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PAPER

Learning Local Similarity with Spatial Interrelations on
Content-Based Image Retrieval

Longjiao ZHAO†, Yu WANG††, Nonmembers, Jien KATO†††a), and Yoshiharu ISHIKAWA†, Members

SUMMARY Convolutional Neural Networks (CNNs) have recently
demonstrated outstanding performance in image retrieval tasks. Local con-
volutional features extracted by CNNs, in particular, show exceptional ca-
pability in discrimination. Recent research in this field has concentrated
on pooling methods that incorporate local features into global features and
assess the global similarity of two images. However, the pooling meth-
ods sacrifice the image’s local region information and spatial relationships,
which are precisely known as the keys to the robustness against occlusion
and viewpoint changes. In this paper, instead of pooling methods, we pro-
pose an alternative method based on local similarity, determined by di-
rectly using local convolutional features. Specifically, we first define three
forms of local similarity tensors (LSTs), which take into account informa-
tion about local regions as well as spatial relationships between them. We
then construct a similarity CNN model (SCNN) based on LSTs to assess
the similarity between the query and gallery images. The ideal configu-
ration of our method is sought through thorough experiments from three
perspectives: local region size, local region content, and spatial relation-
ships between local regions. The experimental results on a modified open
dataset (where query images are limited to occluded ones) confirm that the
proposed method outperforms the pooling methods because of robustness
enhancement. Furthermore, testing on three public retrieval datasets shows
that combining LSTs with conventional pooling methods achieves the best
results.
key words: image retrieval, convolutional neural network, deep local fea-
tures, local similarity, 4D convolution, spatial correlation

1. Introduction

Content-based image retrieval (CBIR) aims at ranking im-
ages in a huge dataset based on the information given from
a query image. It is essential for many artificial intelligence
technologies such as search engines. Generally, the pipeline
of image retrieval includes two main steps: image repre-
sentation and similarity evaluation. The first step aims to
produce a global feature that well represents the input im-
age, while the second step calculates the similarity scores
between the query image and gallery images based on the
representation generated in the first step. Euclidean distance
and cosine similarity are commonly used for similarity eval-
uation. According to the rank list of similarity scores, the
top-k images are considered as similar results with the query
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image.
Since 2012, because of the success of AlexNet [1]

in object recognition, most researchers have transferred to
working on CNN (convolutional neural network)-based ap-
proaches. As CNNs show remarkable performance in fea-
ture extraction, the deep features produced by CNNs attract
much attention. Initially, works [2] and [3] utilize the activa-
tions of fully-connected layers as a global feature. Since the
CNN architecture limits the size of input images, the global
feature from fully-connected layers lacks multi-scale infor-
mation. In contrast, local features from deep convolutional
layers support any input image’s size. So, researchers start
to turn their attention to extracting such local features and
then pooling them into a global feature [3], [4].

However, most pooling methods, which incorporate lo-
cal features into global features via pooling first and then
assess the global similarity between images, sacrifice the in-
formation of local regions in exchange for gaining global
features. On the other hand, for image retrieval tasks,
since such information plays a crucial role in the robust-
ness against occlusion and viewpoint changes [5], losing or
weakening this information always causes a negative im-
pact on retrieval performance. Moreover, because pooling
methods also weaken the information of spatial relation-
ships among local regions, they lose most of the structure
information of input images. In order to keep both abundant
local region information [6], [7] and structure information,
we think that evaluating the similarity by directly using deep
local features could be an effective breakthrough. Below we
refer to the similarity of local features as local similarity and
the similarity of pooled global features as global similarity.
To the best of our knowledge, there are few studies on image
retrieval based on local similarity. Although the paper [8]
proposed a local similarity-based approach, it couldn’t pro-
vide a qualitative and comprehensive analysis of the impact
of local similarity on image retrieval.

From the perspective described above, in this paper we
propose a local similarity-based method for image retrieval
tasks. Figure 1 shows the overview of our method, where
the lower branch consisting of two modules: local similar-
ity tensor (LST) generation and local similarity evaluation,
is the key component of the proposed method. In partic-
ular, deep local features are extracted from a pre-trained
CNN first, and then the similarity score between a pair of
deep local features from the query and gallery images is cal-
culated to produce an LST. The LST is finally fed into a
similarity-CNN (SCNN) to obtain the local similarity score.

Copyright c© 2023 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Overview and workflow of the proposed image retrieval approach based on local similarity and
global similarity. From the last convolutional layer, the global similarity score is calculated by global
features that are generated by a pooling method. For the local similarity, an LST generated from local
convolutional features is fed into the similarity CNN (SCNN) to produce the local similarity score.

Fig. 2 Generating local similarity tensors. A single-direction pooling in (a) is defined to decrease
the structure information of local features, which acts as the base for generating three different types of
local similarity tensors (LSTs). Three types of tensors, named 2D, 3D, and 4D LSTs, are generated to
represent weak-to-strong spatial interrelationships between local features of query and gallery images,
that is, (b) weak interrelatio, (c) mid-interrelation, and (d) strong interrelation, respectively.

To validate our approach, we evaluate the proposed method
by practising it on three forms of LSTs (i.e. 2D, 3D, and
4D LSTs) that correspond to three modes of spatial rela-
tionships among local regions: (1) the structure information
of both query and gallery images is retained; (2) the struc-
ture information of either query or gallery image is retained;
and (3) the relative structure information between query and
gallery images is retained, as illustrated in Fig. 2. To adapt
to three forms of LSTs, we train two SCNN models, a 2D
SCNN based on a 2D convolution/pooling module, and a 4D
SCNN based on a 4D convolution/pooling module, to learn
the local similarity.

We conduct extensive experiments to investigate the
impact of local region information and spatial relationships
between local regions, as well as to identify the best prac-
tices for the proposed local similarity-based method. The
experimental results on a modified open dataset, where
query images are limited to occluded ones, confirm that
our proposed method outperforms existing pooling methods
based on global similarity, due to a significant enhancement
of robustness against occlusion and viewpoint change. In

addition, testing on three public retrieval datasets shows that
the combination of local similarity and global similarity, as
shown in the whole framework in Fig. 1, achieves the best
results.

Our contributions are summarized as follows: We thor-
oughly investigate the influence of local region information
and spatial relationships among local regions on image re-
trieval. We introduce a local similarity-based method by
proposing 4D LSTs (to represent local information) as well
as a 4D SCNN (to accomplish local similarity evaluation
based on 4D LSTs), which outperform all embedded global
features in a public retrieval dataset. To the best of our
knowledge, this is the first time using 4D convolution in im-
age retrieval tasks. We demonstrate that the local similarity-
based method is advantageous in the situation where target
objects are occluded in query images. We show that com-
bining the local similarity with the global similarity achieves
the best performance in the datasets Oxford5k, Paris6k, and
CUB-200-2011.
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2. Related Work

Content-based image retrieval (CBIR) Since the 1990s,
CBIR has attracted a lot of attention from the computer vi-
sion community [9]. Many important works had been ac-
tively conducted from 1990s to 2000s, as summarized in
[10]–[12]. In the late 1990s, with the introduction of many
powerful handcrafted local features, for instance, the scale-
invariant local visual feature (SIFT) [13] and histogram of
oriented gradients (HOG) [14], the accuracy of CBIR signif-
icantly advanced. Another turning point appeared in 2003,
the proposal of the Bag-of-Visual-Words (BoVW) [15] en-
abled to easily generate compact global features from local
features. Owing to the BoVW, researchers greatly improved
the performance of CBIR by using large visual codebooks
and spatial verification. Afterwards, a lot of compact global
features were introduced at the image representation level,
such as Fisher vector [16] and VLAD [17].
Deep features With the development of deep learning in
the past decade, convolutional neural networks have gradu-
ally replaced the status of traditional handcrafted feature-
based methods in image retrieval. Due to the great suc-
cess of the AlexNet [1] in classification tasks, researchers
try to explore CNN-based methods also for image retrieval,
which can go beyond handcrafted feature-based methods.
At first, CNN was just used simply as a local feature ex-
tractor because the activations from the last convolutional
layer showed extraordinary performance on image represen-
tation. So, researchers paid much attention to how to gen-
erate a compact global feature. A standard way is to use
a pre-trained network as the feature extractor and encode
the local features into a global feature by means of, for ex-
ample, Fisher vector [16] or VLAD [17]. It has been prac-
ticed in many studies. Then, with the introduction of the
contrastive loss and triplet loss, it became clear that fine-
tuned networks [18]–[24] with a retrieval dataset achieved
much better performance than simply using pre-trained net-
works as feature extractors. So, the global pooling meth-
ods started to be a popular research topic [3], [4], [25]–[30],
since they could be easily included in the fine-tuning pro-
cedure. SPoC [3] and MAC [4] are usually used to gen-
erate global features by sum or maximum procedure, and
GeM [29] is generally used to pool local features with a
power mean, which can transform to SPoC and MAC de-
pending on different hyperparameters. However, global fea-
tures lose inevitably most of local region information and
spatial relationships among local regions because of pool-
ing process.
Similarity evaluation There are many studies on similar-
ity evaluation using global features. Among them, it is no
exaggeration to say Euclidean distance and cosine similar-
ity are the most widely adopted evaluation methods. Even
though similarity evaluation based on global features is a
mainstream way, recently, researchers have become con-
scious that local features can positively affect the similar-
ity evaluation in image retrieval tasks. For example, the

works [31], [32] tried to use the similarity of local features in
the test procedure to increase precision, and Yang et al. [33]
attempt to advance the retrieval performance by fusing the
local and global features. In addition, Chen et al. [8] pre-
sented a method that increased the retrieval accuracy by
employing local similarity to align the similar region pair
between the query and gallery images, but it led to addi-
tional overhead costs required for extra localization labels.
A quantitative and thorough investigation and analysis of
how local features affect similarity evaluation is still a re-
maining problem.

3. Local Similarity Tensor

In this section, we present three methods to generate local
similarity tensors (LSTs) according to three patterns of spa-
tial relationships among local regions.

3.1 Global Similarity

The upper branch in Fig. 1 shows the general workflow of
image retrieval based on global features. Let X ∈ RM×N×C

denote a set of feature maps from the last convolutional layer
of an input image. M and N are the spatial sizes of feature
maps, and C is the number of channels. With a pooling
method F, local convolutional features X are aggregated to
global features G as:

G = F(X); G ∈ R1×C . (1)

We use Gq and Gg to represent the global features of the
query and gallery images, respectively. The global similar-
ity between the query and gallery images can be defined as:

S G
qg = D(Gq,Gg), (2)

where D is a distance function, and we adopt cosine similar-
ity as D in this work.

3.2 Local Feature Extraction

CNNs such as VGG [34], ResNet [35], and DenseNet [36]
generally include five convolutional blocks. Local features
from each block deliver the information from different lev-
els [37]. Earlier works made a lot of efforts to prove that
feature maps from the final layer achieve the best results for
global similarity evaluation. To the best of our knowledge,
how local features should be chosen and used for local sim-
ilarity has not yet been thoroughly investigated. So, it is
necessary to start with seeking the layer that achieves the
best performance for local similarity evaluation. As shown
in Fig. 3, we extract local features from each convolutional
block. For a query image q, we extract local convolutional
feature maps XL

q ∈ RMq×Nq×C with spatial shape Mq × Nq

from block L. Similarly, local convolutional feature maps of
a gallery image g from block L are extracted and indicated
by XL

g ∈ RMg×Ng×C with spatial shape Mg × Ng.
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Fig. 3 Procedure for local feature extraction. The local features are ex-
tracted from each convolutional block (from Block 1 to Block L).

Considering that it is infeasible to analyze local simi-
larity with all possible spatial forms of local features caused
by the input image, we implement an adaptive pooling
method F that produces feature maps with a certain spa-
tial shape K × K, where K can be controlled by the pooling
window size. So, for the local feature maps XL, the output
feature maps with F are described as:

YLK = F(XL,K), YLK ∈ RK×K×C . (3)

We employ the generalized-mean (GeM [29]) as the pooling
kernel because of its superior performance in image retrieval
tasks. Thus, a feature vector yLK

i j at location (i, j) of feature
maps YLK is calculated as:

yLK
i j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
|XL

ri j
|
∑

x∈XL
ri j

xp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
p
, (4)

where XL
ri j

represents the feature maps of the pooling region
ri j (i, j = 1, . . . ,K), and p is a parameter that controls the
types of pooling methods. For example, when p = 1, Eq. (4)
means an average pooling; when p verges to infinity, it be-
comes to max pooling.

Note that the feature maps YLK divide the input image
I ∈ RMI×NI×3 into a K ×K grid, indicating that K is inversely
proportional to the local region size.

3.3 Local Similarity Tensor Generation

We first introduce a single-direction pooling, row-wise pool-
ing or column-wise pooling, to decrease the structure in-
formation of local features YLK , as shown in Fig. 2 (a).
Namely, each row or column of the local features are aver-
agely pooled into a vector that acts as the base of generating
three different types of similarity tensors. Thus, by such a
single-direction pooling processing, the local features YLK

are pooled into ŶLK ∈ RK×C .
We define three types of local similarity tensors

(LSTs), named 2D, 3D, and 4D LSTs, to represent weak-
to-strong spatial interrelationships between the local fea-
tures of the query and gallery images. As shown in
Fig. 2 (b)∼ (d), these tensors correspond to three patterns
of spatial relationships, i.e., (1) weak interrelation that only

keeps the relative structure information between query and
gallery images, (2) mid-interrelation that keeps the struc-
ture information of either query or gallery images, and (3)
strong interrelation that keeps the structure information of
both query and gallery images, respectively.

For the weak interrelation presented by 2D LSTs, both
query and gallery images lose their structure information.
The single-direction pooling is first applied to local features
of the query and gallery images. The 2D local similarity
tensor t between query image q and gallery image g is then
generated by:

tLK(i, j) = D(ŶLK
q (i), ŶLK

g ( j)), (5)

where i, j = 1, . . . ,K, and D means a distance function.
For the mid-interrelation presented by 3D LSTs, the

single-direction pooling is only applied to either of the im-
ages. You can choose to only keep the spatial information
of the query image or gallery image. We found that keeping
the gallery’s information led to better results from prelim-
inary studies, so in this paper, we focus our discussion on
the case of keeping the gallery’s information. The local fea-
ture of the query image is pooled into ŶLK

q , and 3D LST t is
generated by:

tLK(u, v, i) = D(YLK
g (u, v), ŶLK

q (i)), (6)

where u, v, i = 1, . . . ,K.
For the strong interrelation presented by 4D LSTs, both

the query and gallery images keep the structure information.
A 4D LST t is generated by:

tLK(u, v, i, j) = D(YLK
g (u, v),YLK

q (i, j)), (7)

where i, j, u, v = 1, . . . ,K.

4. Similarity-CNN

In this section, we propose a lightweight CNN model named
similarity-CNN (SCNN) to learn the local similarity be-
tween the query and gallery images based on LSTs. As a
result, the local similarity score S L

qg between the query im-
age q and gallery image g can be obtained by the SCNN as
noted below:

S L
qg = SCNN(tLK

qg ). (8)

We define a set of LSTs
[
tqp, tqn

]
as the input of the

model in the training procedure as shown in Fig. 4 (a). tqn

is a negative pair between a query image q and a negative
image n, while tqp means a positive pair between a query
image q and a positive image p. S L

qn and S L
qp are the local

similarity scores for tqn and tqp, respectively. The parame-
ters of the network are learned by optimizing the triplet loss
function, i.e.

Ld =
1
2

max(0,m + SL
qp − SL

qn ), (9)

where m is a constant that represents a margin between the
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Fig. 4 Structure of SCNN. The lightweight CNN model SCNN is shown in (a), which learns the
local similarity between query and gallery images. For 4D SCNN, we employ multiple 3D convolu-
tion/pooling operators f 3D

w to realize a 4D convolution/pooling, as illustrated in (b). A 4D tensor tqp is
composed of a set of 3D tensors {t1, t2, ti, . . .}. Similarly, the 4D tensor oqg is composed of a set of 3D
tensors {o1, o2, o j, . . .}. o j is generated by the sum of the set { f 3D

1 (ti), f 3D
2 (ti+1), . . . f 3D

w (t(i+w−1)), . . .},
where f 3D

1 (ti) is a simple 3D convolution/pooling operation for ti.

Table 1 Structure of SCNNs. The 2D SCNN is used for 2D or 3D LST input, and the 4D SCNN is
used for 4D LST input.

2D SCNN 4D SCNN
Type Filter Shape Input Size of 2D LST Input Size of 3D LST Type Filter Shape Input Size of 4D LST

2D Conv [3×3,32]×3 K×K×1 K×K×K 4D Conv [3×3×3×3,32]×3 K×K×K×K
2D Max Pool [2×2] K×K×32 K×K×32 4D Max Pool [2×2×2×2] K×K×K×K×32

2D Conv [3×3,64]×2
K
2
× K

2
×32

K
2
× K

2
×32 4D Conv [3×3×3×3,64]×2

K
2
× K

2
× K

2
×K×32

2D Max Pool [
K
2
× K

2
] 1×1×64 1×1×64 4D Max Pool [

K
2
× K

2
× K

2
× K

2
] 1×1×1×64

Norm - 1×1×64 1×1×64 Norm - 1×1×1×64
FC 64 ×1 1×1×64 1×1×64 FC 64 ×1 1×1×1×64

positive and negative pair.
The back propagation can be calculated as

∂Ld

∂S L
qp

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

i f m + S L
qp − S L

qn > 0

0 otherwise
(10)

∂Ld

∂S L
qn

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

2
i f m + S L

qp − S L
qn > 0

0 otherwise.
(11)

We adopt a two-branch siamese network to implement
the triplet loss, where the two branches share the same pa-
rameters. We use a 2D SCNN for 2D or 3D LST input, and a
4D SCNN for 4D LST input, which are all composed of two
convolution blocks and one fully connected layer. The net-
work input varies according to the different forms of LSTs.
In the case of 2D LSTs, the network takes an input of spatial
size K × K and one channel, and in the case of 3D LSTs, it
takes the K × K as the spatial shape and K as the channel
number. The details of network configurations are summa-
rized in Table 1.

Inspired by [38], we implement a 4D module with 4D
convolution or pooling in each block. As shown in Fig. 4 (b),
the 4D module can be implemented by multiple 3D mod-
ules. Namely, the input 4D tensor tqg ∈ RK×K×K×K can be
calculated by a set of 3D tensor ti ∈ RK×K×K . Similarly, the

output tensor oqg ∈ RK′×K′×K′×K′ can be calculated by a set
of 3D tensor o j ∈ RK′×K′×K′ , where K′ means the spatial
resolution of output tensor oqg. We define f 3D

w as a 3D mod-
ule with 3D convolution or pooling. With the kernel size
(W,W,W,W) and stride 1, the oj can be calculated as

o j = f 3D
1 (t j) + f 3D

2 (t j+1) + . . . + f 3D
W (t j+W−1) (12)

5. Implementation Detail

This section introduces setups used in experiments, such as
training/test datasets and feature extraction networks. In ad-
dition, we present the pipeline to demonstrate the entire ex-
perimentation process.

5.1 Datasets Used in Experiments

• Retrieval-SfM-120k [29] totally includes 117,365 im-
ages from Flicker filmed in 713 popular cities and
landmarks worldwide. There are 91,642 images with
181,697 queries for training and 6,403 images with
1,691 queries for validation.
• Retrieval-SfM-30k [39] is a compact version of

Retrieval-SfM-120k. There are 22,156 images with
5,974 queries for training and 6,403 images with 1,691
queries for validation.
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• Oxford5k [40] includes 5,063 images filmed in 11
landmarks and provides 5 query images for each
places. This dataset is especially used for test.
• Paris6k [41] includes 6,932 images for 12 landmarks.

Same as Oxford5k, it is particularly used for test.
• CUB [42] includes 200 classes of birds with 11,788 im-

ages in total. There are 5,994 images for training and
5,794 images for test.

5.2 Experiment Pipeline

As shown in Fig. 1, the experiment pipeline is composed
of three procedures. First, the local features for the query,
positive and negative images are extracted by a fine-tuned
retrieval CNN with a triplet loss [29]. A trainable whiten-
ing layer [29] is added in some experiments to accelerate
training convergence. Then, an LST pair, i.e. (tqp, tqn), is
generated from the local features in the manner described
in Sect. 3.3. Finally, the LST pair is fed into the SCNN to
produce the local similarity score.

In the test phase, we retain the original size (i.e.,
without cropping) of the query image from Oxford5k and
Paris6k in order to extract more information. For a fair
comparison, we employ the same setting for all four global
similarity-based methods. For evaluation, we employ mean
average precision (mAP) on Oxford5k, Parsi6k, and re-
call@K on the CUB dataset.

5.3 Training Details

We implement all experiments in this work using the Py-
Torch framework [43] and train all the models on three
NVIDIA GeForce GTX 1080 Ti GPUs and one NVIDIA
GeForce RTX 3090Ti. For all the experiments, we train the
models using Stochastic Gradient Descent (SGD) with the
epoch number of 100, momentum of 0.9, weight decay of
5 × 10−4, and a batch size of 16.

6. Result and Discussion

We conduct through experiments to seek the best prac-
tice for the proposed local similarity-based method, and
compare its performance with that of conventional global
similarity-based methods.

6.1 Best Practice of LST

We define different forms of LSTs by varying the block L
for local feature extraction, the spatial shape K of local re-
gions and the pattern of spatial relationships between the
query and gallery images. Among them, the first two are
related with local region information. We quantitatively and
thoroughly analyze the impact of each factor on the retrieval
performance and identify the best practice for them.
Ablation studies of single-direction pooling We first
confirm the configuration of the single-direction pooling.
As introduced in Sect. 3.3, single-direction pooling has two

Table 2 Results of single-direction pooling on Oxford5k: Pooling direc-
tion insignificantly affects the final retrieval accuracy.

Pooling direction 2D 3D
Row-wise 79.41% 78.22%

Column-wise 79.42% 78.21%

Table 3 Statistics of 4D LSTs on Oxford5k in each block.

Block Standard Deviation σ Mean μ
Block 1 0.00039 0.9926
Block 2 0.00059 0.9849
Block 3 0.00055 0.9866
Block 4 0.00200 0.9248
Block 5 0.01420 0.6366

choices: row-wise pooling or column-wise pooling. To as-
sess the impact of the pooling direction, we run retrieval
experiments on 2D and 3D LSTs with L = 5 and K = 7
settings and use ResNet101 as the backbone. The results
on Oxford5k are shown in Table 2. Row-wise and column-
wise poolings produce highly similar results, which means
that the pooling direction insignificantly affects the final re-
trieval accuracy. Thus, in the following experiments, we
narrow our discussion only to the case of using row-wise
pooling.
Influence of extracted block We evaluate the performance
of the LSTs using local features from different blocks. Us-
ing ResNet 101 as the backbone, we extract local fea-
tures from Block 1 to Block 5 and set the spatial shape to
K = 7. In Fig. 5, we plot accuracy for five blocks on Ox-
ford5k and Paris6K, using 2D, 3D, 4D, and GeM (a global
similarity-based method). The same trend can be observed
across the different datasets, and moreover, as the block gets
deeper, the accuracy shows a noticeable improvement. The
worse performance is related to Block 1 (mAP ≈ 0.096),
Block 2 (mAP ≈ 0.136), and Block 3 (mAP ≈ 0.290), which
confirms that low-level image information like edge or blobs
is not sufficient to the local similarity evaluation. In contrast,
Block 4 and Block 5 present a reasonable accuracy, since
these blocks include high-level image information about the
entire object.

We conduct a statistical analysis of 4D LSTs on the
Oxford5k to further explain this phenomenon. As each ele-
ment of an LST is a similarity measure for the corresponding
region of the query and gallery images, a similar region pro-
duces a high score, while a dissimilar region produces a low
score. As discussed above, the shallower blocks (e.g., Block
1, 2, or 3) extract local features, which leads to poor discrim-
ination because those local features are commonly included
in all images. So, high similarity scores should be obtained
for these shallower blocks regardless of whether the LSTs
are tqp or tqn. We calculate the mean of standard deviation
σ and the average μ of the LST for each image pair in dif-
ferent blocks as shown in Table 3. It is easy to see that the
first three blocks have extremely low σ (around 10−4) and
high μ (the upper limit is 1). That means most image pairs
look the same in terms of the similarity score, and a pos-
itive pair and a negative pair cannot be distinguished. On
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Fig. 5 Evaluation of the influence of extracted blocks. The accuracy for five blocks on Oxford5k and
Paris6K using 2D, 3D, 4D, and GeM (a global similarity-based method) shows that as the block gets
deeper, the accuracy has a noticeable improvement. The same trend can be observed across the different
datasets.

Fig. 6 Influence of the local region size. The mean average precision varies as K gets bigger using
three patterns of spatial relationships related to Block 5. The best performance appears at K = 9 in all
the experiments.

the other hand, Block 4 and Block 5 have higher σ (almost
10 or 100 times larger) and lower μ than shallower blocks,
which support that the deeper blocks certainly bring higher
distinguishability.
Influence of local region size Since the information in-
cluded by a local region is different depending on the region
size, we want to investigate through experiments what size
of local regions most positively affects image retrieval. As
mentioned in Sect. 3.2, the spatial shape K of local features
can be used to control the local region size. We conduct
experiments by setting values 3, 5, 7, 9, 11, and 14, on Ox-
ford5k and Paris6k.

Figure 6 shows how the mean average precision varies
as K gets bigger, using three types of spatial relationships
related to Block 5. The best performance appears at K = 9
in all the experiments. To further confirm the validity of this
value, we investigate the effect of different spatial shapes on
each individual query image. Specifically, we select the op-
timal spatial shape K∗ for each query, by comparing its av-
erage precision on different values of K, and plot the results
in Fig. 7 as a bar graph, where each bin indicates the number
of query images that present the highest average precision.
As shown in Fig. 7, the optimal spatial shape K∗ may differ
depending on images, since each image has different tex-

Fig. 7 Statistical information of LSTs in each local region size. Each
bin represents the number of query images that present the highest average
precision in the spatial shape K.

ture, object size, etc. that directly influence the value of K∗.
We choose the statistically optimal shape K = 9. This value
precisely consist with that we described above.
Influence of spatial relationships In Sect. 3, we have de-
fined three types of LSTs that correspond to three patterns of
spatial relationships: weak, mid-, and strong interrelations.
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Fig. 8 Some occluded query images from Oxford5k dataset, where the targets are occluded by some-
thing such as vegetation, road sign, people or other building more or less.

Table 4 Experimental results on three datasets with two backbones
(VGG16 and ResNet101) as well as the setting of Block 5 for local fea-
ture extraction and the spatial shape K = 9.

Dataset Backbone Whitening 2D 3D 4D
mAP

Oxford5k ResNet101 no 79.40% 78.20% 81.00%
Oxford5k VGG16 no 78.38% 77.62% 78.50%
Paris6k ResNet101 no 85.00% 84.50% 85.47%
Paris6k VGG16 no 81.64% 80.27% 82.27%

Oxford5k ResNet101 yes 81.30% 79.81% 84.32%
Oxford5k VGG16 yes 80.15% 78.94% 82.52%
Paris6k ResNet101 yes 86.95% 86.20% 88.38%
Paris6k VGG16 yes 85.29% 84.34% 87.42%

Recall@10
CUB ResNet101 no 86.46% 85.72% 87.25%
CUB VGG16 no 85.45% 84.55% 86.50%
CUB ResNet101 yes 90.21% 88.50% 94.53%
CUB VGG16 yes 89.50% 86.48% 92.60%

Since the observation obtained from previous experiments
shows that LSTs from Block 5 achieve the best performance,
we focus our attention on the spatial relationships of LSTs
related only to Block 5. In addition, the spatial shape is set
to K = 9. We implement the experiments on three datasets
with two backbones: VGG16 and ResNet101. As shown
in Table 4, among the three types of LSTs, the 3D LST
presents the worst performance. The accuracy of 2D LST
and 4D LST is very close, and 4D LST gives the highest
accuracy in all experiments. So, the performance of differ-
ent spatial layouts represented by LSTs from high to low is
strong, weak and mid-interrelations.

Both the weak and strong interrelations represented by
2D and 4D LSTs satisfy the symmetry between the query
and gallery images. Namely, the spatial relationship keeps
even if the query and gallery images are exchanged. In con-
trast, since the mid-interrelation is produced by the query
image with the weak interrelation and the gallery image with
the strong interrelation, it does not satisfy this property. This

kind of imbalance in information seems to negatively affect
accuracy. So, the results suggest that keeping spatial lay-
outs between the query and gallery images consistent has a
positive impact on image retrieval based on local similarity.
Moreover, the best performance of strong interrelationships
makes it clear that richer structure information achieves bet-
ter accuracy. In conclusion, from three evaluations, we find
that the 4D LSTs produced on Block 5 in combination with
the feature map size K = 9 give the best performance among
all configurations.

6.2 Comparison to Global Similarity

This section compares the performance of our proposed
4D LSTs-based method with well-known global similarity-
based methods. We first compare their performance in cases
where the target objects in query images are occluded, and
then evaluate their accuracy on some public datasets individ-
ually. Finally, we investigate the effectiveness of the combi-
nation of local similarity and global similarity.
Performance under occluded objects In this experiment,
we compare the robustness against occlusion between the
local and global similarities. As shown in Fig. 8, we re-
build Oxford5k dataset by only selecting occluded query
images. Same with the original dataset, we chose 55 query
images where the targets are obscured by something such as
vegetation, a road sign, people, or another building, more
or less. We select the latest four global similarity-based
methods, SPoC [3], GeM [29], MAC [4], and R-MAC [30]
to compare. We conduct the experiments on VGG16 and
ResNet101. The results summarized in Table 5 show that
LSTs-based method outperforms all global similarity-based
methods by 8% higher accuracy on average. These results
prove that local similarity performs much more robustly
against occlusion than global similarity.
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Comparison with the state-of-the-art We also compare
the 4D LSTs-based method with state-of-the-art results on
three public datasets: Oxford5k, Paris6k and CUB. More-
over, we investigate the combination method by simply av-
eraging the global similarity score S G and the local similar-
ity score S L .

All the methods are evaluated on two widely used back-

Table 5 Comparing the robustness against occlusion between the local
and global similarities. The proposed 4D LSTs-based method outperforms
all global similarity-based methods.

VGG16 ResNet101
GeM [29] 35.48% 33.97%
SPoC [3] 19.51% 23.95%
MAC [4] 38.21% 42.18%

R-MAC [30] 31.32% 31.88%
4D LST (ours) 43.39% 48.01%

Table 6 Comparing the proposed 4D LST-based method with state-of-the-art results on three public
datasets (Oxford5k, Paris6k and CUB). In addition, the performance of a strategy that combines global
and local similarity scores by averaging them is demonstrated. retrieval-SfM-30k is used to fine-tune the
outcomes of global similarity-based methods without whitening, whereas retrieval-SfM-120k is used to
fine-tune the whitening versions. All fine-tuned trainings involve paper-based code [29]. Only GeM and
MAC with whitening used the weights provided by paper [29]. The highlighted findings indicate where
our methods outperform their respective global methods.

CUB(recall)
Method Backbone Oxford5k(mAP) Paris6k(mAP)

1 2 4 8
Without whitening

GeM [29] VGG16 77.57% 82.40% 59.54% 70.44% 78.57% 82.77%
GeM [29] ResNet101 76.17% 86.53% 65.10% 76.40% 80.24% 85.45%
SPoC [3] VGG16 68.40% 71.86% 54.14% 64.12% 72.51% 79.01%
SPoC [3] ResNet101 69.69% 79.91% 63.79% 73.59% 78.14% 80.21%
MAC [4] VGG16 76.84% 78.81% 60.15% 71.20% 78.18% 82.24%
MAC [4] ResNet101 78.51% 83.76% 64.78% 75.49% 81.07% 85.90%

R-MAC [30] VGG16 75.10% 81.64% 59.24% 69.89% 78.00% 82.59%
R-MAC [30] ResNet101 79.3% 84.51% 64.53% 75.93% 81.21% 86.10%

OURS
4D LST VGG16 78.5% 82.27% 60.12% 69.54% 75.41% 84.34%
4D LST ResNet101 80.21% 85.47% 62.31% 72.01% 79.95% 85.77%

4D LST+GeM VGG16 79.79% 87.92% 67.01% 75.12% 82.11% 88.12%
4D LST+GeM ResNet101 83.91% 88.37% 70.52% 81.34% 85.65% 90.38%
4D LST+SPoC VGG16 81.28% 85.70% 62.54% 72.98% 79.52% 86.95%
4D LST+SPoC ResNet101 80.65% 85.10% 68.21% 75.64% 83.54% 89.38%
4D LST+MAC VGG16 81.02% 85.05% 67.86% 76.54% 83.34% 89.44%
4D LST+MAC ResNet101 80.46% 84.86% 71.75% 81.95% 85.73% 91.14%

4D LST+R-MAC VGG16 80.85% 85.22% 67.46% 75.47% 82.95% 88.37%
4D LST+R-MAC ResNet101 80.62% 85.01% 71.07% 81.55% 85.24% 90.72%

With whitenning
GeM [29] ResNet101 87.78% 93.22% 71.35% 81.25% 87.95% 92.34%
SPoC [3] ResNet101 76.73% 86.18% 63.79% 74.49% 83.14% 89.63%
MAC [4] ResNet101 83.95% 92.85% 71.79% 81.19% 87.99% 92.42%

R-MAC [30] ResNet101 83.23% 92.02% 71.55% 80.45% 87.50% 92.05%
OURS

4D LST ResNet101 84.32% 88.38% 64.67% 76.91% 85.30% 91.35%
4D LST+GeM ResNet101 87.25% 93.57% 81.50% 88.97% 94.18% 97.10%
4D LST+SPoC ResNet101 84.04% 89.41% 79.03% 87.52% 93.51% 97.05%
4D LST+MAC ResNet101 88.64% 93.35% 81.55% 88.78% 93.87% 97.05%

4D LST+R-MAC ResNet101 87.84% 92.80% 80.95% 88.34% 93.91% 97.01%
4D LST1 ResNet101 86.53% 92.25% 66.76% 77.46% 89.36% 92.75%

4D LST1+GeM ResNet101 88.25% 94.65% 82.33% 89.56% 95.28% 97.70%
1 This result is generated by the network that trained with retrieval-sfm-120k.

bones, namely VGG16 and ResNet101. Note that we use the
paper-provided pretrained weights [29] of GeM and MAC
with whitening. We obtain the results for the remaining
methods by implementing the code provided in Paper [29].
The highlighted results in Table 6 indicate the extent to
which our methods outperform comparable global methods.
Without whitening, all 4D LSTs-based methods achieve
greater accuracy on Oxford5K than global similarity-based
methods. Especially on the CUB dataset, the combination
methods improve the accuracy by 10% at most. So, in con-
clusion, we say that the local similarity advances the ac-
curacy and the combination of local and global similarities
achieves the best result.

6.3 Limitation and Discussion

We discuss the computation cost incurred by the proposed
method during LST and local similarity score generation.
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Table 7 Memory footprint and cost time. The cost time is the amount
of time it takes for a pair of images to traverse a network and receive a
similarity score. The cost time is measured on NVIDIA RTX 3090ti.

2D LST 3D LST 4D LST GeM
cost time 39.21ms 39.99ms 40.44 ms 38.59 ms

memory footprint
(Paris6k)

3.50 GB 3.02 GB 6.78 GB 0.05GB

memory footprint
(Oxford5k)

3.39 GB 3.00 GB 5.98 GB 0.04GB

Fig. 9 The time cost of local and global similarity-based methods on the
different GPU devices.

The memory footprint and time cost of local and global sim-
ilarity are shown in Table 7. 4D LST takes the most memory
space among local similarity-based approaches, whereas the
time costs of the other two LSTs are comparable. Despite
the 4D LST’s evident advantage over other LSTs in terms
of retrieval outcomes and the closer time cost, we maintain
that it produced the best performance. Although local simi-
larity requires more storage space than global similarity, the
difference in computing speed is only 3 ms per pair. In ad-
dition, as demonstrated in Fig. 9, the speed gap between lo-
cal and global similarity decreases as GPU performance in-
creases. However, the exceptional performance of the pro-
posed method on the occlusion dataset is clear according to
the above discussion. This robustness against occlusion is
of tremendous assistance for location recognition tasks, par-
ticularly for large search engines with powerful GPUs and
ample memory. In the future, we will concentrate on lower-
ing memory prices due to the memory’s high utilisation.

7. Conclusion

In this paper, we propose a local similarity-based method
(LST+SCNN) for image retrieval tasks. We conduct com-
prehensive experiments to evaluate the impact of local re-
gion information and spatial relationships among local re-
gions. According to the experimental results, we get
some meaningful observations: (1) As with global similar-
ity, high-level image information advances the accuracy of
the local similarity; (2) the optimal local region size is dif-
ferent for each image, but a statistically optimal region size
can be chosen to positively affect the local similarity evalu-
ation; (3) keeping the spatial layout between the query and
gallery images consistent shows the positive impact on local

similarity; (4) the more abundant structure information pro-
duces higher accuracy. Based on the above observations, we
propose the best pipeline of our method, i.e. 4D LSTs from
the last convolutional block together with the spatial shape
9. In addition, we propose a novel deep learning model
called SCNN (similarity CNN) to enable local similarity
evaluation using LSTs. Experiments confirm that com-
pared with global similarity, the local similarity provides
higher robustness when the query image is occluded, and the
4D LST+SCNN performs better than the three well-known
global similarity-based methods on the Oxford5k dataset.
Furthermore, the methods combining local and global simi-
larity achieve the best performance on three public retrieval
datasets.
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