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Modality-Fused Graph Network for Cross-Modal Retrieval

Fei WU†a), Member, Shuaishuai LI†, Guangchuan PENG†, Yongheng MA†, and Xiao-Yuan JING††, Nonmembers

SUMMARY Cross-modal hashing technology has attracted much at-
tention for its favorable retrieval performance and low storage cost. How-
ever, for existing cross-modal hashing methods, the heterogeneity of data
across modalities is still a challenge and how to fully explore and utilize
the intra-modality features has not been well studied. In this paper, we pro-
pose a novel cross-modal hashing approach called Modality-fused Graph
Network (MFGN). The network architecture consists of a text channel and
an image channel that are used to learn modality-specific features, and a
modality fusion channel that uses the graph network to learn the modality-
shared representations to reduce the heterogeneity across modalities. In
addition, an integration module is introduced for the image and text chan-
nels to fully explore intra-modality features. Experiments on two widely
used datasets show that our approach achieves better results than the state-
of-the-art cross-modal hashing methods.
key words: cross-modal hashing, modality fusion channel, graph network

1. Introduction

With the rapid development of the Internet, multimedia data
is growing explosively. This massive multi-modal data has
intricate cross-correlation relationships, and by exploiting
the potential semantic associations among this multi-modal
data, we can realize large-scale cross-modal data retrieval.
In general, data of different modalities is heterogeneous.
In recent years, to handle the modality gap issue, several
cross-modal retrieval methods have been presented to ex-
plore common representations of multi-modal data.

Cross-modal hashing methods have received a lot of
attention for their efficient retrieval efficiency and low stor-
age cost. In general, existing methods can be generally cat-
egorized as unsupervised and supervised methods. Super-
vised information is not used in unsupervised methods [1],
and the original data is projected into a common embed-
ding space by exploring the underlying distribution and
structure among multi-modal data representations. In con-
trast, supervised methods [2], [3] use semantic information
(e.g., labels) as supervision to model the correlation between
modalities to learn more discriminative hash representa-
tions, thus significantly improving retrieval performance.

In recent years, a set of deep learning based cross-
modal hashing methods have been developed to make use
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of the tagging information for learning discriminative hash-
ing codes. For example, Jing et al. presented the DCMH
method [4], which firstly introduced deep learning into
cross-modal hashing. Li et al. developed SSAH [5], by
using adversarial learning to maintain semantic relevance
and consistency across modalities, and designed a self-
supervised semantic network that supervises the training
of image and text networks. AGAH [6] uses an adversar-
ial learning-guided multi-label attention module to enhance
feature learning to learn discriminative feature representa-
tions. Xie et al. presented the consistency optimization
module and the multi-task adversarial learning module in
CPAH [7] for learning semantic consistency information be-
tween modalities. In DADH [8], feature alignment is per-
formed by using adversarial training, and weighted cosine
triad loss is addressed for inter-modal similarity preserva-
tion. In MLCAH [9], a multi-level correlation hashing algo-
rithm is proposed, which encodes multi-level correlation in-
formation into hash codes by designing global and local se-
mantic alignment mechanisms. In SAAH [10], a semantic-
guided adversarial autoencoder hashing model is provided
to handle inter-modal heterogeneity and improve retrieval
accuracy by combining self-encoder and adversarial learn-
ing.

However, there still exists much room for improvement
for existing cross-modal hashing methods. How to effec-
tively reduce modality difference by well modeling multi-
modal structure and semantic association, and simultane-
ously make full use of the intra-modal features has not
been well studied. In this paper, inspired by the success
of graph networks in various tasks, we propose a new cross-
modal hashing approach called modality-fused graph net-
work (MFGN). The contributions of our work are:

(1) The network architecture of MFGN consists of an
image channel, a text channel and a modality fusion chan-
nel. The modality fusion channel fuses features of image
and text channels to construct adjacency matrix, and adopts
the graph network to learn the modality-shared representa-
tions. These shared representations are used to bridge cross-
modal gap with the designed pairwise loss and the intra- and
inter-modal discrimination loss.

(2) An integration module is designed for the image
and text channels, which is used to aggregate low-level
and high-level intra-modal features, such that intra-modal
features are fully utilized for learning discriminative hash
codes.

(3) We evaluate the effectiveness of our approach on
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two widely used large-scale cross-modal retrieval datasets,
i.e., MIRFlickr-25K [11] and NUS-WIDE [12]. The experi-
mental results show that our approach can achieve state-of-
the-art cross-modal hashing performance.

2. Our Approach

Given a multi-modal dataset D = {I,T }, where I =
[i1, i2, · · · , iN] ∈ RN×di and T = [t1, t2, · · · , tN] ∈ RN×dt

respectively denote the feature matrices of image and text
modalities, N is the total number of feature vectors of im-
age/text modality and feature dimension di � dt. Moreover,
multi-label attached to the pth image-text pair op = (ip, tp)
is represented as lp = {0, 1}C×1, and C denotes the number
of categories. If op belongs to the cth category, lpc = 1, oth-
erwise lpc = 0. As shown in the Fig. 1, the architecture of
MFGN is an end-to-end learning framework consisting of
three channels, including the image channel, the text chan-
nel, and the modality fusion channel. The goal of MFGN is
to learn the hash codes BI = {−1,+1}K and BT = {−1,+1}K
for two modalities, where K is the length of the hash codes.

2.1 Modality Fusion Channel

In the modality fusion channel, Graph Convolutional Net-
works (GCN) [13] is used to learn modality-shared feature
representations. We first concatenate image and text features
to obtain R = [I′; T ′], where I′ and T ′ are normalizations
of I and T . To fully explore multi-modal structure and se-
mantic similarity relationship, we build an undirected graph
G = (R,Q), which is a graph of size N with nodes Ri ∈ R
and edges (Ri,Rj) ∈ Q. Each layer of GCN is defined as

Hl = tanh(D−
1
2 AD−

1
2 Hl−1θl) (1)

where A is the adjacency matrix, Dii =
∑

j Ai j, θl denotes
the parameters to be optimized for the lth layer network.
In addition, H0 is the input for GCN and H0 = P. Here,
P = [I; ET ], where ET is the encoded text feature of T by
using a fully connected layer. ET has the same dimension
as that of I. H2 is the output of GCN and ZS = H2.The
construction of adjacency matrix A is important for graph
representation learning, as it guides the network to aggre-
gate information for each node for learning discriminative
representations. Firstly, we use the Cosine distance to quan-
tify the similarity between instances as Ji j = (Ri)

T R j where

Fig. 1 The overall network architecture of our MFGN approach.

a larger Ji j indicates a greater similarity between features
Ri and sample Rj, and conversely, a smaller one. However,
using the Cosine distance alone is not sufficient to mine the
structural information well. We thus also introduce the Eu-
clidean distance to calculate the distance between features.
The Euclidean distance based similarity matrix O is con-
structed as

Oi j = exp
(
−
√∥∥∥Ri − Rj

∥∥∥
2
/ρ
)

(2)

where ρ is a scaling parameter and is set to 4 in this paper.
Then, O is combined with J to obtain the total similarity
metric matrix U

Ui j = (Ri)
T R j ∗ exp

(
−
√∥∥∥Ri − Rj

∥∥∥
2
/ρ
)

(3)

Finally, the obtained similarity metric matrix U is com-
bined with the label-based similarity matrix S to obtain the
adjacency matrix A

Ai j = Ui j ∗ S i j (4)

where S i j = 1 means that features Ri and Rj have at least
one same label and they are similar in semantics. If S i j = 0,
it means that there is no same label between Ri and Rj and
they are not similar in semantics.

2.2 Integration Module

To fully explore intra-modality features, we propose an inte-
gration module to aggregate features of different dimensions
to ensure the semantic integrity in the encoding process for
the image and text channels. Specifically, taking the image
modality as an example, the input image feature set I is en-
coded by fully connected layers to obtain low-dimensional
features MI , i.e., MI = f M

I (I). We combine the low-level
and high-level features to obtain the output of the module,
i.e., FI = [I; MI]. In the same way, we can obtain the output
FT = [ET ; MT ] for the text modality. Then, we use three
fully connected layers to perform further feature mapping
for image modality and text modality, i.e., F1

K = f 1
K(FK),

F2
K = f 2

K(F1
K), ZK = f 3

K(F2
K), K ∈ {I,T }, respectively.

2.3 Total Loss

To reduce the inter-modal heterogeneity, we define the fol-
lowing pairwise loss, aiming to reduce the differences be-
tween ZI and ZS , and between ZT and ZS .
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Lp = ‖ZI − ZS ‖2F + ‖ZT − ZS ‖2F (5)

In order to maintain the similarity between hash codes,
we introduce the cosine triplet loss. Each triplet consists
of an anchor point and corresponding positive and negative
points, denoted as {ν, ε+, ε−}. ε+ is a positive feature, which
means this feature has at least one same label as the anchor
feature. And ε− is a negative feature, which does not have
the same label as the anchor point. The cosine triplet loss is
defined as follows

Ltri=
∑
i, j,k

max
(
cos
(
vi, ε

−
k

)
− cos

(
vi, ε

+
j

)
+ m, 0

)
(6)

where m is a margin parameter. According to this definition,
we define intra-modal discrimination loss Lintra to jointly ex-
plore discriminant information in image, text and modality
fusion channels

Lintra =
∑
i, j,k

max
(
cos
(
Zi

I ,Z
j−
I

)
− cos

(
Zi

I ,Z
k+
I

)
+ m, 0

)

+
∑
i, j,k

max
(
cos
(
Zi

T ,Z
j−
T

)
− cos

(
Zi

T ,Z
k+
T

)
+ m, 0

)

+
∑
i, j,k

max
(
cos
(
Zi

S ,Z
j−
S

)
− cos

(
Zi

S ,Z
k+
S

)
+ m, 0

)

(7)

In addition, we also focus on cross-modal discriminant in-
formation exploration, and define the inter-modal discrimi-
nation loss Linter

Linter =
∑
i, j,k

max
(
cos
(
Zi

I ,Z
j−
T

)
− cos

(
Zi

I ,Z
k+
T

)
+ m, 0

)

+
∑
i, j,k

max
(
cos
(
Zi

T ,Z
j−
I

)
− cos

(
Zi

T ,Z
k+
I

)
+ m, 0

)

+
∑
i, j,k

max
(
cos
(
Zi

I ,Z
j−
S

)
− cos

(
Zi

I ,Z
k+
S

)
+ m, 0

)

+
∑
i, j,k

max
(
cos
(
Zi

T ,Z
j−
S

)
− cos

(
Zi

T ,Z
k+
S

)
+ m, 0

)

(8)

To improve the retrieval efficiency and reduce the stor-
age cost, we further map the feature representations to Ham-
ming space to obtain the corresponding hash codes, and re-
duce the quantization error between the hash code and the
real-valued embeddings by using the quantization loss

Lq = ‖HI − ZI‖2F + ‖HT − ZT ‖2F (9)

where H∗ = sign (Z∗) , ∗ ∈ {I,T }.
Finally, the total loss function can be formulated as

Ltotal = Linter + αLintra + βLp + γLq (10)

where α, β and γ are balance factors.

3. Experiments

3.1 Datasets

MIRFlickr-25K: This dataset consists of 25,000 image-text

Table 1 Details of two datasets.

Dataset Total Train Test Retrieval Labels
MIRFlickr-25K 20,015 10,000 2,000 18,015 24

NUS-WIDE 195,834 10,500 2,100 193,734 21

pairs, each belonging to at least one of the 24 categories. In
experiments, we select the image-text pairs with at least 20
labels with a total of 20,015 pairs. The text of each image-
text pair is represented as a 1,386-dimensional bag-of-words
vector, while the image features are extracted using CNN-
F [14] pre-trained on ImageNet with 4,096-D features.

NUS-WIDE: It is a commonly used dataset containing
269,548 image-text pairs, where each image-text pair is la-
beled with at least one of the 81 labels. In experiments, we
select 195,834 image-text pairs with the most common 21
category labels. For each instance, the text is transformed
into a 1,000-dimensional bag-of-words vector, and 4,096-
dimensional features are extracted for images. The detailed
division of these two datasets is shown in Table 1.

3.2 Implementation Details

The details of the network are as follows: the text channel
uses a fully connected layer for feature encoding to obtain
the feature representations with the same dimensionality as
images, i.e., dt → di. The integration module further uses
the fully connected layer to reduce the dimensionality of im-
age/text features, i.e., di → 512. Finally, the image/text
channel learns the discriminative hash codes using three
fully-connected layers, i.e, 4608→ 1024→ 256→ K. The
above networks, except for the output layer, are activated us-
ing ReLu, and the output layer is activated using Tanh. The
modality fusion channel uses a two-layer GCN to learn the
modal-shared representations, i.e., 8192→ 2048→ K.

In experiments, the hyper-parameters α, β and γ are set
to 10, 10 and 0.01, respectively. In addition, the learning rate
is 0.001 and we optimize the whole network using the SGD
Optimizer. We focus on two cross-modal retrieval tasks: text
retrieval by image query (image→ text) and image retrieval
by text query (text → image). We use the Mean Average
Precision (MAP), i.e., the mean of the Average Precision
(AP) of all queries, to evaluate the effectiveness of MFGN.

3.3 Comparison with the State-of-the-Arts

Table 2 shows the results of our approach on MIRFlickr-
25K and NUS-WIDE datasets compared with state-of-the-
art cross-modal hashing methods. From the table, we can
see that our approach is always superior to other methods
in terms of MAP for specific hash code length. Taking the
hash code length of 32 as an example on the MIRFlickr-25K
dataset, MFGN at least improves 0.004 = (0.812-0.808) in
the case of I2T and 0.006 = (0.816-0.810) in the case of
T2I on MAP, and on NUS-WIDE, MFGN at least improves
0.006 = (0.692-0.686) in the case of I2T, and at least 0.019
= (0.718-0.699) in the T2I case. The improvement is mainly
due to the fact that our approach specially designs the graph
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Table 2 The comparison results on the MIRFlickr-25K and NUS-WIDE datasets.

Dataset Method
I2T T2I

Dataset Method
I2T T2I

16 bits 32 bits 64bits 16 bits 32 bits 64bits 16 bits 32 bits 64bits 16 bits 32 bits 64bits

MIRFlickr

DCMH [4] 0.735 0.737 0.751 0.763 0.764 0.766

NUS-WIDE

DCMH [4] 0.478 0.486 0.488 0.638 0.651 0.657
SSAH [5] 0.782 0.790 0.800 0.791 0.795 0.803 SSAH [5] 0.642 0.636 0.639 0.669 0.662 0.666
AGAH [6] 0.770 0.795 0.805 0.763 0.773 0.797 AGAH [6] 0.652 0.655 0.657 0.631 0.645 0.640
CPAH [7] 0.773 0.792 0.800 0.783 0.801 0.806 CPAH [7] 0.660 0.686 0.698 0.695 0.699 0.712
DADH [8] 0.791 0.807 0.815 0.797 0.810 0.815 DADH [8] 0.636 0.667 0.672 0.657 0.674 0.707

MLCAH [9] 0.796 0.808 0.815 0.794 0.805 0.808 MLCAH [9] 0.644 0.641 0.643 0.662 0.673 0.687
SAAH [10] 0.792 0.796 0.815 0.795 0.803 0.806 SAAH [10] 0.628 0.646 0.656 0.651 0.663 0.659

MFGN 0.800 0.812 0.816 0.801 0.816 0.822 MFGN 0.665 0.692 0.708 0.703 0.718 0.726

Table 3 Comparison of different variants of MFGN.

Dataset Method
I2T T2I

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

MIRFlickr
MFGN-f 0.789 0.804 0.815 0.787 0.803 0.812
MFGN-i 0.790 0.808 0.814 0.800 0.811 0.818
MFGN 0.800 0.812 0.816 0.801 0.816 0.822

NUS-WIDE
MFGN-f 0.648 0.674 0.703 0.656 0.695 0.717
MFGN-i 0.655 0.685 0.705 0.688 0.712 0.721
MFGN 0.665 0.692 0.708 0.703 0.718 0.726

network based modality fusion channel to deal with modal-
ity gap, and provides the integration module to effectively
combine low-level and high-level intra-modal features to
learn discriminative hash codes.

3.4 Discussion

In this section, we evaluate the importance of the main com-
ponents in MFGH. We name the removal of the modality fu-
sion channel as MFGN-f and the removal of the integration
module as MFGN-i. Table 3 shows the results of MFGN-f,
MFGN-i, and MFGN. We can be seen that both MFGN-f
and MFGN-i are inferior to MFGN, which indicates the ef-
fectiveness of these two components.

This comparison implies that modality fusion channel
(with the designed pairwise loss and inter-modal discrimi-
nation loss) and integration module can effectively reduce
the heterogeneity between data of different modalities and
improve the performance of cross-modal hashing.

4. Conclusions

In this paper, we propose a novel cross-modal hashing ap-
proach called MFGN. Aiming to uncover the commonness,
the modality fusion channel learns modality-shared feature
representations with graph network, which acts as an inter-
medium to effectively bridge the gap between image and
text modalities. Furthermore, intra-modal features are fully
explored by using the integration module to facilitate dis-
criminant hash code learning. Extensive experiments on two
benchmark datasets demonstrate the effectiveness of our ap-
proach. The results also demonstrate the effectiveness of the
main components of MFGN.
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