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DFAM-DETR: Deformable Feature Based Attention Mechanism
DETR on Slender Object Detection

Feng WEN†, Mei WANG†, and Xiaojie HU†a), Nonmembers

SUMMARY Object detection is one of the most important aspects of
computer vision, and the use of CNNs for object detection has yielded sub-
stantial results in a variety of fields. However, due to the fixed sampling
in standard convolution layers, it restricts receptive fields to fixed loca-
tions and limits CNNs in geometric transformations. This leads to poor
performance of CNNs for slender object detection. In order to achieve bet-
ter slender object detection accuracy and efficiency, this proposed detector
DFAM-DETR not only can adjust the sampling points adaptively, but also
enhance the ability to focus on slender object features and extract essential
information from global to local on the image through an attention mecha-
nism. This study uses slender objects images from MS-COCO dataset. The
experimental results show that DFAM-DETR achieves excellent detection
performance on slender objects compared to CNN and transformer-based
detectors.
key words: slender object detection, Deformable DETR, DFAM, de-
formable convolution, attention mechanism

1. Introduction

Object detection has made significant development in re-
cent years as a crucial study subject, with the increasing ap-
plication of deep learning on computer vision [1]–[4]. For
each object of interest in an image, object detection needs
the algorithm to predict a bounding box with a category
label. One-stage detectors and two-stage detectors are the
two primary types of object detectors. For instance, the
YOLO series [5]–[8], SSD [9], DSSD [10], Retina-Net [11],
Efficient-Det [12], FCOS [13], and Corner-Net [14] are one-
stage detectors with the benefit of detection speed. The
R-CNN [15], Cascade R-CNN [16], Fast R-CNN [17], and
Faster R-CNN [18] are two-stage detectors with the advan-
tage of high detection accuracy.

The demand for object detection, such as small object
detection [19] and dense object detection [20], [21], is grow-
ing as the field of computer vision develops. Certain detect-
ing effects have been obtained, and some novel approaches
and solutions have been offered. Despite the fact that the
most of the issues have been resolved, there is still a signif-
icant difference between slender object detection and regu-
lar object detection. For slender object detection, the pre-
viously described one-stage and two-stage detectors, such
as Faster R-CNN [18], RepPoint [22], and FCOS [13], were
used. The test included only slender object images from
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the MS-COCO dataset [23], such as knives, forks, skis and
snowboards. The highest detection accuracy of AP reached
20.7 percent. This is because of the standard convolution
only samples the input feature map at fixed locations and
it cannot automatically adjust the sampling points to fit the
features of slender objects.

Since Transformer’s self-attention layers are global
instead of locality two-dimensional neighborhood struc-
ture, it has much less image-specific inductive bias than
CNNs [24]. Research such as Detection Transformer
(DETR) [25] started to applying transformer for object de-
tection. Results show that the attention mechanism in the
transformer has strong modeling capability for relation. The
main target area is obtained by scanning the global image.
It effectively concentrates on the image’s slender object for
improved output quality. Furthermore, the data dimension
is reduced which can lower the computational load of high-
dimension data input.

The downside of DETR is that using the transformer
attention mechanism to obtain sampling points is still time
demanding. Deformable DETR [26] successfully integrates
transformer and deformable convolution [27] with sparse
spatial sampling positions to solve the problem of slow con-
vergence speed and high complexity of DETR. The de-
formable attention module in Deformable DETR only ob-
tain key sampling points around a reference. Convergence
and feature spatial resolution issues can be reduced by al-
locating a fixed number of important points to each query.
It can provide efficient and better detecting performance
with fewer and more precise sampling points on the slender
objects.

Furthermore, while Deformable DETR merely adds a
deformable attention module to the transformer, backbone
network feature extraction is still insufficient for detecting
slender objects. When CNN is used to extract features in
the backbone network, it has difficulty adapting to the shape
of slender objects. Hence, we propose Deformable Fea-
ture based Attention Mechanism DETR (DFAM-DETR) de-
tector for slender object detection. This detector is based
on Deformable DETR, and Deformable Feature based At-
tention Mechanism (DFAM) is designed to sample slender
object features and increase the ability of feature extrac-
tion by deformable convolution and attention mechanism.
Deformable convolution can adjust the position of sample
points in the image adaptively. It assures that the sam-
ple points are localized in the image’s region of interest to
avoid background influence. For instance, as illustrated in
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Fig. 1 Sampling points for slender objects. (a) Standard convolution
sampling points; (b) DETR sampling points.

Fig. 1 (b), using deformable convolution with DFAM may
cluster the sampling points more accurately on slender ob-
ject than the standard convolution in Fig. 1 (a).

Apart from the deformable convolution, the attention
mechanism is also applied with DFAM for slender object
detection. The attention mechanism may learn which infor-
mation to emphasize or suppress based on the dimensions
of the channel and space. Hence, it increases the effective-
ness of recognizing slender objects by focusing on impor-
tant features and suppressing those that aren’t. In summary,
the proposed DFAM-DETR detector is modified based on
Deformable DETR specifically for slender object detection.
The DFAM is designed for capturing the specific features of
slender objects. As a result, DFAM-DETR detector greatly
improves slender object detection accuracy and efficiency
comparing to Deformable DETR.

2. Related Work

Object detection is categorized into one-stage detectors and
two-stage detectors [1]–[4]. One-stage detectors do not re-
quire the region proposal stage and may generate the prob-
ability of an object’s category and location directly. For
instance, the YOLO series [5]–[8], SSD [9], DSSD [10],
Retina-Net [11], Efficient-Det [12], FCOS [13], and Corner-
Net [14] are typical one-stage detectors with the benefit
of detection speed. The two-stage detectors must first
create region proposals, then perform object classification
and localization for region proposals. For instance, the
R-CNN [15], Cascade R-CNN [16], Fast R-CNN [17], and
Faster R-CNN [18] detectors have the benefit of high detec-
tion accuracy.

Despite the fact that object detection using convolu-
tion has gained high accuracy, detection performance on
slender objects remains poor. The convolutional approach
has difficulty capturing features of slender objects. Pop-
ular object detectors like Faster R-CNN [18], FCOS [13],
RepPoints [22] adopt standard convolution. Furthermore,
improved detectors [28] based on FCOS and RepPoints
that specifically developed for slender object detection still
shows weak detection accuracy.

The self-attention mechanisms of transformer can scan
through each element of a sequence and update it by ag-
gregating information from the whole sequence [25], [26],
[29]–[32]. DETR is a transformer-based object detector.
It combines the bipartite matching loss and transformers
with powerful relationship modeling ability [25]. However,
DETR requires more epochs to achieve convergence com-
paring to popular detectors [26]. Due to the complexity of
high-resolution feature map, the performance of DETR in
detecting small objects is relatively poor [26]. Deformable
DETR is an effective and efficient detector for dealing with
sparse spatial locations, which compensates the lack of the
element relation modeling capability for DETR [26], [27].
The deformable attention module of Deformable DETR
only focuses on a small group of key sampling points around
the reference point without considering the spatial size of
the feature map [26]. By allocating only a few fixed numbers
of keywords to each query, the problems of convergence and
spatial resolution of elements can be alleviated [26].

However, Deformable DETR only introduces de-
formable attention module into transformer. For slender ob-
jects, feature extraction of backbone network still adopts
convolution, which does not provide sufficient solution.
Hence, we propose DFAM based on deformable convolution
feature and attention mechanism for effective slender ob-
ject detection. Unlike Deformable DETR, DFAM use adap-
tive sampling points of deformable convolution and atten-
tion mechanism to aggregate the whole input sequence in-
formation in backbone network to accurately identify slen-
der objects and obtain better detection accuracy for slender
objects.

3. Method

3.1 Architecture

DFAM-DETR is based on Deformable DETR, which is
comprised of three parts, the ResNet [1] as backbone, the
transformer with encoder-decoder, and the Feed Forward
Network (FFN). As shown in Fig. 2, our improvement is
mainly in backbone network. The Deformable Feature
based Attention Mechanism (DFAM) is designed in the
backbone network based on ResNet to extract slender ob-
ject features. Transformer takes full advantage of its pow-
erful modeling capabilities and sampling capability of de-
formable attention module to improve the accuracy of slen-
der object detection. FFN is used to predict the output cate-
gories and position of objects in the picture.

3.2 Feature Extraction of Backbone

The backbone is anticipated to fully mine the meaningful se-
mantic information of the image as the model’s core feature
extraction function. Convolution in the ResNet backbone is
challenging to adapt to the unique shape of slender objects.
We propose the DFAM to enhance the ability of feature ex-
traction by improving one layer (C5) in ResNet, see Fig. 2.
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Fig. 2 Overall structure of DFAM-DETR. Note: C1, C2, C3 and C4 are original from ResNet.

Fig. 3 Constructing multi-scale slender object feature maps

First, ResNet generates feature maps for stages 3, 4, and 5
as C3, C4, C5. To build the deformable C5 feature map,
we replace the convolution in the last stage of ResNet with
deformable convolution, which is then fed into the attention
mechanism to generate the DFAM feature map. Second, in
order to capture the different scales of slender objects, the
C3, C4, deformable C5 and DFAM feature map are adapted
to generate multi-scale slender object feature maps. The C3,
C4, and deformable C5 feature maps are convolved with the
1 × 1 stride 1 to get the first three feature layers. Then the
last layer feature map is obtained via a 3 × 3 stride 2 convo-
lution on the DFAM feature map, see Fig. 3. Therefore, the
multi-scale slender object feature maps are captured from
the backbone. Lastly, the multi-scale slender object feature
maps are input to transformer to enhance the ability of se-
mantic and geometric information representation.

3.3 The Proposed Deformable Feature Based Attention
Mechanism

As shown in Fig. 4, DFAM combines the ability of de-
formable convolution’s adaptive sampling points with the
capacity of focusing critical features of the attention mecha-
nism to adjust to the features of slender objects and increase
feature extraction ability.

The geometric structure and sample points of the stan-
dard convolution kernel are fixed in the convolutional neural
network, and the generalization capacity is limited, thus the
geometric modification has inherent restrictions. Because
of this constraint, a model can only get feature information
from a fixed area, making it impossible to adjust to the fea-
ture of slender objects and limiting their capacity to extract
features. As a result, we propose using deformable con-
volution instead of standard convolution in the backbone
to extract features of slender objects. The comparison be-
tween standard convolution sampling points and deformable
convolution sampling points in slender object is showing in
Fig. 5. Comparing to standard convolution, the deformable
convolution includes a learnable offset at each sampled po-
sition in the feature map so that the deformable convolution
can better adapt to the features of slender objects. Further-
more, while deformable convolution does not considerably
increase the model’s parameters and FLOPS, too many de-
formable convolution layers would dramatically increase the
infer time in reality. As a result, in order to balance effi-
ciency and accuracy, we propose replacing 3×3 convolution
layers in the last stage C5 with 3×3 deformable convolution
layers.

Deformable convolution can adjust spatial samples
with extra offsets and learn the offsets of target tasks
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Fig. 4 DFAM framework.

Fig. 5 Comparison of 3 × 3 standard and deformable convolution sam-
pling points. (a) Standard convolution sampling points (dark blue points);
(b) deformable convolution sampling points (dark green points).

without additional supervision. As shown in Fig. 4, the
two-dimensional offset can be calculated by another parallel
standard convolution unit, and can also be learned end-to-
end by gradient back propagation to generate new sampling
positions in the feature map [33]. For a sampling field R with
the size of (N × N), R = {(0, 0), (0, 1), . . . , (N − 1,N − 1)},
and an input image data x, for each location p0 on the output
feature map ydeform, the formula of deformable convolution
is as follow [34],

ydeform (p0) =
∑

pn∈R
w (pn) ∗ x (p0 + pn + Δpn) (1)

where pn is all the locations in the sampling field, and Δpn

is the offset position of each sampling point, and w(pn) is
the corresponding weight [34],

Δpn =
(
xo f f set, yo f f set

)
| (0, 0), . . . , (N − 1,N − 1) (2)

where (xoffset, yoffset) represents the offset of x coordinate and
y coordinate of a certain position respectively.

Since the offset Δpn is typical fraction, and discrete im-
age data cannot use non-integer coordinates, bilinear inter-
polation is adopted in Eq. (1). The intuitive effect is that the
deformable convolution can adjust the position of sampling
points according to the feature of the slender object.

It is crucial to show the channel content and space
location of the slender object in the image instead of the
background area. The attention mechanism concentrates
on the features of slender objects in the image and ignores
those that are irrelevant. Hence, we propose a deformable
convolution-based attention mechanism for better focusing
on the features of slender objects. The proposed attention
mechanism consists of two dimensions of channel and space
to better extract the features of slender objects, see Fig. 4.

Spatial attention focuses on activated spatial informa-
tion in the feature map [35], which can enhance the valuable
local spatial information while suppressing the slender ob-
jects’ background noise information. The spatial attention
feature map is obtained by feeding the deformable C5 fea-
ture map through the spatial attention mechanism, see Fig. 4.
To generate two one-dimensional feature maps, the average-
pooling and max-pooling are used to the deformable C5
feature map first. Second, a two-dimensional feature map
is created by concatenating two one-dimensional feature
maps. A novel one-dimensional spatial attention weight
map is created by convolution with the 7 × 7 convolution
kernel to determine the spatial attention weights of slender
objects. To compress the spatial attention weights into a
range, the sigmoid function is utilized (0, 1). Finally, the
spatial attention weight map W is applied to the initial fea-
ture map ydeform (p0) by element-wise multiplication to get
the spatial attention feature map. The formulas are defined
as follows:
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f ′ = Avg Psp (ydeform (p0)) ⊕Max Psp (ydeform (p0)) (3)

W = φ
(
f ′
)

(4)

Fsp = σ(W) � (ydeform (p0)) (5)

where AvgPsp and MaxPsp represent average-pooling and
max-pooling, respectively. The symbol φ is the convolution
layer, and its filter size is 7 × 7. The symbol

⊕
is the con-

nection operation on the channel axis. The symbol � is the
element-wise multiplication on each channel. The symbol
σ denotes the sigmoid function.

Channel attention is then used to transmit the spatial
attention feature map. The channel attention module sets
weights to different dimensions of features so that the ones
that contribute the most to the representation of slender ob-
ject features is highlighted. As illustrated in Fig. 4, the
spatial attention feature map is first processed using the
average-pooling and max-pooling layers, which can learn
statistical information about the input features. Second, the
pooling layer’s output is processed by a shared network
composed of a one-dimensional convolution layer and a
fully connected layer, which is then connected by element-
by-element addition. Finally, the sigmoid activation func-
tion is used. To acquire the final DFAM feature map, the
learned one-dimensional channel attention weight map is
applied to the spatial attention feature map via element-wise
multiplication [35]. The formulas are defined as follows:

W = σ
(
ϕ1

(
AvgPch

(
Fsp

))
+ ϕ2

(
Max Pch

(
Fsp

)))
(6)

Fch = W � Fsp (7)

where AvgPch indicates the operation of average-pooling,
while MaxPch represents max-pooling. ϕ1 and ϕ2 denote
fully connection layers.

3.4 Transformer Encoder and Decoder

Unlike convolution, which can only obtain local features,
transformer employs attention-based mechanisms of en-
coder and decoder to obtain global to specific features [25],
[26], [29]–[32]. We make use of the transformer encoder
and decoder. As input, the encoder uses multi-scale slender
object feature maps. The transformer layer of encoder con-
ducts multi-head attention to capture the context of global
slender object features, which locate the association be-
tween different pixels in slender feature map. Object query
is introduced in the decoder to narrow down the searching
space of objects. Finally, transformer can focus on slender
objects in an image. The details of transformer in object
detection can be found in Deformable DETR [26].

The sampling points of the encoder and decoder lay-
ers are visualized in the transformer part, see Fig. 6. The
sampling points represent the weight distribution and accu-
racy. Sampling points with high weights are highlighted in
red, while those with low weights are highlighted in blue.
In both the encoder and decoder stages, the results show
that DFAM-DETR has better detection accuracy than De-
formable DETR. DFAM-DETR sampling points are more

Fig. 6 Visualization of sampling points and attention weights of DFAM-
DETR and Deformable DETR.

adaptable to slender objects and clustered near the slender
objects. Moreover, sampling points with higher weights are
more focused on the objects.

3.5 Loss Function

In this study, the loss function is consistent with Deformable
DETR [26], and the total loss includes classification loss
and regression loss. During the model training phase, the
Hungarian algorithm [36] is used to match the GT with the
model’s prediction outcomes. The Hungarian algorithm (bi-
partite graph matching method) is adopted to determine the
optimum arrangement with the least amount of matching
loss. The optimal matching result is used to determine the
loss function.

4. Experiments and Results

4.1 Dataset

The slender objects dataset used in this study is manually
extracted from MS-COCO2017 [23]. It includes slender ob-
jects such as toothbrush, snowboard, surfboard, etc. Totally
25,424 training images are used for training, and 1077 im-
ages for testing. Data augmentation [19] is performed on the
data through random cutting.

4.2 Experiments

4.2.1 Experimental Environment

The experiment was carried out on a Xeon 3104 and an
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Table 1 The ablation study of deformable convolution added to different
layers.

Modified layer AP AP50 AP75 APS APM APL

C2, C3, C4, C5 34.4 54.5 36.6 14.6 38.2 54.8
C3, C4, C5 34.8 56.6 36.8 14.3 39.1 54.0
C4, C5 34.4 54.8 37.3 12.6 39.4 53.7
C5 35.4 57 37.8 15.6 40 53.9

Table 2 Effects of different attention mechanisms on the detection accu-
racy of slender objects.

Modified layer AP AP50 AP75 APS APM APL

sa 34 54.9 35.4 14.6 39.8 51.4
ca 35 56.4 37.1 14.5 40.7 52.6
sa-ca 35.4 57 37.8 15.6 40 53.9

NVIDIA Tesla V100 16GB graphic card, and the environ-
ment used Pytorch 1.5.1. The network was trained for 50
epochs using the Adam optimizer [37]. The transformer’s
initial learning rate was 1 × 10−4, while the backbone was
2×10−5. The learning rate dropped by 10 times for every 20
training epochs as the number of training epochs increases.
The batch size was set to 2, while the weight decay and mo-
mentum was set to 0.0001 and 0.9, respectively.

4.2.2 Ablation Study

Deformable convolution of the proposed DFAM-DETR is
added to different layers of the backbone network for the
ablation experiment, see Table 1. The results show that
the accuracy only reaches 34.4% when deformable convo-
lution is added to all layers; 34.4% after adding to C4C5
layers; 34.8% after adding to C3C4C5 layers; and 35.4% af-
ter adding to the last layer. Deformable convolution is very
effective for detecting slender objects. Adding deformable
convolution only to the final layer reaches the best result.
The detection effect, however, varies for slender objects at
different scales. Especially for large slender object detec-
tion, only using high-resolution deformable convolution is
insufficient for capturing features.

Ablation experiments were used to assess and compare
the effectiveness of channel and spatial attention mecha-
nisms, as shown in Table 2. The results show that chan-
nel attention is critical in detecting slender objects. How-
ever, using only the channel attention mechanism results in
an unsatisfactory detection effect. Therefore, DFAM-DETR
includes both channel and spatial attention mechanisms to
better extract features and detect slender objects.

4.2.3 Slender Object Detection Results Comparison

In this study, ResNet50 was used as the backbone network.
First, the pre-trained Faster R-CNN, RepPoints, FCOS, and
DETR detectors were evaluated for slender object detection,
see Table 1. Comparing to Faster R-CNN, RepPoint, and
FCOS, it revealed that utilizing a detector based on trans-
former resulted in a significant improvement in the detection
accuracy of slender objects. DETR boosted the AP by 10.9

Table 3 A comparison of the detection accuracy of four detectors for
slender objects.

Detector AP AP50 AP75 APS APM APL

Faster R-CNN 17.9 35.1 15.7 2.7 17.9 34.5
RepPoints 18.5 34.1 18.1 2.6 18.6 36.1
FCOS 20.7 38.6 20.0 7.5 24.1 31.0
DETR 28.8 49.3 28.6 8.6 31.8 51.0

Table 4 A comparison of the detection accuracy of detectors that based
on transformer.

Detector AP AP50 AP75 APS APM APL

DETR 30.8 52.7 30.3 11.5 33.7 53.0
Deformable DETR 33.4 54.8 34.3 13.0 37.2 54.5
DFAM-DETR 35.4 57.0 37.8 15.6 40.0 53.9

percent comparing to Faster R-CNN, and 14.2 percent for
AP50. DETR have significant increase on detection accuracy
for both APS, APM and APL. The APS was increased by 5.9
percent using DETR, APM was increased by 13.9 percent
and APL was increased by 16.5 percent comparing to Faster
R-CNN. The above experiments showed the effectiveness of
transformer on slender object detection.

Second, the dataset was trained and evaluated using
DETR, Deformable DETR, and DFAM-DETR for compar-
ing the accuracy of slender object detection. ResNet50
was employed for the backbone network. We initialize
our backbone networks with the weights pre-trained on
ImageNet [38], [39]. Transformer is trained with random
initialization. Results showed improvement in detection ac-
curacy on AP, AP50, and AP75 with DFAM-DETR, see Ta-
ble 2. Comparing to DETR, the proposed DFAM-DETR in-
creases slender objects detection accuracy by 4.6 percent on
AP, and 4.3 percent on AP50. DFAM-DETR outperformed
Deformable DETR by 2 percent increase on AP and 2.2 per-
cent increase on AP50. Furthermore, DFAM-DETR signif-
icantly improves detection accuracy for small and medium
objects. The results revealed that accuracy was improved
by 4.1 and 2.6 percent for small objects, while 6.3 and 2.8
percent increase for medium objects. However, the detec-
tion accuracy for large objects was dropped by 0.6 percent
comparing to Deformable DETR. This decrease in detec-
tion accuracy is primarily caused by the size of the receptive
field. Deformable DETR’s backbone network utilizes stan-
dard convolution layers. The proposed DFAM-DETR, on
the other hand, substitutes a deformable convolution layer
for the final convolution layer. Deformable convolution has
the advantage of being able to adapt its receptive field to the
target object. However, due to the size limitation of the re-
ceptive field, it is unable to capture the larger slender object
in the last layer of the backbone network.

The detection accuracy and convergence curves of De-
formable DETR and proposed DFAM-DETR are illustrated
in Fig. 7. DFAM-DETR shows higher slender detection ac-
curacy of AP comparing to Deformable DETR. Moreover,
DFAM-DETR achieves 2 times less training epochs. As
shown in Fig. 8, the training loss of DFAM-DETR is sig-
nificantly lower than Deformable DETR. Again, it depicts
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Fig. 7 A comparison of accuracy and epochs between Deformable
DETR and DFAM-DETR.

Fig. 8 A comparison of loss and epochs between Deformable DETR and
DFAM-DETR.

Fig. 9 Comparison of detection accuracy within each category.

that DFAM-DETR has superior convergence speed and it
has better performance on slender object detection. The de-
formable convolution and attention mechanism of DFAM
are critical factors in increasing convergence speed. The
sampling points are more focused on slender objects com-
paring to Deformable DETR. This feature extraction mecha-
nism can accelerate overall convergence and loss reduction,
making it more suitable for classification and regression.

Figure 9 shows that DFAM-DETR outperforms De-
formable DETR in most categories when it comes to de-
tecting slender objects. As a result, the efficacy of DFAM-
DETR is confirmed.

The ablation study results showed that DFAM-DETR
has adequate detection accuracy on small and medium

Table 5 The number of small, medium, and large slender objects within
each category.

Categories knife spoon book fork toothbrush
small 150 105 676 48 19
medium 123 99 366 87 26
large 53 49 119 80 12
Total 326 253 1161 215 57
Categories snowboard skis surfboard keyboard baseball bat
small 23 103 69 10 32
medium 32 88 123 62 70
large 14 50 77 81 44
Total 69 241 269 153 146

Fig. 10 The proportion of small, large, and large and medium slender
objects within each category.

slender objects, except for large ones. A detailed analysis of
the results is also conducted, see Table 5. Large slender ob-
jects, such as baseball bats and keyboards, have lower detec-
tion accuracy when using DFAM-DETR, see Fig. 10. The
deformable convolution has the advantage of adapting its re-
ceptive field to the target object. The size of receptive field is
sufficient to capture the majority of feature adaptively with
deformable convolution for small slender objects. However,
it cannot capture large slender objects in the last layer of
the backbone network. The size of receptive field is insuffi-
cient and can only capture partial of the feature. As a result,
the proposed DFAM-DETR is better at detecting small and
medium slender objects than large ones.

5. Conclusion

This study proposes DFAM-DETR, a slender object detector
based on Deformable DETR. Comparing to other popular
detectors, it delivers greater detection accuracy for slender
objects. With the proposed DFAM’s deformable convolu-
tion and attention mechanism, it overcomes the limitation
of convolution with fixed sampling points for slender ob-
ject detection. DFAM-DETR detector improves the feature
extraction ability of slender objects with greater detection
accuracy and convergence speed. The research of DFAM-
DETR will be expanded to include its detection capability
and performance on various size of slender objects.
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