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PAPER

Comparative Evaluation of Diverse Features in Fluency Evaluation
of Spontaneous Speech

Huaijin DENG†a), Nonmember, Takehito UTSURO†b), Akio KOBAYASHI††c),
and Hiromitsu NISHIZAKI†††d), Senior Members

SUMMARY There have been lots of previous studies on fluency evalu-
ation of spontaneous speech. However, most of them focus on lexical cues,
and little emphasis is placed on how diverse acoustic features and deep end-
to-end models contribute to improving the performance. In this paper, we
describe multi-layer neural network to investigate not only lexical features
extracted from transcription, but also consider utterance-level acoustic fea-
tures from audio data. We also conduct the experiments to investigate the
performance of end-to-end approaches with mel-spectrogram in this task.
As the speech fluency evaluation task, we evaluate our proposed method
in two binary classification tasks of fluent speech detection and disfluent
speech detection. Speech data of around 10 seconds duration each with the
annotation of the three classes of “fluent,” “neutral,” and “disfluent” is used
for evaluation. According to the two way splits of those three classes, the
task of fluent speech detection is defined as binary classification of fluent
vs. neutral and disfluent, while that of disfluent speech detection is defined
as binary classification of fluent and neutral vs. disfluent. We then conduct
experiments with the purpose of comparative evaluation of multi-layer neu-
ral network with diverse features as well as end-to-end models. For the flu-
ent speech detection, in the comparison of utterance-level disfluency-based,
prosodic, and acoustic features with multi-layer neural network, disfluency-
based and prosodic features only are better. More specifically, the per-
formance improved a lot when removing all of the acoustic features from
the full set of features, while the performance is damaged a lot if fillers
related features are removed. Overall, however, the end-to-end Trans-
former+VGGNet model with mel-spectrogram achieves the best results.
For the disfluent speech detection, the multi-layer neural network using
disfluency-based, prosodic, and acoustic features without fillers achieves
the best results. The end-to-end Transformer+VGGNet architecture also
obtains high scores, whereas it is exceeded by the best results with the
multi-layer neural network with significant difference. Thus, unlike in the
fluent speech detection, disfluency-based and prosodic features other than
fillers are still necessary in the disfluent speech detection.
key words: speech fluency evaluation, disfluency, acoustic features, multi-
layer neural network, end-to-end

1. Introduction

Speech disfluencies, such as “um,” “un” and false start, oc-
cur frequently in spontaneous speech. They directly affect
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the quality of the presentation such as those in university
lectures and those speaking skills also affect student under-
standing [1], [2]. Also, it is difficult for second language
learners to recognize their disfluencies. Therefore, an auto-
matic fluency evaluation method is necessary. Although dis-
fluencies tend to be viewed as noisy or irregular events, pre-
vious studies have found that disfluencies show remarkable
regularities in a number of dimensions [3], which indicates
that the speech fluency can be measured properly through
certain specific features.

Among existing studies related to automatic speech flu-
ency evaluation, most of them concentrate on detecting dis-
fluencies through lexical cues alone. Zayats et al. [4] utilized
features of reparandum and correction to make disfluency
detection. Bach and Huang [5] proposed a method in which
words are tagged according to fluent/disfluent states and the
disfluency detection was formalized as a sequence labeling
task. Previous studies [6], [7] also focused on the effective-
ness of word fragments and fillers. However, these studies
did not consider acoustic features or prosodic cues which
have been proved to be useful in combination with lexical
cues [8]–[10]. Acoustic features can carry more information
such as energy and pitch that are not represented in tran-
scripts. Both Lin et al. [8] and Zayats and Ostendorf [10]
used pitch-related features, while Zayats and Ostendorf [10]
also used energy-related features. However, it was insuffi-
cient that these studies did not analyze how much contribu-
tion those diverse acoustic features have to speech fluency
evaluation.

Other previous studies [11]–[13] reported the effects of
the use of lexical (i.e., disfluency-based and prosodic) fea-
tures∗ as well as frame-level acoustic features in speech flu-
ency evaluation. Especially, Deng et al. [13] adopted multi-
layer neural network, while the performance depended on
the lexical features and it is not clear whether the perfor-
mance is to be damaged or not if we do not utilize these
features. Therefore, it is necessary to conduct the evaluation
experiment without lexical features.

Overall, previous studies mostly utilized acoustic,
disfluency-based, and prosodic features. However, previ-
ous studies did not report the results of comprehensive com-
parison on the effects of all of those acoustic, disfluency-
based, and prosodic features. Thus, this paper first aims at

∗The term “lexical features” is used in this paper are those
disfluency-based and prosodic features described in Sect. 3.1.
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comprehensively evaluating the effects of all of those acous-
tic, disfluency-based, and prosodic features. As the model
for evaluating those features, we first employed multi-layer
neural network that we have already studied in our previous
works [11]–[13]. In our preliminary experiment, in addition
to those acoustic, disfluency-based, and prosodic features,
we evaluated features such as mel-frequency cepstrum co-
efficients (MFCC) and mel-spectrogram that have not been
studied in our previous works [11]–[13], while MFCC and
mel-spectrogram damaged the performance of speech flu-
ency evaluation. We suppose that this is mainly due to
the limitation of multi-layer neural network, which is not
strengthful enough to handle the disfluency related infor-
mation involved in those high dimensional features such as
MFCC and mel-spectrogram. Considering this limitation of
multi-layer neural network, we decide to utilize the end-to-
end approaches in our task, which are not adopted in the
related research. We implement the state-of-art end-to-end
models with only mel-spectrogram. One of the advantages
of the end-to-end models is that, even with a single feature
of mel-spectrogram, their performance is close to, or even
higher than that by multi-layer neural network (details are
to be discussed with the experimental evaluation results).
Another advantage is that they are quite compatible when
running under a multi task setting with end-to-end speech
recognition models. In such a multi task setting, speech
recognition error detection and correction modules are eas-
ily called when disfluent speech is detected, where disfluent
speech is supposed to cause speech recognition errors.

As the speech fluency evaluation task, we evaluate our
proposed method in two binary classification tasks of flu-
ent speech detection and disfluent speech detection. More
specifically, 201 speech data from Corpus of Spontaneous
Japanese (CSJ) [14], [15] with the annotation of the three
classes of “fluent,” “neutral,” and “disfluent” is used as the
dataset for evaluation. Each of those 201 speech data is fur-
ther divided into its constituent files, each of which is of
around 10 seconds duration, obtaining 2,169 files in total.
Then, according to the two way splits of those three classes,
the task of fluent speech detection is defined as binary classi-
fication of fluent (494 files) vs. neutral and disfluent (1,675
files), while that of disfluent speech detection is defined as
binary classification of fluent and neutral (1,916 files) vs.
disfluent (253 files).

We then conduct experiments with the purpose of com-
parative evaluation of multi-layer neural network with di-
verse features as well as end-to-end models. Conclusions
of the experiments can be summarized as below. In the
fluent speech detection, lexical features only are the most
appropriate to multi-layer neural network. More specifi-
cally, the performance improved a lot when removing all
of the acoustic features from the full set of features, while
the performance is damaged a lot if fillers related features
are removed. Overall, however, the best performance is
achieved by end-to-end Transformer+VGGNet models with
mel-spectrogram. In the disfluent speech detection, the
Transformer+VGGNet architecture with mel-spectrogram

also achieves high scores in the evaluation metrics. It is
close to but does not exceed the results of multi-layer neu-
ral network with acoustic features and lexical features with-
out fillers. Therefore, we find out that lexical features other
than fillers are still necessary to some extent in the disfluent
speech detection.

This paper is organized as follows. Section 2 intro-
duces the dataset used in the experiments. Section 3 de-
scribes the utterance-level disfluency-based and prosodic
features as well as acoustic features and corresponding func-
tionals. Section 4 introduces some model architectures em-
ployed in this paper, which include multi-layer neural net-
work and end-to-end models. Section 5 introduces the ex-
periment setup and shows the analysis of evaluation results
and conclusions are described in Sect. 6.

2. Dataset for Evaluation

Corpus of Spontaneous Japanese (CSJ) [14], [15] is a large-
scale database that includes spontaneous speeches (lecture
etc.) in Japanese. It contains speech signal and transcrip-
tion of about 7 million words along with various annotations
like POS and phonetic labels. Table 1 shows an example
of the transcription of CSJ, which is a portion of the tran-
script of an example of the “disfluent” class to be described
later in this section. In CSJ, as shown in Table 1, recorded
speech is transcribed in two different ways: orthographic
and phonetic transcriptions. In orthographic transcription,
speech is transcribed using Kanji (Chinese logograph) and
Kana (Japanese syllabary) just like ordinary Japanese text.
In phonetic transcription, on the other hand, its transcrip-
tion is written exclusively in Kana letters so that the pho-
netic details of the utterance being transcribed can be traced.
More detailed transcription as well as the description of tags
used for the annotation are found on the Web site of CSJ†.
Various tags were embedded in these transcriptions to mark
phenomena specific to spontaneous speech like fillers, word
fragment, reduced articulation, mispronunciation, etc.

In this paper, among the transcription of CSJ, we uti-
lize the following information in the evaluation: the dura-
tion as well as pause or silence information, the mora length
of utterances measured in terms of character length of the
phonetic transcription, and fillers as well as word fragments
information (as shown in Table 1) as the most important
disfluency-related information.

The sources of speech data of CSJ consist of 89
academic presentation speeches and 112 simulated public
speeches. In CSJ, to each of those 201 speech data, rated
impressions of public speaking such as “liking,” “skillful-
ness,” “speech rate,” “activity,” and “formality” are anno-
tated [15]. Among those rated impressions of public speak-
ing, this paper utilizes that of 7-ranks rating of fluency-
disfluency out of the “skillfulness” ratings. 10 annota-
tors rated each speech data according to 7-ranks rating of
fluency-disfluency, where we utilize their average over 10

†https://pj.ninjal.ac.jp/corpus center/csj/misc/preliminary/5.html
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Table 1 An example of the CSJ transcription (an example of the “disfluent” class).

orthographic transcription phonetic transcription

ID

start
∼

end
(sec.)

in Kanji/Kana letters English translation in Kana letters in syllable representation # morae

⟨ filler⟩
⟨word

-fragments⟩
tags

—
268.338
∼ 268.869

⟨pause⟩
0127 268.869 (Fあのー) uh (Fアノー) a no o 3 ⟨ filler⟩

∼ 271.138 何か well ナニカ na ni ka 3 —

—
271.138
∼ 271.791

⟨pause⟩
0128 271.791 (Fま) so (Fマ) ma 1 ⟨ filler⟩

郵便配達の a mail delivery ユービンハイタツノ yu u bi N ha i ta tsu no 9 —
人は person ヒトワ hi to wa 3 —
あれでしょうけど might be probably アレデショーケド a re de sho o ke do 7 —

∼ 273.823 (Dん) what? (Dン) N 1 ⟨word
-fragments⟩

—
273.823
∼ 274.268

⟨pause⟩

Table 2 Statistics of the data set.

class
# speech
data (#

speakers)

# files
(each

around
10 sec.

duration)

mean opinion
score of
fluency-

disfluency
rating (MOS,
7-ranks score
averaged over
10 annotators)

fluent 54 494 5.0 ∼ 6.2
neutral 109 1,422 3.2 ∼ 4.9

disfluent 38 253 1.9 ∼ 3.1

total 201 2,169 1.9 ∼ 6.2

annotators. Then, as shown in Table 2, we classify the to-
tal 201 (speech and its transcription) data into the following
three classes: “fluent” whose average ratings range from 5.0
to 6.2, “neutral” whose average ratings range from 3.2 to
4.9, and “disfluent” whose average ratings range from 1.9
to 3.1. Finally, we divide each speech and its transcription
data into its constituent files, each of which is of around 10
seconds duration, obtaining 2,169 files in total (as shown in
Table 2)†. In the experimental evaluation of this paper, we
pursue the following two way splits of those three classes,
i.e., (i) fluent (494 files) vs. neutral and disfluent (1,675
files), and (ii) fluent and neutral (1,916 files) vs. disfluent
(253 files). Then, we evaluate our proposed method in two
binary classification tasks of fluent speech detection and dis-
fluent speech detection††.

3. Features

We investigate multi-domain features including disfluency-

†More specifically, within each of the total 201 speech data,
7-ranks rating of fluency-disfluency is annotated to its constituent
portion of around 50 seconds or more duration, but not to the whole
speech duration. Thus, sometimes it can happen that one of the 201
speech data has both a “fluent” rated portion and a “neutral” rated
portion, or both a “disfluent” rated portion and a “neutral” rated
portion. In those cases, we remove those “neutral” rated portions
and only keep “fluent” rated or “disfluent” rated portions.

based, prosodic, and acoustic features as well as their com-
binations. Disfluency-based and prosodic features are com-
puted in utterance level, which are extracted through the
statistic information of transcription. Acoustic features
excluding mel-spectrogram are also extracted in utterance
level, which are obtained by open source toolkit OpenS-
MILE††† through the frame-level features and statistical
functionals. They are merged into the multi-layer neural
network model. The summary of these features are shown
in Table 4, where codes are given to the disfluency-based
and prosodic features in Table 4(a) and Table 4(b) for indi-
cating the results of feature ablation studies in Table 5 and
Table 6. We also extract mel-spectrogram for end-to-end
architectures. Although it belongs to acoustic features ac-
cording to the strict definition, there exists clear distinction
in this paper between the mel-spectrogram for end-to-end
architectures and the acoustic features for the multi-layer
neural network model, since the latter acoustic features are
hardly utilized in the end-to-end architectures.

3.1 Disfluency-Based and Prosodic Features

Table 4(a) and Table 4(b) list disfluency-based and prosodic
features used in this paper. The employed prosodic features,
namely, are the speech rate, number of pauses per mora††††,
and the ratio of the contiguous silence to the duration of the

††In our preliminary experiment, we first applied the regression
model, while it did not fit to the task of fluency evaluation due
to the imbalanced data between the disfluent speech data and the
neutral speech data, and the predicted scores tend to be the mean
score among all of the training data. Then, we formalize the task
as the classification task, while the number of the training data is
relatively small, and furthermore, the task is still has the problem
of imbalanced data split. Considering this situation, we decided to
evaluate our proposed method in two binary classification tasks of
fluent speech detection and disfluent speech detection rather than a
single task of classifying the three classes (fluent/neutral/disfluent).
†††http://www.audeering.com/opensmile/
††††The number of morae is measured as the Kana length of the

phonetic transcription of the CSJ corpus.
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Table 3 Feature values and mean opinion scores of fluency-disfluency rating: averages of flu-
ent/neutral/disfluent classes. (total # (Ps), total # (Fs), total # (WF), total mora length (MrFs), and
total mora length (MrWF) represent total numbers of pauses, fillers, word fragments, total mora lengths
of fillers and word fragments, respectively.)

prosodic features disfluency-based features mean
pauses fillers word fragments opinion

class SpR
total

#
(Ps)

Ps
/Mr

SilR
total

#
(Fs)

Filler1

total
mora
length
(MrFs)

Filler2
total

#
(WF)

WF1

total
mora
length

(MrWF)

WF2

score
(MOS,
7-ranks
score

averaged
over 10
anno-

tators )

fluent 7.94 3.3 0.038 0.125 15.0 0.0294 27.9 0.0547 2.1 0.0041 3.1 0.0062 5.3
neutral 6.84 3.8 0.052 0.187 14.8 0.0334 28.8 0.0653 2.9 0.0067 4.5 0.0105 4.1

disfluent 5.53 4.4 0.075 0.285 15.9 0.0443 31.2 0.0883 4.1 0.0115 6.7 0.0187 2.8

speech. On the other hand, the disfluency-based features
employed in this paper are obtained from the transcription
of the CSJ. As shown in Table 1, the number and the mora
length of fillers as well as word fragments are available in
the phonetic transcription of CSJ, which we utilize as the
disfluency-based features in this paper†.

Table 3 shows average values of those seven features
and the mean opinion scores in each of the fluent / neutral /
disfluent classes.

3.2 Acoustic Features for the Multi-Layer Neural Network
Model

We utilize the utterance-level feature vectors derived by the
projection of frame-level acoustic features, such as pitch or
energy by the descriptive statistical functionals [16]. In de-
tail, the eight sorts of frame based low-level features chosen
are: root mean square (RMS) from energy, zero crossing rate
(ZCR), voicing probability (VP), fundamental frequency
(F0), harmonics-to-noise ratio (HNR), jitter local, jitter dif-
ference of difference of periods (jitter ddp) and shimmer lo-
cal. We choose the five most common higher-order statistics
to process frame level features, which are maximum, mini-
mum, mean, variance and standard deviation. If we con-
sider all of them, the total feature vector per audio data con-
tains 5 × 8 = 40 dimensional features, which are extracted
by open source toolkit OpenSMILE. Those acoustic features
and functionals used in our experiments are summarized in
Table 4(c).

More specifically, utterance-level acoustic features em-
ployed in this paper are categorized into energy related and
voicing related ones. Energy related features are RMS and
ZCR, while the rest are voicing related features. These
features are selected from the standardized feature set that

†One of the major motivations to use the disfluency-based fea-
tures obtained from manual transcriptions is to clarify whether or
not these features are necessary to achieve the best performance
for speech fluency evaluation. If it is confirmed that they are not
necessary, that means that the best performance can be achieved
fully automatically. Otherwise, further research effort should be
inevitable so as to realize full automatic speech fluency evaluation
by automatically extracting those disfluency-based features from
the speech recognition results.

Table 4 Features summary

(a) Disfluency-based features

feature name definition code

fillers
per mora,

ratio of total number of
fillers to

total number of morae,
Filler1,

mora length of
fillers

per mora

ratio of total mora length
of fillers to

total number of morae
Filler2

word frag-
ments per mora,

ratio of total number of
word fragments to

total number of morae,
WF1,

mora length of
word fragments

per mora

ratio of total mora length
of word fragments to

total number of morae
WF2

(b) Prosodic features

feature name definition code

speech rate
average number of

morae per sec.
SpR

pauses
per mora,

ratio of total number of
pauses to

total number of morae,
Ps/Mr,

silence rate
ratio of contiguous
silence to duration

SilR

(c) Acoustic features

acoustic features functionals

RMS maximum
ZCR minimum

Voicing Probability mean
F0 variance

HNR standard variation
Jitter local, Jitter ddp

Shimmer local

were used for the INTERSPEECH 2011 Speaker State Chal-
lenge [17]. We do not use spectral LLDs features in multi-
layer neural network model. This is mainly because, in
our preliminary experiment, features such as mel-frequency
cepstrum coefficients (MFCC) and mel-spectrogram have
damaged the performance. One of our hypotheses of the rea-
son for this is that high dimensional features such as MFCC
and mel-spectrogram are not appropriate for the simple ar-
chitecture like multi-layer neural network.
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3.3 Mel-Spectrogram for End-to-End Models

The mel-spectrograms in frame level are compatible with
deep convolution neural network model, however, due to the
excellent feature extraction ability of convolution layer. We
compute mel-spectrogram from speech recording for every
20 ms frame window shifted over 10 ms†, using the short-
time Fourier transform (STFT) with 64 frequency bins. Nor-
malization is performed over frequency axis. Each utterance
fed to the model is of size T × 64, where T is the number of
frames in a given speech.

4. Model Architectures

4.1 Multi-Layer Neural Network

We adopt multi-layer neural network architecture with two
types of input to handle the disfluency-based and prosodic
features as well as acoustic features. Figure 1 illustrates the
neural network architecture of fluent/disfluent speech detec-
tion. In our experiments, the model consists of four fully
connected hidden layers with 256 hidden units each and tanh
activation are used for this experiment. We use the standard
cross entropy objective function with L2 weight decay on
parameters to prevent over fitting.

4.2 Deep Convolution Neural Network

Although features such as MFCC and mel-spectrogram do
not perform well with the multi-layer neural network as
we mentioned in Sect. 3.2, we are curious about its per-
formance on end-to-end deep 1D convolution neural net-
work. We conduct experiments with SpeakerNet [18] in this
paper, which is based on the QuartzNet architecture com-
prising of an encoder and decoder structure. More specif-
ically, the encoder consists of N blocks each with R sub-
blocks, which is shown in Fig. 2. Each sub-block applies
the following operations: a 1D convolution, batch norm,
ReLU and dropout. The decoder consists of a statistic pool-
ing layer and two feed forward layers. The statistic pool-
ing layer computes the x-vector [19] using the encoder out-
put. It computes the mean and standard deviation along
the time axis, and it is necessary since we have to trans-
fer the sequence-to-sequence model to the sequence-to-label
model, which is similar to the statistical functionals we used
for the acoustic features in Sect. 3.2. The two feed forward
layers, on the other hand, execute the linear transformation.
The model achieves the state-of-art result on speaker identi-
fication, which shows considerable strength on speech clas-
sification problem. Therefore, we adopt SpeakerNet in our
disfluent/fluent speech detection task.

†This setting follows that examined in the speaker recognition
task by SpeakerNet [18].

Fig. 1 Multi-layer neural network of fluent/disfluent speech detection

Fig. 2 SpeakerNet architecture of fluent/disfluent speech detection

4.3 Conformer and Transformer

In the recent research of Automatic Speech Recogni-
tion (ASR), Conformer outperforms the previous Trans-
former and convolution neural network (CNN) based mod-
els achieving state-of-art results [20]. Transformer mod-
els [21], [22] are good at capturing context interaction, while
CNN extracts local features effectively. Conformer com-
bines them to model both local and global dependencies of
a speech sequence. Considering these advantages, we uti-
lize the Conformer model in our task to investigate whether
it could capture some important features which correspond
to disfluency or fluency. The Conformer encoder consists
of a convolution subsampling layer and a number of Con-
former blocks as shown in Fig. 3, and the detail of its archi-
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tectures is described in its original paper [20]. The decoder
part is the same as QuartzNet, which involves x-vector ex-
traction and linear transformation. Both the Conformer and
the SpeakerNet architectures are trained with normal cross
entropy loss. According to the results we show in the next
section, we find that the Conformer architecture obtains bet-
ter performance than SpeakerNet in both disfluent and fluent
speech detection task. In order to further explore which part
of the model is more effective, we conduct the experiment
on the Transformer architecture, which is shown in Fig. 4.
Specifically, following the Transformer’s architecture [21],

Fig. 3 Conformer architecture of fluent/disfluent speech detection [20]

Fig. 4 Transformer architecture of fluent/disfluent speech detection [21]

we modify the Conformer block shown in Fig. 3 through re-
moving the convolution modules while keeping the multi-
head attention module†. The subsampling layer is the same
as that in the Conformer architecture.

5. Experiment

5.1 Settings

Throughout our experiment, the training procedure is per-
formed through five-fold cross validation. In each of the
five splits, 80% of the data set is further divided into the
80% training and the 20% development sets††, where the
model with the number of epochs which minimizes the loss
against the development set is evaluated against the test set
(here, the maximum number of epochs is 300). The batch
size is 32 for all the models. Other hyper parameters of the
models examined in this paper are selected by consulting the
performance against the development set in five-fold cross
validation: initial learning rate as 0.0001 for the multi-layer
neural network and 0.001 for other models, weight decay
as 0.0001 for the multi-layer neural network and 0.001 for
other models. All the models are trained with the Adam op-
timizer with β1 = 0.9, β2 = 0.98 and a cosine annealing
learning rate schedule [24].

In the multi-layer neural network architecture, the in-
put of full features consists of seven dimensional disfluency-
based and prosodic features, as well as eight dimensional
acoustic features. In order to investigate the effect of diverse
features, we conduct experiments through removing the sin-
gle feature one after another.

In the SpeakerNet model, the inputs are mel-
spectrograms which have been mentioned in Sect. 3.3. With
respect to the encoder architecture, more specifically, we uti-
lize QuartzNet architecture with the number of blocks N = 2
(optimized from the three candidates 2, 3, and 4, through
five-fold cross validation on the development set) and the
number of sub-blocks R = 5, and 512 channels.

For the Conformer and the Transformer architec-
tures†††, the numbers of the blocks are set as N = 8 (op-
timized from the three candidates 4, 8, and 12, through five-
fold cross validation on the development set) and the num-
ber of sub-blocks as R = 1. Following the implementation

†In the implementation of the Transformer block, we prelim-
inarily examined existing architectures such as those found in the
previous studies [21], [23] through tuning with five-fold cross val-
idation on the development set of fluent/disfluent speech detection
task of this paper. Then, we employ the architecture of the Trans-
former block studied in the previous work [23], which is shown in
Fig. 4.
††Considering to make sure that the training, the development,

and the test sets do not have overlap on speakers, we perform the
data split with an open-speaker manner.
†††In the experiments of the Transformer model, we also tried the

combination of mel-spectrogram and the acoustic features listed in
the left half of Table 4(c) with their frame-levels, which have been
mentioned in Sect. 3.2. However, it did not improve the results and
mel-spectrogram only achieved better performance.
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Fig. 5 Two types of convolution subsampling layer: striding and
VGGNet. The subsampling factor is set to 4, so there are 2 subsampling
layers in both striding and VGGNet approaches. In the striding approach,
the convolution stride is set to 2, while in the VGGNet approach, the con-
volution stride is set to 1.

of the Conformer [20]†, as the types of convolution subsam-
pling layers, we examined striding and VGGNet††. The dif-
ference between striding and VGGNet is shown in Fig. 5.

5.2 Results

The results are evaluated in the metrics of F-Score and Equal
Error Rate (EER). When measuring F-Score, the lower
bound of the probability of binary classification is selected
so as to maximize the F-Score against the development set
in five-fold cross validation. The experiments are conducted
for disfluent speech detection and fluent speech detection
respectively. For each sub-task, the results are summarized
into two parts: comparing the effect of single features and
investigating the effect of end-to-end approaches.

5.2.1 Fluent Speech Detection

The results of fluent speech detection with the multi-layer
neural network are shown in Table 5. We can observe that
the performance improved a lot when removing all of the
acoustic features comparing to the full features. Thus, we
regard the feature subset “remove acoustic features” as the
best features in the fluent speech detection. It can be in-
ferred that these acoustic features for the multi-layer neu-
ral network model, such as energy and voicing quality, are
not compatible with our architecture. On the other hand, if
Filler1+Filler2 are removed, the evaluation metrics are dam-
aged a lot. It shows that filler related features are effective
in this task, which is totally opposite to the results of the
disfluent speech detection shown in the next section.

From Fig. 6, it is obvious that the Transformer+VGGNet
architecture with mel-spectrogram perform better than the
multi-layer neural network with the best features (“remove

†https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/
asr/modules/conformer encoder.py
††This implementation cited Dong et al. [23] for striding and

Yeh et al. [25] for VGGNet [26]. In Yeh et al. [25], VGGNet [26]
with causal convolution are adopted to incorporate contextual in-
formation into the Transformer networks.

Table 5 The results of multi-layer neural network in fluent speech
detection task. Each group corresponds to the set of remaining fea-
tures after removing a single feature from the set of full features.
Bold faced and underlined group means the features achieving the best
results. † means that the result of the corresponding feature group has sig-
nificant difference with p-value < 0.05 against the best features according
to the t-test validation.

feature group F-Score EER

full features 0.447† 0.324†

remove acoustic features 0.475 0.299
remove Filler1+Filler2 0.429† 0.336†

remove WF1+WF2 0.443† 0.331†

remove SpR 0.440† 0.348†

remove Ps/Mr+SilR 0.437† 0.343†

remove RMS 0.436† 0.327†

remove ZCR 0.448† 0.313†

remove VP 0.453† 0.317†

remove F0 0.460† 0.329†

remove HNR 0.455† 0.330†

remove Jitter local + Jillter ddp 0.448† 0.321†

remove Shimmer local 0.445† 0.323†

acoustic features”), which infers that deep end-to-end mod-
els with mel-spectrogram can classify the fluent speech and
neutral/disfluent speech more effectively than lexical fea-
tures and acoustic features for the multi-layer neural net-
work model. In the comparison of end-to-end architectures,
we can find that the Transformer architecture with VGGNet
subsampling layer gives the best performance in both F-
score and EER.

5.2.2 Disfluent Speech Detection

In Table 6, on the one hand, we can first observe that remov-
ing Filler1+Filler2 from the full features achieves the best
results when considering both of F-Score and EER, and the
significant difference against other feature subsets can also
be explicitly verified. It shows that filler related features
disrupt disfluent speech detection in someway. For exam-
ple, from the results of carefully observing the transcription
and the disfluency judgment annotated to the CSJ data, we
can say that fillers occurring properly in a speech sentence
will not affect the listeners’ subjective impression. Although
the F-Score of removing VP is the highest in Table 6, it
has no significant difference against the full features in the
metric of EER in Table 6. Therefore, we regard “remove
Filler1+Filler2” as our best features in disfluent speech de-
tection. On the other hand, we can notice that if we remove
SpR or WF1+WF2, both F-Score and EER get worse than
the results of full features. It means that speech rate and
word fragments related features help to improve the perfor-
mance of disfluent speech detection.

In Fig. 7, it can be noticed that in both F-Score and
EER, the results of Transformer architecture with VGGNet
subsampling layer do not exceed the multi-layer neural
network with the best features (“remove Filler1+Filler2”),
which shows that mel-spectrogram only are not enough to
cover the disfluency related information comprehensively,
even with the deep end-to-end models. Furthermore, in the
comparison of end-to-end models, we can find that 1D con-
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Fig. 6 The results of end-to-end models in fluent speech detection task.
Each group corresponds to a model and the green bar refers to the result of
the multi-layer neural network with the best features. The red bar means
that the result of the corresponding model has significant difference against
the multi-layer neural network with the best features according to the t-test
validation.

Table 6 The results of multi-layer neural network in disfluent speech
detection task. Each group corresponds to the set of remaining fea-
tures after removing a single feature from the set of full features.
Bold faced and underlined group means the features achieving the best
results (considering both of F-Score and EER). † means that the result of
the corresponding feature group has significant difference with p-value <
0.05 against the best features according to the t-test validation.

feature group F-Score EER

full features 0.586† 0.241†

remove acoustic features 0.551† 0.254†

remove Filler1+Filler2 0.618 0.218
remove WF1+WF2 0.560† 0.292†

remove SpR 0.566† 0.257†

remove Ps/Mr+SilR 0.588† 0.242†

remove RMS 0.579† 0.256†

remove ZCR 0.597† 0.231†

remove VP 0.619 0.234†

remove F0 0.606† 0.233†

remove HNR 0.594† 0.226
remove Jitter local + Jillter ddp 0.577† 0.240†

remove Shimmer local 0.597† 0.241†

volution based SpeakerNet architecture performs worse than
the multi-layer neural network in F-score and EER. Thus, it
can be inferred that the local feature extracted by the con-
volution layer is not helpful to our task. And it can also ex-

Fig. 7 The results of end-to-end models in disfluent speech detection
task. Each group corresponds to a model and the green bar refers to the
result of multi-layer neural network with the best features. The red bar
means that the result of the corresponding model has significant difference
against the multi-layer neural network with the best features according to
the t-test validation.

plain the results of the Transformer architecture performing
better than the Conformer, which has the similar tendency
with the fluent speech detection task. In other words, the
contextual information detected by the multi-head attention
is exactly what we need in the disfluent speech detection†.
The results of the Transformer architecture performing bet-
ter than the Conformer is quite opposite to the case of speech
recognition evaluation results [20]. The major reason of this
difference is that Conformer requires much more training
data than Transformer, since the number of parameters of
Conformer is much more than that of Transformer, where
the size of the training data in our evaluation is relatively
small. Furthermore, compared with speech recognition, the
task of disfluent speech detection requires capturing global

†We can find certain evidence of this with x-vectors. The x-
vector is obtained from the encoders, which compress the informa-
tion of disfluency involved in the speech audio. With the power-
ful representation ability of the encoder, the disfluent speech’s x-
vectors could be clustered together in the space. According to the
results of the rates of “inter-class covariance / intra-class covari-
ance,” it shows that the transformer block has better representation
ability than the conformer block in that the former has higher rate
than the latter.



44
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.1 JANUARY 2023

dependencies of a speech sequence, while Conformer con-
centrates more on capturing local dependencies of a speech
sequence with convolution neural network.

Finally, in both the Transformer and the Conformer ar-
chitecture, we can observe that the VGGNet subsampling
layer is explicitly more appropriate to the disfluent speech
detection task. As the discussion about the effect of the
VGGNet subsampling layer, we consider that subsampling
means dropping some information of original data, while
picking some important frames. Compared to the striding
subsampling layer, the VGGNet subsampling layer consists
of the combination of more convolution layers and max
pooling layer, which will help selectively keep important
frames, whose effect is what we exactly need for disfluent
speech detection.

6. Conclusion

In this paper, we conducted experiments with the purpose of
comparative evaluation of multi-layer neural network with
diverse features as well as end-to-end models. We first uti-
lize multi-layer neural network to investigate the effective
disfluency-based and prosodic features as well as acoustic
features for disfluent speech detection and fluent speech de-
tection tasks respectively. We then evaluated the perfor-
mance of end-to-end architectures with mel-spectrogram, in
order to verify whether the lexical features are necessary in
the fluency evaluation.

Conclusions of the experiments can be summarized
as below. In the fluent speech detection, lexical features
only are the most appropriate to multi-layer neural network.
More specifically, the performance improved a lot when re-
moving all of the acoustic features from the full set of fea-
tures, while the performance is damaged a lot if fillers re-
lated features are removed. Overall, however, the best per-
formance is achieved by end-to-end Transformer+VGGNet
models with mel-spectrogram. Thus, it is quite important
to note here that the best performance for the fluent speech
detection is achieved without the manual transcription ori-
ented features. This means that the best performance can
be achieved fully automatically. In the disfluent speech de-
tection, the Transformer+VGGNet architecture with mel-
spectrogram also achieves high scores in the evaluation met-
rics. It is close to but does not exceed the results of multi-
layer neural network with acoustic features and lexical fea-
tures without fillers. Therefore, we find out that lexical fea-
tures other than fillers are still necessary to some extent in
the disfluent speech detection. Here, again, it is also quite
important to note that it is necessary to use the manual tran-
scription oriented features in order to achieve the best per-
formance for the disfluent speech detection†.

In the future work, in order to further verify the effect of

†Considering that the tasks such as disfluency detection within
transcripts are performed only with text information within the
transcript [27], it is quite reasonable that the best performance of
our disfluent speech detection task is achieved with the manual
transcription oriented features.

end-to-end models, we will try to collect more speech data
to extend the current dataset. Since there is no existing large
corpus with disfluent and fluent labels, it might be neces-
sary to explore some semi-supervised or self-supervised ap-
proaches such as wav2vec [28]. On the other hand, we have
investigated some effective features such as filler, word frag-
ment and speech rate. Therefore, combining them with end-
to-end models through embedding layers is another interest-
ing research direction. Especially, in order to overcome the
limitation that the best performance for the disfluent speech
detection requires the use of the manual transcription ori-
ented features, further research direction should be fully au-
tomating the disfluent speech detection process by integra-
tion with end-to-end speech recognition models and extract-
ing features for disfluent speech detection from the speech
recognition results.
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