
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.4 APRIL 2023
565

LETTER

TEBAS: A Time-Efficient Balance-Aware Scheduling Strategy for
Batch Processing Jobs

Zijie LIU†a), Can CHEN†, Yi CHENG†, Maomao JI†, Jinrong ZOU†, Nonmembers,
and Dengyin ZHANG†b), Member

SUMMARY Common schedulers for long-term running services that
perform task-level optimization fail to accommodate short-living batch pro-
cessing (BP) jobs. Thus, many efficient job-level scheduling strategies are
proposed for BP jobs. However, the existing scheduling strategies per-
form time-consuming objective optimization which yields non-negligible
scheduling delay. Moreover, they tend to assign BP jobs in a centralized
manner to reduce monetary cost and synchronization overhead, which can
easily cause resource contention due to the task co-location. To address
these problems, this paper proposes TEBAS, a time-efficient balance-aware
scheduling strategy, which spreads all tasks of a BP job into the cluster
according to the resource specifications of a single task based on the ob-
servation that computing tasks of a BP job commonly possess similar fea-
tures. The experimental results show the effectiveness of TEBAS in terms
of scheduling efficiency and load balancing performance.
key words: batch processing (BP) job scheduling, time-efficient, balance-
aware, cloud computing

1. Introduction

Different from long-term running services, each batch pro-
cessing (BP) job typically contains multiple independent
tasks to process extremely large amounts of data in parallel
within a short lifespan (e.g., map function of MapReduce
and data-parallel distributed machine learning). Common
schedulers for long-term running services like YARN∗ and
Kubernetes∗∗ perform task-level optimization which focuses
on finding the optimal placement for each individual task
in a pipelined manner. However, the lack of consideration
of job features during the scheduling process prevents these
task-level schedulers from being directly adapted to BP jobs.

Diverse job-level scheduling strategies have been pro-
posed recently to reduce monetary cost, energy consump-
tion, and synchronization overhead via objective optimiza-
tion. Volcano∗∗∗ is a batch scheduler based on Kube-batch,
which involves multiple actions and scheduling plugins to
reduce monetary cost. Liquid [1] tends to distribute jobs in
a centralized manner to reduce synchronization overhead.
Several greedy strategies are proposed in [2] to minimize
cost consumption within the deadline by tuning CPU fre-
quency for BP jobs based on the initial placement. To ex-
tend this, a comparative analysis of multiple initial place-

Manuscript received September 30, 2022.
Manuscript revised December 5, 2022.
Manuscript publicized December 28, 2022.
†The authors are with the School of Internet of Things, Nanjing

University of Posts and Telecommunications, Nanjing, China.
a) E-mail: 2019070274@njupt.edu.cn
b) E-mail: zhangdy@njupt.edu.cn (Corresponding author)

DOI: 10.1587/transinf.2022EDL8080

ment heuristics is conducted in [3] to figure out how initial
placement affects the greedy strategies above. ESMS [4] is
an elastic scheduling algorithm which makes redundant re-
source configuration for upcoming jobs to minimize the fi-
nancial cost of cloud resources under deadline constraints.
Chen et al. [5] propose DUCO to minimize the execution
cost by reducing the slack time of adjacent tasks. To obtain
the minimum execution cost, CETSS [6] greedily assigns
tasks to virtual machine instances with lower execution cost
followed by adjusting tasks for parallel execution. In ad-
dition, other researchers attempt to perform multi-objective
optimization for BP jobs. In [7], an improved genetic algo-
rithm called DCHG-TS with customized genetic operators
is proposed to co-optimize cost and makespan. In [8] and
[9], Bugingo et al. leverage the multi-decision making algo-
rithm with equal weight and specified weight, respectively,
to co-optimize the energy and financial cost.

However, the above scheduling strategies perform
time-consuming objective optimization which yields non-
negligible scheduling delay for short-living BP jobs. More-
over, these strategies attempt to minimize the monetary cost,
energy consumption, and synchronization overhead by as-
signing BP jobs in a centralized manner. Considering com-
puting tasks of the BP job commonly demand the same
resource type, these scheduling strategies can easily suffer
from resource contention caused by the task co-location.
To address these problems, several distributed schedulers
are proposed to reduce scheduling overhead while improv-
ing load balancing performance [10], [11]. However, this
divide-and-conquer approach fails to maintain a global view
of cluster resources, resulting in a sub-optimal assignment.
Thus, this paper proposes a time-efficient balance-aware
scheduling strategy called TEBAS. Based on the obser-
vation that computing tasks of a BP job possess similar
resource consumption features, TEBAS assigns a BP job
by merely considering the resource specifications of a sin-
gle task, which significantly improves scheduling efficiency
compared with the existing optimization-based scheduling
strategies. Different from the existing scheduling strategies
which assign tasks in a centralized manner, TEBAS spreads
tasks based on the proposed Fitness metric to achieve a
trade-off between task-node fitness and load balancing per-

∗https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-
yarn-site/YARN.html

∗∗https://kubernetes.io/
∗∗∗https://volcano.sh/en/

Copyright c© 2023 The Institute of Electronics, Information and Communication Engineers

566
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.4 APRIL 2023

formance, thereby efficiently reducing resource contention.

2. TEBAS Design

2.1 Problem Formulation

Given that a BP job cluster with |N| nodes where n denotes
a node in the cluster (n ∈ N). T js represents the task set
of the unscheduled job js where t denotes an unscheduled
task of job js (t ∈ T js). Let rcpu

t (rmem
t) be the CPU (mem-

ory) resources demanded by task t. For node n, let Ccpu
n

and Cmem
n be the CPU and memory resource capacity, re-

spectively. Ucpu
n (Umem

n) and Rcpu
n (Rmem

n) denote the con-
sumed and remaining CPU (memory) resources of node n.
Xn

t ∈ {0, 1} denotes whether task t is deployed to node n.
Using the above notations, we represent the maximum re-
source utilization percentage in cluster N as maxUtil, which
is defined in Eq. (1).

maxUtil = max
n∈N

⎛⎜⎜⎜⎜⎜⎜⎝
Ucpu

n + Dcpu
n,T js

Ccpu
n

,
Umem

n + Dmem
n,T js

Cmem
n

⎞⎟⎟⎟⎟⎟⎟⎠ (1)

where Dcpu
n,T js

(Dmem
n,T js

) represents the allocated CPU (mem-
ory) resources of node n for tasks in T js , which is defined
in Eq. (2) (Eq. (3)). The first term and the second term in
Eq. (1) denote the CPU and memory utilization of node n
after performing task assignment for T js .

Dcpu
n,T js
=
∑
t∈T js

rcpu
t Xn

t (2)

Dmem
n,T js
=
∑
t∈T js

rmem
t Xn

t (3)

To reduce resource contention between co-located tasks, this
paper attempts to find the optimal task assignment solu-
tion X∗ from X = [Xn

t]T js×n which achieves the minimum
maxUtil under several constraints from (5) to (9).

X∗ = arg min
X

(maxUtil) (4)

n ∈ N, t ∈ T js (5)

X = [Xn
t]T js×N , Xn

t = {0, 1} (6)∑
n∈N

Xn
t ≤ 1 (7)

∑
t∈T js

rcpu
t Xn

t ≤ Rcpu
n (8)

∑
t∈T js

rmem
t Xn

t ≤ Rmem
n (9)

Constraint (7) represents each unscheduled task t in T js

should be assigned to the whole cluster once. Constraint
(8) and Constraint (9) denote the demanded resources of all
unscheduled tasks in T js should not exceed the remaining
resources of any node in the cluster.

2.2 TEBAS

To obtain a near-optimal assignment solution in polynomial

time, a simple but effective way is to spread all computing
tasks across the cluster. However, this naive strategy is in-
sufficient for BP job scheduling due to lacking the consid-
eration of task-node fitness. Thus, according to Amdahl’s
law [12], TEBAS proposes Fitness metric for quantifying
the relative performance gain from assigning the task to
one node. Different from the naive spread-based strategy,
TEBAS divides the node set N into several groups accord-
ing to Fitness value and attempts to spread tasks to nodes
with higher Fitness value to get a trade-off between task-
node fitness and load balancing performance. Addition-
ally, TEBAS proposes RemainCap metric to ensure the fi-
nal solution meets these constraints. The logic of TEBAS is
shown in Algorithm 1.

2.2.1 TEBAS Description

We assume that a BP job consists of multiple tasks of the
same type. This assumption is supported by the fact that
one common job can be divided into several sub-jobs with
the same task type. Based on the observation that comput-
ing tasks of a BP job commonly possess similar features,
TEBAS assigns a BP job based on the resource specifica-
tions of a single task which efficiently improves scheduling
efficiency (Line 1). Then, Fitness and RemainCap value
of each node in N are calculated (Line 3–6). Fitness met-
ric represents the relative performance gain from assigning
the task to one node (Line 4). Where αt denotes the par-
allelized part of task t, which can be obtained using the
evaluation method presented in [13]. kn denotes the rela-
tive performance gain obtained by running αt on node n,
which is represented by the product of rcpu

t and the CPU fre-
quency of node n. RemainCap metric represents the max-
imum number of tasks one node could deploy according
to CPU and memory resource state (Line 5). After that,
nodes in N are sorted in a descending order according to
Fitness value (Line 7). TEBAS divides the sorted node set
N∗ into P groups (Line 8–9). Note that the division num-
ber P is determined by the configurable parameter β. Sub-
sequently, TEBAS spreads all unscheduled tasks to node
groups as the initial assignment solution until no unsched-
uled task remains or cluster resources are exhausted without
considering Constraint (8) and Constraint (9) (Line 12–17).
TEBAS attempts to assign aveTaskAllocated tasks to each
node within the same node group N∗p. Note that all unsched-
uled tasks are assigned to these node groups in order so that
nodes with higher Fitness values prioritize task assignment.
Lastly, TEBAS tunes the initial assignment solution to meet
resource constraints (Line 18–34) and returns the final as-
signment solution.

2.2.2 Computational Complexity

In Line 4–5 of Algorithm 1, RemainCap and Fitness cal-
culation of each node yield the computational complexity
of O(1). Note that RemainCap and Fitness calculation of
each node is performed in parallel due to independence, the

LETTER
567

Algorithm 1 TEBAS
Input:

Node set of the cluster, N
All unscheduled tasks of job js, T js

Output:
Task assignment set of T js , assignS etT js

1: t ← T js [0];
2: assignS etT js = ∅;
3: for each n ∈ N do
4: Fitnessn =

1
(1−αt)+

αt
kn

;

5: RemainCapn = min
(

Rcpu
n

rcpu
t
,

Rmem
n

rmem
t

)
;

6: end for
7: N∗ = DescendOrdering(Fitness, N);
8: P = �|N |/β	;
9: N∗1 , N∗2 , . . . , N∗P = NodeDivision(N∗, P);

10: while |assignS etT js | < |T js | do
11: for each n ∈ N∗ do
12: if n is the first element in N∗p (p = 1, 2, . . . , P − 1) then

13: aveTaskAllocated =
|T js |−|assignS etT js

|
�|N |/P	 ;

14: end if
15: if n is the first element in N∗P then

16: aveTaskAllocated =
|T js |−|assignS etT js

|
|N |−�|N |/P	(P−1) ;

17: end if
18: if (aveTaskAllocated < 1) ∧ (RemainCapn > 0) then
19: assignS etT js ← assignS etT js ∪ {n};
20: RemainCapn = RemainCapn - 1;
21: end if
22: if (aveTaskAllocated ≥ 1)∧ (aveTaskAllocated >RemainCapn)

then
23: cap = RemainCapn;
24: for index from 1 to cap do
25: assignS etT js ← assignS etT js ∪ {n};
26: RemainCapn = RemainCapn - 1;
27: end for
28: end if
29: if (aveTaskAllocated ≥ 1)∧ (aveTaskAllocated ≤RemainCapn)

then
30: for index from 1 to aveTaskAllocated do
31: assignS etT js ← assignS etT js ∪ {n};
32: RemainCapn = RemainCapn - 1;
33: end for
34: end if
35: if |assignS etT js | == |T js | then
36: break;
37: end if
38: end for
39: end while
40: return assignS etT js

computational complexity of Line 3–6 in Algorithm 1 re-
mains to be O(1). Further, the computational complexity of
node ordering is O(|N| log |N|). As for Line 10–39, The com-
putational complexity is O(|T js |) because assignS etT js ←
assignS etT js ∪ {n} yields the computational complexity of
O(|T js |). Assume that |T js | |N|, the computational com-
plexity of TEBAS is O(|N| log |N|).

3. Evaluation

3.1 Experimental Setup

We implement TEBAS in Kubernetes as a non-intrusive

scheduling plugin. Note that β is set to 3 as the default value.
We select Kube-scheduler and Volcano as the baseline meth-
ods and compare TEBAS with them on NodeSimulator†
which emulates the workflow of Kubernetes components.
In our experiments, we consider a Kubernetes cluster con-
sisting of 1 Kubernetes Master and 10 Kubernetes Nodes,
each of which possesses 40-core CPU and 64 GB memory
resources.

3.2 Comparison with Baseline Methods

3.2.1 Scheduling Efficiency

We define scheduling efficiency as the latency consumed by
assigning a BP job. We increase the number of tasks in a
BP job from 10 to 250. The comparison result is shown in
Fig. 1. Different from TEBAS and Volcano, Kube-scheduler
assigns tasks for BP jobs in a pipelined manner, resulting
in the least efficient scheduling. Although Volcano per-
forms batch scheduling, it assigns a BP job according to
the resource specifications of each task without consider-
ing that computing tasks of a BP job commonly possess
similar features. Specifically, the computational complex-
ity of Volcano is O(|N||T js |) because the resource state of
each node in |N| and the resource specifications of each task
in |T js | are required during the scheduling process. Com-
pared with Kube-scheduler and Volcano, TEBAS performs
BP job assignment according to the resource specifications
of a single task, thereby achieving the best performance.

3.2.2 Load Balancing Performance

We select the resource utilization variance Var as the met-
ric to evaluate cluster load balancing performance, which is
defined as follows:

Var = 0.5 · cpuVar + 0.5 · memVar (10)

where cpuVar (memVar) denotes the variance of cluster
CPU (memory) resource. They are defined in Eq. (11) and
Eq. (12), respectively.

Fig. 1 The comparison of scheduling efficiency between TEBAS and
baseline methods.

†https://github.com/Mr-Linus/NodeSimulator

568
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.4 APRIL 2023

Fig. 2 The comparison of load balancing performance between TEBAS
and baseline methods.

cpuVar =
∑
n∈N

(cpuUsagen − cpuUsage)2

N
(11)

memVar =
∑
n∈N

(memUsagen − memUsage)2

N
(12)

where cpuUsagen (memUsagen) denotes the CPU (mem-
ory) resource utilization of node n. cpuUsage (memUsage)
denotes the average cluster CPU (memory) resource uti-
lization. The cluster tends to achieve balanced resource
utilization as Var approaches 0. We increase the number
of jobs to be scheduled from 5 to 80, each of which con-
tains 5 tasks. Each task requires 500-millicore CPU and
512 MB memory resources. The creation of these jobs fol-
lows Poisson request arrivals. As shown in Fig. 2, the vari-
ance of TEBAS is much smaller than that of Kube-scheduler
and Volcano, which corresponds to the best load balancing
performance. Although several balance-aware scheduling
strategies (e.g., ResourcesLeastAllocated and Resources-
BalancedAllocation [14]) have been considered by Kube-
scheduler, it performs task-level optimization which lacks
the consideration of job features during the scheduling pro-
cess. As for Volcano, it assigns BP jobs in a centralized
manner to reduce monetary cost, which neglects resource
contention caused by task co-location. Different from Kube-
scheduler and Volcano, TEBAS spreads all tasks of the job
according to Fitness metric to get a trade-off between task-
node fitness and load balancing performance.

4. Discussion

4.1 Resource Types

TEBAS only considers CPU and memory resources during
the BP job scheduling process because they play a dom-
inant role in job performance. To add support for disk-
intensive or network-intensive jobs, disk I/O or network
bandwidth resource demand is required to be claimed in
the job configuration, and monitor tools (e.g., cAdvisor† and
Prometheus††) can be applied to retrieve the resource usage

†https://github.com/google/cadvisor
††https://prometheus.io/

statistics. As part of our future work, TEBAS will assign
these jobs in a low-delay and balanced manner according to
the resource demand and resource usage statistics. More-
over, for proximity-sensitive jobs, Kubernetes affinity and
anti-affinity mechanisms can be integrated into TEBAS to
further improve job performance.

4.2 Performance Metrics

The experimental results show the effectiveness of TEBAS
in terms of scheduling efficiency and load balancing per-
formance. However, on the user side, they are concerned
about the monetary cost of operating BP jobs. On the
provider side, they attempt to keep the cluster at a low en-
ergy cost. To yield a cost-efficient and energy-efficient as-
signment, TEBAS will prioritize nodes with lower mone-
tary cost and energy consumption in future Fitness met-
ric calculation. Moreover, fairness cannot be guaranteed by
TEBAS because it is agnostic to the affiliation between BP
jobs and users. An efficient way to overcome this problem
is to specify the affiliation relationship in the job configura-
tion and integrate a fairness model (e.g., dominant resource
fairness [15]) as a part of Fitness metric calculation. Con-
sidering a BP job mentioned in the paper consists of multiple
independent tasks running in parallel, job execution perfor-
mance is determined by the straggler. To reduce job com-
pletion time, TEBAS will be combined with state-of-the-art
straggler-aware strategies [16], [17] and prioritize the strag-
gler during the scheduling process.

4.3 Gang Scheduling

TEBAS enables Gang scheduling which assigns tasks in an
all-or-nothing manner to prevent BP jobs from falling into
an unavailable state. Specifically, For failed or unschedula-
ble tasks, TEBAS puts them back into the queue for reas-
signment. Any BP job with failed or unschedulable tasks
will wait for node binding until all tasks are successfully
assigned by TEBAS.

5. Conclusion

This paper proposes a time-efficient balance-aware schedul-
ing strategy called TEBAS for BP jobs. Based on the ob-
servation that computing tasks of a BP job commonly pos-
sess similar features, TEBAS assigns a BP job according
to the resource specifications of a single task, which im-
proves scheduling efficiency. Moreover, TEBAS spreads
tasks according to Fitness and RemainCap metrics to get a
trade-off between task-node fitness and load balancing per-
formance, thereby reducing resource contention caused by
the co-location of computing tasks. The experimental re-
sults demonstrate that TEBAS outperforms Kube-scheduler
and Volcano in terms of scheduling efficiency and load bal-
ancing performance.

LETTER
569

Acknowledgments

This work is partially supported by National Natural Sci-
ence Foundation of China [61872423], Industry Prospective
Primary Research & Development Plan of Jiangsu Province
[BE2017111], Scientific Research Foundation of the Higher
Education Institutions of Jiangsu Province [19KJA180006],
the Natural Science Foundation of Nanjing University of
Posts and Telecommunications [NY221094], the Startup
Foundation for Introducing Talent of Nanjing University of
Posts and Telecommunications (NUPTSF) [NY221023], the
Natural Science Foundation of Jiangsu Higher Education
Institution of China [22KJB510008], and Postgraduate Re-
search & Practice Innovation Program of Jiangsu Province
[KYCX20 0764].

References

[1] R. Gu, Y. Chen, S. Liu, H. Dai, G. Chen, K. Zhang, Y. Che, and
Y. Huang, “Liquid: Intelligent resource estimation and network-
efficient scheduling for deep learning jobs on distributed GPU
clusters,” IEEE Trans. Parallel Distrib. Syst., vol.33, no.11,
pp.2808–2820, 2021.

[2] W. Zheng, Y. Qin, E. Bugingo, D. Zhang, and J. Chen, “Cost
optimization for deadline-aware scheduling of big-data process-
ing jobs on clouds,” Future Generation Computer Systems, vol.82,
pp.244–255, 2018.

[3] E. Bugingo, Y. Qin, J. Wang, D. Zhang, and W. Zheng, “Cost opti-
mization heuristics for deadline constrained workflow scheduling on
clouds and their comparative evaluation,” Concurrency and Compu-
tation: Practice and Experience, vol.30, no.20, e4762, 2018.

[4] S. Wang, Z. Ding, and C. Jiang, “Elastic scheduling for microservice
applications in clouds,” IEEE Trans. Parallel Distrib. Syst., vol.32,
no.1, pp.98–115, 2020.

[5] W. Chen, G. Xie, R. Li, and K. Li, “Execution cost minimiza-
tion scheduling algorithms for deadline-constrained parallel appli-
cations on heterogeneous clouds,” Cluster Computing, vol.24, no.2,
pp.701–715, 2021.

[6] X. Tang, W. Cao, H. Tang, T. Deng, J. Mei, Y. Liu, C. Shi, M. Xia,
and Z. Zeng, “Cost-efficient workflow scheduling algorithm for ap-
plications with deadline constraint on heterogeneous clouds,” IEEE
Trans. Parallel Distrib. Syst., vol.33, no.9, pp.2079–2092, 2021.

[7] A. Iranmanesh and H.R. Naji, “DCHG-TS: A deadline-constrained
and cost-effective hybrid genetic algorithm for scientific workflow
scheduling in cloud computing,” Cluster Computing, vol.24, no.2,
pp.667–681, 2021.

[8] E. Bugingo, D. Zhang, and W. Zheng, “Constrained energy-
cost-aware workflow scheduling for cloud environment,” 2020 IEEE
13th International Conference on Cloud Computing (CLOUD),
pp.40–42, IEEE, 2020.

[9] E. Bugingo, W. Zheng, Z. Lei, D. Zhang, S.R.A. Sebakara, and D.
Zhang, “Deadline-constrained cost-energy aware workflow schedul-
ing in cloud,” Concurrency and Computation: Practice and Experi-
ence, vol.34, no.6, e6761, 2022.

[10] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Dis-
tributed, low latency scheduling,” Proc. Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, pp.69–84, 2013.

[11] M. Khelghatdoust and V. Gramoli, “Peacock: Probe-based schedul-
ing of jobs by rotating between elastic queues,” European Confer-
ence on Parallel Processing, Lecture Notes in Computer Science,
vol.11014, pp.178–191, Springer, 2018.

[12] X.-H. Sun and Y. Chen, “Reevaluating Amdahl’s law in the mul-
ticore era,” Journal of Parallel and distributed Computing, vol.70,
no.2, pp.183–188, 2010.

[13] J. Liu, E. Pacitti, P. Valduriez, D. De Oliveira, and M. Mattoso,
“Multi-objective scheduling of scientific workflows in multisite
clouds,” Future Generation Computer Systems, vol.63, pp.76–95,
2016.

[14] W. Huang, X. Li, and Z. Qian, “An energy efficient virtual ma-
chine placement algorithm with balanced resource utilization,” 2013
Seventh International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing, pp.313–319, IEEE, 2013.

[15] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” 8th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 11), 2011.

[16] W. Li, D. Liu, K. Chen, K. Li, and H. Qi, “Hone: Mitigating strag-
glers in distributed stream processing with tuple scheduling,” IEEE
Trans. Parallel Distrib. Syst., vol.32, no.8, pp.2021–2034, 2021.

[17] C. Li, M. Song, Q. Zhang, and Y. Luo, “Cluster load based content
distribution and speculative execution for geographically distributed
cloud environment,” Computer Networks, vol.186, 107807, 2021.

http://dx.doi.org/10.1109/tpds.2021.3138825
http://dx.doi.org/10.1016/j.future.2017.12.004
http://dx.doi.org/10.1002/cpe.4762
http://dx.doi.org/10.1109/tpds.2020.3011979
http://dx.doi.org/10.1007/s10586-020-03151-w
http://dx.doi.org/10.1109/tpds.2021.3134247
http://dx.doi.org/10.1007/s10586-020-03145-8
http://dx.doi.org/10.1109/cloud49709.2020.00019
http://dx.doi.org/10.1002/cpe.6761
http://dx.doi.org/10.1145/2517349.2522716
http://dx.doi.org/10.1007/978-3-319-96983-1_13
https://dx.doi.org/10.1016/j.jpdc.2009.05.002
http://dx.doi.org/10.1016/j.future.2016.04.014
http://dx.doi.org/10.1109/imis.2013.59
http://dx.doi.org/10.1109/tpds.2021.3051059
http://dx.doi.org/10.1016/j.comnet.2021.107807

