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PAPER

Ensemble-Based Method for Correcting Global Explanation of
Prediction Model∗

Masaki HAMAMOTO†a), Hiroyuki NAMBA†, Nonmembers, and Masashi EGI†, Member

SUMMARY Explainable artificial intelligence (AI) technology enables
us to quantitatively analyze the whole prediction logic of AI as a global
explanation. However, unwanted relationships learned by AI due to data
sparsity, high dimensionality, and noise are also visualized in the explana-
tion, which deteriorates confidence in the AI. Thus, methods for correcting
those unwanted relationships in explanation has been developed. However,
since these methods are applicable only to differentiable machine learn-
ing (ML) models but not to non-differentiable models such as tree-based
models, they are insufficient for covering a wide range of ML technology.
Since these methods also require re-training of the model for correcting its
explanation (i.e., in-processing method), they cannot be applied to black-
box models provided by third parties. Therefore, we propose a method
called ensemble-based explanation correction (EBEC) as a post-processing
method for correcting the global explanation of a prediction model in a
model-agnostic manner by using the Rashomon effect of statistics. We
evaluated the performance of EBEC with three different tasks and analyzed
its function in more detail. The evaluation results indicate that EBEC can
correct global explanation of the model so that the explanation aligns with
the domain knowledge given by the user while maintaining its accuracy.
EBEC can be extended in various ways and combined with any method
to improve correction performance since it is a post-processing-type cor-
rection method. Hence, EBEC would contribute to high-productivity ML
modeling as a new type of explanation-correction method.
key words: explainable AI, feature importance, global explanation, model
ensembling, Rashomon effect

1. Introduction

Shapley-value-based explainable artificial intelligence (AI)
technology, such as SHAP [1], [2], enables us to quantita-
tively analyze the whole prediction logic of a machine learn-
ing (ML)-based black-box prediction model by revealing its
global explanation. With this analysis, in addition to the
evaluation of its prediction accuracy, domain experts can
evaluate how much the global explanation of the prediction
model fits their domain knowledge. However, pseudo or un-
wanted relationships learned by the model due to data spar-
sity, high dimensionality, and noise are also shown in the
explanation, which deteriorates confidence in the prediction
model.

There are two types of approaches to improve the
global explanation of the prediction model. The first type
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is trial-and-error-based improvement that applies various
modeling parameters to ML models and selects the best
model. This type of approach tends to require a large
amount of time to obtain a satisfying result. When the size
of the training dataset is small, the global explanation of
each trained model greatly varies depending on the applied
modeling parameter, which makes obtaining a satisfying re-
sult more difficult. The phenomenon that many similar but
different models can be built even from the same data set is
known as the “Rashomon effect” of statistics [3], [4], and
“which model should be selected from those many mod-
els” is discussed as a problem of statistical modeling [5], [6].
The other type of approach is regularization-based improve-
ment that introduces an explanation-error term as a penalty
term into the objective function of the ML model [7], [8].
With this type of approach, explicit target values of im-
portance score (used for measuring explanation error) are
provided by the user, and the optimum model is obtained
by minimizing the objective function considering the ex-
planation error. This type of approach solves the produc-
tivity issue with the trial-and-error-based approach. How-
ever, current methods of this approach can be applicable
only to differentiable ML models and importance scores but
not to non-differentiable models and scores such as tree-
based models (e.g., XGBoost [9] and LightGBM [10]) and
Shapley-value-based scores. Thus, such methods are not ef-
fective in covering a wide range of ML technology. These
methods also need to be applied when the prediction model
is trained. Therefore, they are not applicable to black-box
prediction models provided by third parties.

We therefore propose the model-agnostic ensemble-
based explanation correction method (EBEC) leveraging the
Rashomon effect as a new regularization-based approach
that works in a post-processing step of model develop-
ment [11]. EBEC corrects the global explanation of a pre-
diction model by ensembling many similar but different
models so that its global explanation becomes close to a
desired property given by the user by taking advantage of
the Rashomon effect in ML. Since EBEC only adjusts en-
semble coefficients, it can work for any type of ML model
(including a prediction model provided by a third party) and
importance score as long as it can provide their global ex-
planations. We applied EBEC to three public datasets to
evaluate its performance and analyzed in more detail how it
functions in one of the datasets.

The contributions of this paper are as follows. (i)
The evaluation results from public datasets indicate that
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EBEC performs well in three different tasks, i.e., physics-
knowledge-based correction for accuracy, human-intuition-
based correction for plausibility, and ethics-based correction
for fairness. (ii) The analysis results from one of the pub-
lic datasets indicate that EBEC can correct a targeted part
of the global explanation. (iii) The results also indicate that
the accuracy of the prediction model is not so sensitive to
the weight values of EBEC when an appropriate function is
applied for explanation correction.

The rest of this paper is organized as follows. In
Sect. 2., we describe the novelty of EBEC by comparing it
with related methods. In Sect. 3., we explain EBEC in more
detail. In Sect. 4., we present the experimental settings, re-
sults, and discussions. Finally, we conclude this paper in
Sect. 5.

2. Related Work

Qualitative constraints: Many methods of controlling an
ML model’s behavior by applying qualitative constraints
(QCs), such as monotonic and synergic influences, to the
model have been proposed [12], [13]. A QC is useful, espe-
cially when humans have rich knowledge in the field while
there are less available data to build a prediction model.
Most methods focus on improving the relationship between
the input and output of a model that is visualized in an in-
dividual conditional expectation plot [14] but not in impor-
tance scores or global explanation of the model. Since ex-
plainable AI technology is becoming common, a correction
method of importance scores as well as global explanation
should be provided.
Explanation correction: There are a few explanation-
correction methods that correct a model’s explanation so
that it aligns with domain knowledge provided in a certain
format by the user. Right for the Right Reasons (RRR) is the
first method for correcting model’s explanation [15]. RRR
uses input gradients as its importance score and improves
generalization performance of the prediction model by low-
ering the gradients of input features that should not affect
the output. The method has been enhanced as Right for the
Right Concept so that it can correct concept-level explana-
tions by extending its regularization target from input space
to the representation space of the model [16]. Attention
branch network (ABN) uses class attribution mapping as
the attention mechanism for explanation correction [7], [17].
ABN works with a convolutional neural network for visual
input applications to improve its accuracy by taking into ac-
count preferable attention maps given by humans. Contex-
tual decomposition explanation penalization (CDEP) uses a
CD score as its importance score [8]. CDEP can be applied
to any deep neural network model with arbitrary architec-
tures and help users correct those models’ explanations. Ex-
pected gradients (EG) uses integrated gradients as its impor-
tance score and improves model’s explainability and robust-
ness to noise by incorporating higher-level expected proper-
ties of explanations, such as smoothness and sparsity, into
its regularization term for optimization [18]. These meth-

ods enable users to correct errors in terms of explanation
by directly regularizing the explanations provided from an
ML model when the model seems to have incorrectly as-
signed importance to certain features. However, the meth-
ods are applicable only to differentiable ML models and ex-
planations (or importance scores); hence, non-differentiable
models, such as tree-based models and Shapley-value-based
explanation, are not included. Due to the necessity of re-
training the model for correction, these methods are also
not applicable to models provided by third parties. Current
methods focus on correcting local explanation. Although a
global explanation is a set of local explanations, from the
aspect of correcting the global explanation of a prediction
model, it is necessary to consider the preferable property
of the global explanation as well as its local explanation.
Therefore, EBEC can correct global explanations.
ML research on Rashomon effect: There have been a few
studies that analyzed the Rashomon effect from the theoret-
ical aspects and used its insights to find the best prediction
model from the model space that may contain different yet
approximately-equally accurate models that might obey var-
ious constraints such as interpretability, fairness, or mono-
tonicity [5], [6], [19], [20]. These studies give us much in-
sight in terms of the Rashomon effect in ML. There is an-
other framework, although it does not refer to the Rashom
effect, that applies many different hyper-parameters to an
ML model to create many different prediction models and
finds the most interpretable model from among them [21].
Thus, current methods are mostly focused on finding the
simplest or most interpretable prediction model from among
the different models obtained from the model space. Our ap-
proach is clearly different from the above approaches since
EBEC is focused on creating a model that gives a simple ex-
planation by combining the different models obtained from
the model space by leveraging the Rashomon effect.

3. Ensemble-Based Explanation Correction

The concept of EBEC is shown in Fig. 1. There are
many local minima in the objective function space, and
prediction models at each local minimum (denoted as
f1(X), f2(X), · · · ) have different global explanations for
their training data. The key idea with EBEC is not to search
the model space for a desired model but create a model that
aligns with prior domain knowledge by ensembling various
models on the basis of our hypothetical idea of “every model
may not be correct but still not be wrong.” To do so, we in-
troduce an explanation-error term as a penalty term into the
objective function of an ensembled model and obtain en-
semble coefficients by minimizing the function. We use the
Shapley value as an importance score of features, but appli-
cable importance score for EBEC is not limited to the Shap-
ley value as long as it can provide a global explanation of
the model.
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Fig. 1 Concept of ensemble-based explanation correction (EBEC)

3.1 Objective Function

Given N, M, and n as the number of data samples in the
training dataset, input features used in a model, and mod-
els ensembled, respectively, and a = [a1, a2, · · · , an]⊤ as
a vector of ensemble coefficients, the equations to find the
optimum â that minimizes the objective function can be de-
scribed as

â = argmin
a

(
Losspred + Lossexpl

)
, (1)

Losspred =

N∑
i

(
Ḡi − Yi

)2
, (2)

Lossexpl =

N∑
i

M∑
f

λpref f

(
R̄i, f − Zpref i, f

)2
+

N∑
i

M∑
f

λbase f

(
R̄i, f − Zbasei, f

)2
,

(3)

Ḡi =

n∑
k

akGk (Xi) , (4)

R̄i =

n∑
k

ak Rk (Xi) . (5)

Equation (1) describes the objective function of EBEC,
where Losspred is a standard prediction-error term for find-
ing the optimum a from the aspect of prediction accuracy,
and Lossexpl is an explanation-error term for finding the op-
timum a from the aspect of explanation fitness to prior do-
main knowledge. Here, Lossexpl is the term newly added to
the objective function for EBEC. Equation (2) describes the
details of Losspred. Given i as the index number of data sam-
ples in the training dataset, Ḡi and Yi denote the predicted
value and its expected value of the ith data sample, respec-
tively. In (3), the details of Lossexpl are described, where R̄i, f

is the importance score of the input feature f for the ith data
sample. Given R̄i = [R̄i,1, R̄i,2, · · · , R̄i,M]⊤ as a vector of the
importance score of the ith data sample, R̄i, f can be obtained
through (5). Zpref i, f and Zbasei, f are preferable and base im-
portance scores (or explanations) of feature f for the ith data
sample, respectively, and are provided by the user who de-
velops the prediction model. The Zpref i, f is given as prior
knowledge shown in Fig. 1, and any user-defined value can
be applied to Zpref i, f . The Zbasei, f is a local explanation given
by the base model defined by the user. Any model or just an
equally weighted (or simple) ensembled model can be se-
lected as the base model, the global explanation of which
is to be corrected. In (3), therefore, the first term is for fit-
ting the prior knowledge, while the second term is for trying
to keep the explanation of the base model as is. These two
terms are weighted by the hyper-parameters λpref f

∈ [0,∞)
and λbase f ∈ [0,∞) for each f , respectively. Since available
prior knowledge is quite limited in most cases, the ensem-
bled model can easily overfit to Yi and Zpref i, f and deteriorate
its global explanation when n is large. Therefore, by filling
the blank of Zpref i, f with Zbasei, f , EBEC can fit its global ex-
planation to the preferable one while maintaining the prop-
erty of the base model. With this policy, Lossexpl in (3) can
be simply expressed as

Lossexpl =

N∑
i

M∑
f

λ f

(
R̄i, f − Zi, f

)2
, (6)

Zi, f =

Zpref i, f (PK( f ) = 1),

Zbasei, f (PK( f ) = 0),
(7)

λ f =

λpref f
(PK( f ) = 1),

λbase f (PK( f ) = 0),
(8)

where Zi, f is a target importance score (or explanation) of
feature f for the ith data sample, and λ f ∈ [0,∞) is a
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Algorithm 1 Ensemble-based explanation correction (EBEC)
Input: D(X, Y), paug, prange, λpref , λbase
Output: â
1: for k = 1 to n do
2: Daug = bootstrap(D, paug)
3: p = random(prange)
4: G(k, X) = generateModel(Daug, p)
5: R(k, X) = computeGlobalExpl(G(k, X), D)
6: end for
7: Zbase(X) = 1/n

∑
k R(k, X)

8: Zpref (X) = computePrefExpl(Zbase, X)
9: â = argminObjFunc(D, G, R, Zpref , Zbase, λpref , λbase)

hyper-parameter for weighting the loss value in terms of ex-
planation error for feature f . PK( f ) is the availability of
prior knowledge for feature f and takes 1 when Zpref i, f is
available, and 0 otherwise. Local explanation for correction
(Zpref i, f ) and preservation (Zbasei, f ) can be described as just
a target explanation Zi, f as shown in (6). However, their
roles (Zpref i, f and Zbasei, f ) as well as methods for obtaining
their values are clearly different. To easily explain these dif-
ferences, therefore, we use (3), which separately describes
the two error terms for correction and preservation of global
explanation, in this paper.

Finally, the Ḡi and R̄i are obtained from (4) and (5),
respectively, where Gk(Xi) and Rk(Xi) denote the prediction
value and importance-score vector of the kth model for the
input feature Xi = [xi,1, xi,2, · · · , xi,M]⊤, that is, the in-
put feature vector of the ith data sample. Note that, for (1),
scale adjustment between Losspred and Lossexpl is not neces-
sary. The unit dimension of the Shapley value is the same as
that of the predicted value Ḡi, and the summation of Shap-
ley values for each input feature f corresponds to Ḡi − β
(i.e., Ḡi − β =

∑
f R̄i, f ), where β is a constant baseline value

of the Shapley value [1]. As long as the Shapley value is
used as the importance score of EBEC, Losspred and Lossexpl

should be well balanced. Therefore, the scale adjustment for
Losspred and Lossexpl has not been applied to (1).

3.2 Algorithm

Algorithm 1 describes a pseudo code of EBEC used for
our experiments. To build many different models, bootstrap
sampling and random hyper-parameters are applied to the
training dataset and ML model, respectively, in Algorithm
1. As the input parameters, D(X, Y) is the training dataset,
where X denotes the input feature vector, Y denotes the tar-
get feature, and paug is the augmentation ratio of bootstrap
sampling. When paug is 2, for example, 2N data samples
are randomly selected from the original training dataset D.
This augmentation is useful for avoiding accuracy deterio-
ration caused by bootstrap sampling when the size of D is
small. The prange is the minimum and maximum values of
hyper-parameters used for ML modeling, and λpref and λbase

are weight-value vectors used in the objective function of
EBEC, as described in (3). The output of this algorithm is
the optimum ensemble-coefficient vector â. A detailed de-
scription of each step in Algorithm 1 is as follows.

Step 1: in line 2, sub dataset Daug is obtained by applying
bootstrap sampling to D with paug.
Step 2: in line 3, the hyper-parameters of ML model p are
randomly determined within the range defined by prange.
Step 3: in line 4, a model G (Gk in (4)) is created on the
basis of Daug and p. Although we used XGBoost as the ML
model in our experiments, any ML model can be applied.
Step 4: in line 5, a global explanation R (Rk in (5)) is com-
puted on the basis of D and G(k, X).
Step 5: steps 1 through 4 are repeated n times, and n Gs and
n Rs are created.
Step 6: in line 7, base explanation Zbase (a set of Zbasei, f in
(3)) is defined. Although, the average global explanation of
all models is set as Zbase in this algorithm, any particular
model’s global explanation can be used.
Step 7: in line 8, preferable explanation Zpref (a set of Zpref i, f
in (3)) is computed on the basis of Zbase and X. Practically,
it might be difficult to directly provide exact values of the
preferable global explanation even if the user is an expert in
the domain. However, providing its qualitative properties,
such as linearity and monotonicity, is much easier. There-
fore, computePrefExpl() is a user-defined function that dif-
fers depending on its application. For example, when x1 is
expected to linearly contribute to the output, a linear func-
tion flinear() that fits the base model’s global explanation in
terms of x1 is computed, then Zpref is obtained as flinear(x1).
Step 8: in line 9, â is obtained by solving the objective
function described in (1). We used the conjugate gradient
method for solving this minimization problem.

4. Experiments and Analysis

We conducted two types of experiments to evaluate EBEC.
One involved using four public datasets to evaluate the per-
formance of EBEC in three different tasks. The other one
involved using one of those datasets to analyze in more de-
tail how EBEC functions.

4.1 Experiment 1: Evaluation with Public Datasets

We applied EBEC to three different tasks using four differ-
ent public datasets to evaluate its performance. The basic
experimental settings applied to these tasks are listed in Ta-
ble 1. Using the training datasets, we created 200 mod-
els by using XGBoost [9] and computed the base model’s
global explanation by using Tree SHAP [2]. The other ap-
plied hyper-parameters paug and prange are listed in Table 1.
When the available training dataset is small, the prediction
model often has distortion in its global explanation due to
pseudo-correlations in the dataset. Under this condition, the
benefit of EBEC can be easily observed. To see how EBEC
works, we used relatively small training datasets in this ex-
periment.

Task 1: Physics-knowledge-based correction for accu-
racy with Concrete dataset

The amount of data obtained through physical exper-
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Table 1 Basic parameters used in Experiment 1

Parameters Details
ML model XGBoost [9]
Importance score Shapley value (Tree SHAP [2])
n 200
paug 2
prange max depth: 1 to 20,

n estimators: 10 to 1000,
learning rate: 0.01 to 0.50

iments tends to be small because of their high cost, but
sometimes humans have rich knowledge about the domain.
Assuming such a case, we applied EBEC to a prediction
model to improve its accuracy by directly adding domain
knowledge to it. The experimental conditions used in task 1
are listed in Table 2. We used the Concrete dataset [22] as
a physics-based experimental dataset and the “compressive
strength” of concrete was predicted as the target feature. We
split the dataset into 10% training data and 90% test data
and used a simple (equally weighted) ensembled model as
the base model. We also used the main effect of the Shap-
ley values as the score of the preferable and base explana-
tion (i.e., Zpref and Zbase) because the plot of the main effect
tends to be simple and have less variation compared with
that of the total effect (i.e., Shapley value itself) that may
include the interaction effect among input features as well
as the feature’s main effect. Thus, the main effect is suitable
for Zpref and Zbase.

We set the Lyse’s equation [23], which describes a
property that cement density linearly affects compressive
strength of concrete, as the prior knowledge. Thus, the main
effect of x1 (denoted as ϕ1,1) was approximated by a linear
function for Zpref . The λpref for x1 was set as 6 and λbase for
those other than x1 were set as 3 in this task.

A comparison of dependence plots of the main effect
of the Shapley value (as the global explanations) for x1 is
shown in Figs. 2 (a), (b), and (c). The preferable explana-
tion (b) was given as a function obtained by fitting the de-
pendence plot of (a) to a linear function. With the prefer-
able explanation (b), the dependence plot of the corrected
model (c) became much more linear compared with that of
the base model (a). Moreover, a comparison of the root-
mean-squared error (RMSE) and coefficient of determina-
tion (R2) scores among the models is shown in Table 3,
where the mean value and standard deviation over ten runs
are described. The results indicate that the RMSE of the
base model decreased by 3.5% on average as a result of the
correction using EBEC.

The t-values of the difference between the scores of
corrected and base models are also shown in Table 3. In this
task, the t-value was larger than 1.833, which is the value
for 95% confidence in the t-distribution. Since the feature
x1 is quite influential for the prediction, the prediction per-
formance improved by correcting the global explanation for
x1 through applying a well-studied knowledge to the expla-
nation. Therefore, physics-knowledge-based correction can
improve the generalization performance of the prediction
model when the model could not capture the right property

of the global explanation from the limited training data.

Task 2: Human-intuition-based correction for plausibil-
ity with Boston dataset and Breast cancer dataset

The dataset for predicting a target feature that is not
simply based on physics but strongly affected by human
senses, customs, or experiences is sometimes too small to
build a prediction model with its global explanation fitting
the user’s intuition. Therefore, in task 2, we applied EBEC
to two types of prediction models, which are regression and
classification models, to improve its plausibility by reflect-
ing qualitative assumption on the basis of the user’s intuition
in the model. The experimental parameters used in this task
are listed in Table 2.

First, for a case of regression problem as task 2-1, we
used the Boston dataset [24] as a non-physics-based dataset
and the price of a house “PRICE” was set as the target fea-
ture. The dataset was split into 20% training data and 80%
test data. Using the training dataset, we created 200 models
and a base model by ensembling them with equal weights
then obtained dependence plots that visualize the main effect
of the Shapley values for all input features. From these plots,
we found that the property of the most influential feature,
LSTAT (% lower status of the population), had some amount
of distortion in its curve, as shown in Fig. 2 (d). We put a
qualitative assumption that “LSTAT would affect PRICE in
a continuous manner” and chose α log x+β as a simple func-
tion to approximate the curve of LSTAT (denoted as x13).
Therefore, we obtained Zpref , as shown in Fig. 2 (e). We
did not have much confidence in the preferable explanation
Zpref compared with that of task 1; thus, λpref of x13 was set
as 1 (as a relatively small value) to preserve the properties
of the base model as much as possible. A comparison of
dependence plots for the main effect of the Shapley value
of x13 is shown in Figs. 2 (d), (e), and (f). The dependence
plot of the corrected model (f) was smoother compared with
that of the base model (d). In terms of accuracy comparison,
the RMSE of the corrected model improved by 2.8% (with
the t-value of 3.514) on average rather than deteriorated, as
shown in Table 3.

We did not expect that the correction would improve
prediction performance in this task. However, smoothness
can be considered as one of high-level expected properties
of explanations and it was reported that emphasizing the
smoothness property of explanations improved prediction
performance in EG [18]. Thus, improving the smoothness
property of explanations can have a positive impact on pre-
diction performance. In this task, therefore, the smoothness
property was fortunately matched with the global explana-
tion for x13, which is the most influential feature, and this
led the improvement of prediction performance.

Second, for a case of a classification problem as task
2-2, we used the Breast cancer dataset [25], in which the
problem is to distinguish malignant (cancerous) from be-
nign (non-cancerous) examples. The dataset was split into
10% training data and 90% test data. Using the training
dataset, we created 200 models and a base model by ensem-
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Table 2 Main parameters used in Experiment 1

Parameters Task 1 Task 2-1 Task 2-2 Task 3
Data set Concrete [22] Boston [24] Breast cancer [25] Adult [25]
Training data 103 samples (10%) 102 samples (20%) 57 samples (10%) 8,997 samples (30%)
Test data 927 samples (90%) 404 samples (80%) 512 samples (90%) 20,994 samples (70%)
Input features 8 features 13 features 30 features 14 features
Base model Simple ensemble Simple ensemble Simple ensemble Best model
Prior knowledge Cement (x1) linearly affects LSTAT (x13) would affect For Worst texture (x22), the Race (x9) and sex (x10) should

compressive strength (Y) [23] PRICE (Y) in continuous slope connecting the two- not affect income class (Y)
manner value levels would be linear

Zpref ϕ1,1 = αx1 + β ϕ13,13 = α log x13 + β if (20 < x22 < 32): ϕ9(X) = ϕ10(X) = 0
(for main effect of (for main effect of ϕ22,22 = αx22 + β (for Shapley values of
Shapley value of x1) Shapley value of x13) else: ϕ22,22 = Zbasex22

x9 and x10)
(for main effect of
Shapley value of x22)

Zbase Main effect of Shapley Main effect of Shapley Main effect of Shapley Shapley value for each input
value for each input feature value for each input feature value for each input feature feature

λpref 6 for x1, 0 for others 1 for x13, 0 for others 1 for x22, 0 for others 500 for x9 and x10, 0 for others
λbase 0 for x1, 3 for others 0 for x13, 3 for others 0 for x22, 3 for others 0 for x9 and x10, 3 for others

Table 3 Accuracy comparison between base and corrected models (over 10 runs) in Experiment 1

Task Accuracy Base model Corrected model —t-value|
criteria (EBEC) (Corrected - Base)

Task 1: Concrete RMSE 7.419±0.259 7.154±0.246 3.550
(Regression) R2 0.802±0.013 0.816±0.012 3.570
Task 2-1: Boston RMSE 4.292±0.455 4.170±0.439 3.514
(Regression) R2 0.777±0.042 0.789±0.038 3.348
Task 2-2: Breast cancer Accuracy 0.930±0.013 0.931±0.014 1.342
(Classification)
Task 3: Adult Accuracy 0.862±0.002 0.859±0.002 3.237
(Classification) Imp. score (race) 0.044±0.016 0.009±0.002 6.461

Imp. score (sex) 0.151±0.070 0.015±0.003 6.010

bling them with equal weights then obtained dependence
plots that visualize the main effect of the Shapley values for
all input features. From these plots, we found that global
explanations for most features have two-value levels con-
nected with a steep slope, as shown in Fig. 2 (g). For the
property of “Worst texture” (denoted as x22), which is a rel-
atively influential feature, we intuitively assumed that “the
slope connecting the two-value levels would be linear” with
a small confidence on the basis of its shape. Therefore, λpref

of x22 was set as 1 (as same as the regression case) to pre-
serve the properties of the base model as much as possible.
A comparison of dependence plots for the main effect of the
Shapley value of x22 is shown in Figs. 2 (g), (h), and (i). In
the dependence plot of the corrected model (i), the linearity
of the slope improved compared with that of the base model
(g). In terms of accuracy comparison, the accuracy of the
corrected model slightly improved, but it was not statisti-
cally significant since its t-value for ten runs was 1.342, as
shown in Table 3.

Task 3: Ethics-based correction for fairness with Adult
dataset

From the aspect of ethics in ML, there is a case in
which the user wants to remove unwanted bias from the pre-
diction model that contains sensitive attributes in its input
features. This correction is known as “de-bias”, and there
have been studies on improving the fairness in ML [26]–

[28]. Therefore, in task 3, we applied EBEC to a prediction
model to improve its fairness by reflecting ethics-based con-
strains in the model and suppressing the effect of sensitive
attributes in it.

The experimental parameters used in this task are listed
in Table 2. We used the Adult dataset [25], which involves
predicting personal annual income levels as above or below
$50,000 based on personal attributes. The dataset was split
into 30% training data and 70% test data because there were
enough data to build a prediction model with high accuracy,
and evaluation with a larger amount of test data is better than
that with a small amount as long as there is enough train-
ing data. In this task, we chose the most accurate model
among the created 200 models as the base model to evaluate
how much the bias correction using EBEC would deterio-
rate its accuracy. As the prior knowledge, “race (denoted as
x9) and sex (denoted as x10) should not affect the prediction
of personal income” was applied. The Shapley value was
used as Zpref and Zbase instead of its main effect component
because the effects of x9 and x10 including any interaction
effect components should be suppressed to zero in this task.
Finally, λpref for x9 and x10 were set as 500 (as strong con-
straints), while λbase for those others than x9 and x10 were
set as 3 in the same manner as the other tasks. A compari-
son of summary plots that show the mean absolute Shapley
value for each feature (as the importance score used in this
evaluation) are shown in Figs. 2 (j), (k), and (l). The im-
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Fig. 2 Results from Experiment 1. (a) and (c) Dependence plots of main effect of Shapley values for
x1 in base and corrected models, respectively. (b) Preferable explanation for task 1. In same manner,
(d), (e), (f) and (g), (h), (i) are those for regression and classification problems in task 2, respectively.
(j) and (k) Summery plots of Shapely-value-based importance scores for base and corrected models,
respectively. (l) Preferable explanation for task 3.

portance scores of the base model for x9 and x10 (shown in
(j)) were 0.070 and 0.108 and those of the corrected model
(shown in (l)) were 0.008 and 0.014, respectively. There-
fore, the results indicate that EBEC successfully suppressed
the effect of sensitive attributes x9 and x10 by more than 85%
while maintaining its accuracy. The mean value and stan-
dard deviation of accuracy and importance scores over ten
runs are listed in Table 3, which shows that the importance
scores of the sensitive attributes were suppressed by 82% on
average with 0.4% accuracy deterioration (with the t-value
of 3.237) as a result of the correction using EBEC. Thus,
we confirmed that EBEC can de-bias a prediction model in
terms of feature attributions to improve its fairness in pre-
diction while maintaining high accuracy.

4.2 Experiment 2: Analysis with Concrete Dataset

To analyze how EBEC functions in more detail, we con-
ducted three evaluations using the Concrete dataset for ob-
serving the Rashomon effect in global explanation, effect of
the λbase on explanation correction, and performance sensi-
tivity to the parameters of λpref and λbase. The experimental
settings were the same as in task 1.

Observation of Rashomon effect on global explanation:
We first analyzed the Rashomon effect in task 1. The de-
pendence plots of the main effect of the Shapley values (on
all features) for 200 models are shown in Fig. 3. The gray
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Fig. 3 Dependence plots of main effect of Shapley values for 200 models (Concrete dataset)

points are each model’s importance score and the blue points
are their mean values. The bar charts above the plots show
the histogram of the training data samples for each feature.
In these dependence plots, the variation of gray points is
caused by the Rashomon effect, and we can see that the vari-
ation is relatively large in the region where the number of
samples is small. With this variation and diversity of the
models, EBEC can correct the explanation of a prediction
model.

Effect of λbase on explanation correction: To analyze the
effect of the weight-value vector λbase on the explanation
correction for each feature, we compared the explanation
errors in terms of the main effect of the Sharpley value for
each feature obtained by applying zero and three to λbase

(denoted as λbase = 0 and λbase = 3, respectively). The
experimental results are shown in Fig. 4. Since the λbase

is 0 for x1 and the λpref is 0 for other than x1, we denoted
λbase and λpref as simple scalar weight parameters of λbase

and λpref , respectively. These lines show the mean explana-
tion errors (between the corrected model’s explanation and
base model’s or preferable explanation) of each input fea-
ture for the training dataset over ten runs. By comparing
Figs. 4 (a) and (b), we can see that the explanation errors of
x2 to x8 with λbase = 3 (shown in (b)) increase much less
as λpref increases than that with λbase = 0 (shown in (a)),
while the explanation error for x1 with λbase = 3 decreases
more rapidly than that with λbase = 0. A visual comparison
of the dependence plots observed for ten runs is presented
in Fig. 5. It compares the global explanation for each fea-
ture among the base model, corrected model with λbase = 0,
and corrected model with λbase = 3, which are shown as
black, red, and green points, respectively. The global expla-
nation in the base model was mostly preserved in the cor-
rected model with λbase = 3 except for that of x1, while the
corrected model with λbase = 0 could not preserve the base
model’s global explanation. Therefore, we confirmed that

the weight-value vector λbase works as an anchor to preserve
the base model’s global explanation, as expected, and EBEC
can selectively correct a targeted part of the base model’s
global explanation.

Performance sensitivity to λpref and λbase: To analyze the
sensitivity of the prediction performance to the weight pa-
rameters of EBEC, we conducted experiments that applied
several values to λbase and λpref and observed the predic-
tion errors of the corrected model for the test dataset. Ap-
plying a larger value to λbase does not affect the predic-
tion model because the role of the parameter is to main-
tain the property of the base model as is. On the other
hand, λpref changes the property of the base model; thus,
the purpose of the analysis is to observe how parame-
ter λpref affects the prediction model as its value changes.
Therefore, we assigned integer values around 1 to λbase as
λbase ∈ {0, 1, 2, 3} and a wide range of values to λpref as
λpref ∈ {0, 0.25, 0.5, 1, 2, 4, 8, 16, 32} to observe the effect of
λpref when the value is small as well as when it is very large.

The results are shown in Fig. 6, where the prediction er-
rors are normalized by that of the base model and the mean
value of the prediction errors over ten runs are presented.
When both the λpref and λbase are zero (shown as a orange
dot), performance deteriorates because of the overfitting to
the training dataset. When the λpref > 0, the performance
improves, as we expected. However, even when the λpref

is very large, such as 32, the performance does not deteri-
orate much for every λbase. Therefore, the results indicate
that the performance was not so sensitive to the λpref as well
as λbase. We thought it would be because of the preferable
explanation (Zpref) used in the experiment. The larger the
λpref , the closer the targeted feature’s global explanation to
the preferable explanation provided by the user. Thus, when
the preferable explanation is relatively correct, the side ef-
fects of λpref would be still small even if a large value is
assigned to it. To confirm this hypothesis, we applied dif-
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Fig. 4 Explanation error vs. weight parameter of x1 (λpref ) for (a) λbase = 0 and (b) λbase = 3
(averaged over 10 runs)

Fig. 5 Comparison of dependence plots of all features among base model, corrected model (λbase =

0), and corrected model (λbase = 3)

ferent preferable explanations to a case of the ten runs and
obtained their prediction performances when λbase = 3, as
shown in Fig. 7. Simple functions α log x + β (denoted as
Log) and α/x + β (denoted as 1/x) were applied to obtain
the preferable explanation (Zpref) in addition to the linear
function αx + β (denoted as Linear). Figure 7 (a) shows the
normalized prediction errors (on the test dataset) of the cor-
rected models with the three different functions. As we ex-
pected, the prediction performance greatly varies when the
λpref is large, especially for the function of α/x + β (i.e., the
1/x case). The preferable explanation (Zpref) and corrected
global explanation for x1 of each function case are shown in
Fig. 7 (b). The corrected global explanation of the 1/x case is
largely different from the Linear case, compared with that of
the Log case. Therefore, we confirmed our hypothesis that
the prediction performance of EBEC is not sensitive to the
weight parameters λpref and λbase when an appropriate func-
tion is provided for obtaining the preferable explanation for
the targeted feature but sensitive when the provided function
is far different from the ideal one for the feature. Consider-
ing the risk of choosing a wrong function for the preferable
explanation and balance between the prediction and expla-

nation errors in the objective function where the dimension
of the importance score (or explanation error) is the same as
that of the target variable (or prediction error), especially for
the Shapley value, it would be preferable to set the parame-
ters of λpref and λbase to around 1. Finally, with the Concrete
dataset, λbase = 0 was the best condition in terms of predic-
tion performance, as shown in Fig. 6. These results indicate
that preserving the base model’s global explanation as much
as possible is not the best approach to improving its pre-
diction performance for every situation, although preserving
it does not harm the corrected model’s performance. Basi-
cally, domain knowledge is necessary for determining which
feature’s global explanation should be preserved. However,
qualitative properties, such as monotonicity and continuity
of the dependence plot for each feature, can be a good crite-
rion to determine the global explanation that should be pre-
served even when the domain knowledge is less available.

5. Conclusion and Future Work

We proposed the model-agnostic ensemble-based expla-
nation correction method (EBEC) for leveraging the
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Fig. 6 Prediction error vs. weight parameter of x1 (λpref ) for various λbase (averaged over 10 runs)

Fig. 7 (a) Prediction error vs. weight parameter of x1 (λpref ) for different settings on preferable expla-
nation and (b) dependence plots (showing preferable and corrected explanations) of x1 for each applied
function

Rashomon effect of statistics. EBEC can correct the global
explanation of any machine learning (ML) model by directly
reflecting domain knowledge of experts in the model as long
as the global explanation of the model can be computed. The
functions of EBEC using XGBoost and Tree SHAP with
public datasets was evaluated and analyzed. The evalua-
tion results of three tasks indicate that EBEC can correct
the global explanation of the base prediction model while
maintaining its accuracy. During analysis with the Concrete
dataset, we observed the Rashomon effect in the global ex-
planation. The analysis also confirmed that EBEC can cor-
rect a targeted part of the global explanation of the base pre-
diction model while maintaining other parts of it and indi-
cated that the prediction performance of the corrected model
is not sensitive to the weight parameters of EBEC when ap-
propriate domain knowledge was given.

We presented a basic form of EBEC in this paper.
However, by extending its objective function, it may en-
able us to tune the model in various ways. For future work,
EBEC will be extended to correction of the interaction ef-
fects in global explanation, although only the main effects
in global explanation were targeted in this paper. Estab-

lishing a methodology of EBEC using heterogeneous-model
ensemble is also our future direction. Since EBEC is a post-
processing-type correction method, it can be combined with
any in-processing-type correction method that requires re-
training of the model for correction. Revealing the synergy
of combining EBEC with those methods may help us ex-
plore practical ways in using them.

Although the performance of EBEC strongly depends
on the diversity of prediction models due to the Rashomon
effect, it can contribute to high-productivity ML modeling
as a new type of explanation-correction method.
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