://InformationR.net/ir/15-4/paper449.html
http://dx.doi.org/10.1111/cogs.13048


90
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.1 JANUARY 2023

“Language models are unsupervised multitask learners,” OpenAI
blog, 2019.

[18] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural proba-
bilistic language model,” J. Mach. Learn. Res., vol.3, pp.1137–1155,
2003.

[19] B. McCann, N.S. Keskar, C. Xiong, and R. Socher, “The natural lan-
guage decathlon: Multitask learning as question answering,” arXiv
preprint arXiv:1806.08730, 2018.

http://dx.doi.org/10.48550/arXiv.1806.08730

