1198

IEICE TRANS. INF. & SYST., VOL.E106-D, NO.7 JULY 2023

[PAPER

Parallel Implementation of CNN on Multi-FPGA Cluster

Yasuyu FUKUSHIMA 7, Kensuke IIZUKA', Nonmembers, and Hideharu AMANO?, Fellow

SUMMARY  We developed a PYNQ cluster that consists of economical
Zynq boards, called M-KUBOS, that are interconnected through low-cost
high-performance GTH serial links. For the software environment, we em-
ployed the PYNQ open-source software platform. The PYNQ cluster is
anticipated to be a multi-access edge computing (MEC) server for 5G mo-
bile networks. We implemented the ResNet-50 inference accelerator on
the PYNQ cluster for image recognition of MEC applications. By esti-
mating the execution time of each ResNet-50 layer, layers of ResNet-50
were divided into multiple boards so that the execution time of each board
would be as equal as possible for efficient pipeline processing. Owing to
the PYNQ cluster in which FPGAs were directly connected by high-speed
serial links, stream processing without network bottlenecks and pipeline
processing between boards were readily realized. The implementation on
4 boards achieved 292 GOPS performance, 75.1 FPS throughput, and 7.81
GOPS/W power efficiency. It achieved 17 times faster speed and 130 times
more power efficiency compared to the implementation on the CPU, and
5.8 times more power efficiency compared to the implementation on the
GPU.

key words: FPGA, multi-FPGA, MEC, CNN

1. Introduction

Recent research has revealed that deep learning can achieve
high recognition accuracy in image recognition and natu-
ral language processing. Moreover, it can be applied to
various fields, such as automatic driving, automatic trans-
lation, and medical care. In particular, convolutional neu-
ral networks (CNNs) have high recognition accuracy in the
field of image recognition. However, a CNN requires a
large calculation amount, and problems of increased latency
and power consumption occur when the CNN is executed
on a general-purpose processor. To address these issues, a
domain-specific architecture (DSA) implemented on a field-
programmable gate array (FPGA) is a promising candidate.

FPGASs can maintain low development costs, shorten
the development period compared to dedicated chips such
as ASICs, and consume less power than GPUs. Owing to
these advantages, they are used not only for conventional
IoT and edge devices, but also for a computing infrastruc-
ture installed at the base station of a 5G mobile network
that realizes multi-access edge computing (MEC). However,
high-end FPGAs, which provide powerful computing func-
tions and enormous on-chip memory, tend to be expensive.

Manuscript received September 26, 2022.
Manuscript revised February 8, 2023.
Manuscript publicized April 12, 2023.
"The authors are with Dept. of Information and Computer Sci-
ence, Keio University, Yokohama-shi, 223-0061 Japan.
a) E-mail: fic@am.ics.keio.ac.jp
DOI: 10.1587/transinf.2022EDP7175

In addition, even in such a high-end FPGA, there are limits
to available resources with a single FPGA. To address this
problem, we developed a PYNQ cluster which consists of
cost-efficient Zynq boards, called M-KUBOS [1], connected
with low-cost, high-performance GTH serial links. The
PYNQ Linux-based open-source software environment was
introduced for multi-tenant processing on a multi-FPGA
system. Multiple timing-critical applications in MEC can
be executed on multiple boards of the PYNQ cluster in par-
allel.

In this study, as an example of image recognition for
MEC application, ResNet-50, a typical CNN, was imple-
mented on the PYNQ cluster. The performance and power
consumption of the actual system were evaluated. The pur-
pose of our work is to indicate below two points by demon-
strating that ResNet-50 can be executed with high perfor-
mance and high power efficiency on a PYNQ cluster. (1) Im-
plementing a CNN inference accelerator on a multi-FPGA
system is a promising option. (2) The PYNQ cluster has
sufficient computing power as a MEC server.

The remainder of this paper is organized as follows.
Section 2 describes MEC and PYNQ clusters. Section 3 de-
scribes CNNs and ResNet. Section 4 introduces research
related to our work. In Sect.5, division and paralleliza-
tion methods based on the computational characteristics of
CNNs are proposed, and the FPGA design and implementa-
tion are described. In Sect. 6, the performance of the imple-
mentation is evaluated, and Sect. 7 concludes this paper.

2. Background
2.1 MEC

MEC is being standardized by the European Telecommuni-
cations Standards Institute (ETSI) for 5G mobile networks.
MEC provides an IT service environment and cloud com-
puting functions for users at the edge of an access network
that includes multiple access technologies. Although the
MEC background objective is an advancement of 5G wire-
less technology, the same concept holds not only in 5G but
also in WiFi, low-power wide-area (LPWA), or wired net-
work environments. The advantages of MEC are summa-
rized as follows. (1) Tasks can be offloaded from an edge
device to a nearby MEC. (2) The application can be op-
erated in the local environment, thereby improving the re-
sponse time and user convenience. (3) It is possible to save
network bandwidth with the cloud and reduce network con-

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers



FUKUSHIMA et al.: PARALLEL IMPLEMENTATION OF CNN ON MULTI-FPGA CLUSTER

MKUBOS 00 MKUBOS 01 MKUBOS 02 MKUBOS 03 MKUBOS 04 MKUBOS 05

AXI AXI AXI AXI AXI AXI
Stream Stream Stream Stream Stream Stream

User
defined

User
defined

User
defined

Switch
Switch
Switch

S
User g User
defined |3

Switch

€
User =
defined defined |3

module module module module module

9.9Gbps Firefly capl

module

D)

@

Gbit Ethernet

Gateway/Server

Internet

Fig.1 Interconnection of PYNQ Cluster.

gestion. With the use of these features, it is expected that
various applications, such as factory control, smart city traf-
fic management, and security control are operated on MEC
servers. In addition, it is possible to use MEC by offloading
heavy tasks that have been performed inside individual ter-
minals to a nearby MEC and executing them. Because it is
fully conceivable to use image processing by deep learning
for these applications, MEC must support deep learning.

2.2 PYNQ Cluster

FPGA computing is attracting attention as a promising can-
didate for the MEC server because of its low cost and low
power consumption. Another important advantage of FPGA
computing is that it can handle timing-critical jobs by ac-
cepting a request from an edge device directly through its
I/O and by executing jobs with continual performance with
hard-wired logic. Multi-FPGA systems are particularly ad-
vantageous because they can handle multiple requests from
multiple edge devices at a base station.

For the MEC computing platform, we developed a
PYNQ cluster [2] consisting of multiple Zynq Xilinx SoC
boards equipped with an ARM core called a processing sys-
tem (PS) and an FPGA called programmable logic (PL).
Python productivity for Zynq (PYNQ) [3] is an open-source
software platform developed by Xilinx. It is built on Ubuntu
Linux and can build a software stack for common Linux
servers.

The current PYNQ cluster was built by connecting six
M-KUBOS boards from PALTEK[1], as shown in Fig. 1.
A photograph of the actual system is shown in Fig.2. The
details of each M-KUBOS board are listed in Table 1. As
shown in Fig. 3, the largest size of Zynq, XCZUI19EG, is
mounted with two DDR4 DRAM sets and several high-
speed serial links. A duplicated ring network with five 5-
input by 5-output static time-division multiplexing (STDM)
switches was formed [4], which can guarantee the band-
width and latency between boards. A user-defined applica-
tion module in Fig. 1 is connected to the port of the switch
with the 170-bit width AXI Stream interface. Xilinx Aurora
IP is used for sending/receiving serial data through the GTH
serial cable bundled with Samtec Firefly cables. As shown
in Table 1, including the error-correcting code (ECC), the

1199

Fig.2  Appearance of PYNQ Cluster.

Table1  Key specifications of M-KUBOS.

Item Specification

FPGA XCZUI19EG-2FFVC1760

PS: 4GB DDR4-2400

PL: 1x 4GB DDR4-2400 SODIMM Socket

4x GTH 8TX (max 16.3Gbps)
(effective 8.5Gbps)

4x GTH 8RX (max 16.3Gbps)
(effective 8.5Gbps)

USB3.0 x 1

USB-UART x 1

1Gb Ether(RJ45)

DP1.2

Memory

1/0

Zynq xczul9eg

) Gigabit Ethernet

Display Port
Cortex A53 Quad = S;TPA 4
microSD card Core+ =
QSPI flash L=y CAN x2
12C devices Cortex R5 Quad Core  DINMEVEEYS

ITAG

1143 K Logic cell pp FMC x2
GTHx 8 70.6Mb Memory Ly Prmod x 2
GTY x4 1968 DSPs

=) LED, DipSW, pushSW

Fig.3 M-KUBOS board.

effective bit rate is 8.5 Gbps for each link and the total band-
width between boards is 34 Gbps. Because the PYNQ clus-
ter provides a RESTful API[2], we can configure the PL
from the host server by using this APL

As shown in Fig.4, the user describes JSON-based
configuration files to specify the PS. The job is distributed
to multiple boards of M-KUBOS with a cluster management
system mkubosmgr[2], [5]. On each Linux running of the
PS of M-KUBOS board, mkuboswww [2], [5] manages dis-
tributed jobs according to the descriptions. As with other
application programs, the implemented ResNet-50 was dis-
tributed using the above management system. Although the



1200

PL M-KUBOS

mkubosmgr
Control S board
Server mkubos AR
www
APl S mkubos JWN
www

PS PL

_ 0%
www

PL

PS
BN mkubos "’ﬂ/
WWW

Fig.4 The way of using PYNQ Cluster.

—

Using API, users can

perform operations such as
configuration to FPGA, table
setting, starting jobs, and 1/0.

execution of this paper is evaluated by the manual job distri-
bution, now, the M-KUBOS resource manager is available,
and it selects unused boards and dispatches the job automat-
ically by using a cluster management tool Slurm [6]. The
detail of the system is the same as that for FiC described in
[7].

Although image processing with a CNN is a major
application of MEC, introducing dedicated computational
components, such as GPUs, is not desirable owing to the
limited resources and power for MEC. Zynq is not a high-
end FPGA device for computation; it can support sufficient
computational power by parallel processing. Here, we in-
vestigate the parallel processing techniques of the CNN on
the PYNQ cluster.

3. Convolutional Neural Network
3.1 Basics of CNN

A CNN is a type of neural network that exhibits high accu-
racy in image recognition and object detection. Thus, it is
used in many services, such as obstacle detection during au-
tonomous driving. The basic structure of the CNN is shown
in Fig. 5. Each layer indicated by an arrow performs an oper-
ation on the input data from the previous layer and generates
output results that are passed to the next layer.

Because the input/output in the middle of the CNN is
the extraction of the feature points of the image, these in-
termediate results are called feature maps. In particular, the
input of each layer is called the input feature map, and the
output is called the output feature map. In many layers, the
input feature map is calculated using weights and biases to
generate the output feature map. In addition, as shown in
Fig.5, each dimension of the 3D feature map is the width,
height, and channel, respectively. The CNN layer includes
convolution layers, fully connected layers, pooling layers,
and activate functions like ReLUs. Among them, the com-
putational complexity of the convolution layer accounts for
a large part of the whole.

3.2 ResNet

ResNet [8], which is the target of advancement in our work,

IEICE TRANS. INF. & SYST., VOL.E106-D, NO.7 JULY 2023

Input Feature Map Feature Map Output
Other
Layer 1 Layer 2 Layers
R e — e
Height /
Channel
—

Width

Fig.5 Pattern diagram of CNN.

X
l Shortcut connection

Convolution Layer

l x

Convolution Layer

F(x) 1

T\
Oy
NS

%
H(x) = F(x) + x

Fig.6  Basic structure of ResNet.

is a CNN model that won the ImageNet Large Scale Visual
Recognition Challenge ILSVRC) in 2015. It is character-
ized by a deeper model and more layers than previous mod-
els. ResNet has a basic structure called a residual block that
has a shortcut connection that skips several layers, as shown
in Fig. 6. By stacking this structure over multiple layers, the
number of layers can be increased to improve the accuracy
by preventing the disappearance of the gradient.

Regardless of the layer depth, ResNet was designed to
have a convolution layer and a max-pooling layer. Then,
an average-pooling layer, and a fully connected layer are
placed at the end. Between them, many residual blocks are
provided. ResNet-18, ResNet-34, ResNet-50, ResNet-101,
and ResNet-152 are commonly used, although the number
of layers can be further increased. In this study, we im-
plemented ResNet-50 as a typical CNN model with a large
number of parameters and a large number of calculations.
ResNet-50 was selected as a benchmark for MLPerf [9] and
as a target for BrainWave [10]. The structure of ResNet-50
is presented in Table 2.

4. Related Work

Numerous studies have been conducted on the implementa-
tion of CNN on FPGAs. This section introduces the works
related to our work.

4.1 CNN Implementation on Single FPGA
There are two methods for FPGA-based CNN implemen-

tation: the recurrent structure and the pipeline structure.
The recurrent structure is a method similar to that in [11],



FUKUSHIMA et al.: PARALLEL IMPLEMENTATION OF CNN ON MULTI-FPGA CLUSTER

1201
Table 2  Structure of ResNet-50.
convl max pool | conv2_x conv3_x conv4_x conv5_x average pool | 1000-d fc
output size 112x 112 | 56 x 56 56 x 56 28 x 28 14 x 14 Tx7 Ix1 Ix1
Ix1,64 1x1,128 1x 1,256 1x1,512
block 7x7,64 3x3,64 [ 3x3,64 ]><3 [ 3x3,128 ]><4 [ 3% 3,256 }XG [ 3x3,512 ]><3
1x1,256 1x1,512 1x1,1024 1x1,2048
operations per block | 118.0M 1.8M 462.4M 411.0M 411.0M 411.0M 25.1K 513.0K
params per block 9.4K - 147.5K 524.3K 2097.2K 8388.6K - 513.0K

which makes full use of on-chip resources to build a unified
computing unit and share the unit between different layers.
Many CNN accelerators using FPGAs in previous studies,
such as [12], are often designed to have only one convolu-
tion layer processor (CLP). On the other hand, the pipeline
structure implements each layer of the neural network as a
separate pipeline stage, as in [13]. With this method, it is
possible to implement the optimum design for each layer,
but the resources available to each layer are limited. In our
implementation, we specially designed the first convolution
layer and designed a common recurrent structure for other
residual blocks.

4.2  Mapping Approach for CNN on Multi-FPGA

The large size of the deep learning network model tends to
lead to resource shortages for implementing accelerators us-
ing a single FPGA, and the overall computing performance
tends to be limited. To address this problem, researchers
have implemented a CNN on multiple FPGAs.

In [14], an efficient search algorithm was proposed for
the design space exploration of multiple FPGAs. The exe-
cution results of the system designed using the method were
up to approximately 21 times and twice the power efficiency
of the CPU and GPU in the system consisting of six FPGAs
using AlexNet and VGG-16 as the benchmarks. Note that
AlexNet and VGG-16 are smaller models than ResNet-50.

In [15], based on the research of [14], the division was
performed by an algorithm that also considered the topol-
ogy of the connection network between FPGAs. The policy
of its design space exploration was dynamic programming,
as in [14]. However, in [15], FPGA resources were further
finely allocated by a binary search. ResNet-152 was imple-
mented and evaluated by changing the number of FPGAs.
By using up to 16 FPGAs, the performance improvement
was double that of the GPU. Since [15] focuses on mapping
problems, the DSP usage rate is around 20%, which is not
sufficiently accelerated.

Our design shares common attributes with those of the
above studies, specifically, it divides the network model be-
tween layers and maps it to a multi-FPGA system. As in our
study, ResNet was used for an evaluation in [15] and it is
thus easy to conduct a comparison. The difference, however,
was the implemented multi-FPGA system. In [14], FPGAs
were connected by SATA; hence, communication between
FPGAs was not fast. In [15], FPGAs were not directly con-
nected; consequently, communication between FPGAs had
to be managed by the host CPU. On the other hand, in our
PYNQ cluster, FPGAs are directly connected by high-speed

serial links, which enable stream processing without net-
work bottlenecks and facilitate pipeline processing between
boards.

An accelerator for the training of CNNs on multi-
FPGA system is proposed [16]. This work improves the
training performance by using up to 15 FPGAs and elim-
inates the parameter fetching from off-chip by efficiently
distributing the parameters of medium-sized CNN models,
AlexNet, VGG-16, and VGG-19 across many FPGAs. On
the other hand, ResNet-50 targetted in our work has a larger
number of the parameters than medium-sized models tar-
getted in this work, so the parameters are retained on-chip
unless extreme quantization such as binarization reduces the
recognition accuracy.

To summarize the novelty of our work, there is a differ-
ence between these related works in terms of a design with
high DSP utilization while holding the parameters in DRAM
for the inference process of a large-scale CNN model. Fur-
thermore, our work has the significance of showing that the
PYNQ cluster has sufficient computing power as a MEC
server.

This paper is an extended version of [17]. Implemen-
tations on 2, 3, 5, and 6 boards are added, and there is a
discussion about performance and scaling. The power eval-
uation results from the real system are also added. As a
result, the evaluation results are totally updated.

5. Implementation

This chapter describes the design guidelines, the dividing
method, and the flow of implementation and execution. Af-
ter that, quantization and parallelization for speeding up are
described.

5.1 Design Guidelines and Dividing Method

Layers of ResNet-50 are divided and implemented on mul-
tiple M-KUBOS boards. For example, we explain the case
of dividing ResNet-50 into four boards. The processing on
each board is a stage of the pipeline, as shown in Fig. 7. As-
suming that boards 0 to 3 are used, data are inputted from
the PS to the PL of board 0, the processing is performed in
order from board O to board 3 in the PL, and the interme-
diate result is passed to the next board. The final result is
outputted to the PS of board 3.

In pipeline processing, the overall performance is de-
termined by the stage with the longest execution time. So
we should allocate the layers to the FPGA boards properly
to make the execution time of each board as equal as pos-



1202

Processing|Processing|Processing|Processing
0™ of of of of
Board 0 | Board 1 | Board 2 | Board 3
Processing|Processing|Processing|Processing
—_— of of of of
Board 0 | Board 1 | Board2 | Board3

Data Processing|Processing|Processing|Processing
D — of of of of
Board 0 | Board 1 | Board 2 | Board 3
Processing|Processing|Processing|Processing
> of of of of
Board 0 | Board 1 | Board 2 | Board 3

Data
3

Fig.7 4 board pipeline processing.

sible. We implemented a common module for convolution
layers to simplify the design and allow estimation of execu-
tion time before the division of ResNet is determined. All
of the residual blocks, such as conv2_x to conv5_x in Table
2, are implemented by using this convolution layer module
of common design. The detail of this module is described
in Sect. 5.4. Using the same module instead of preparing in-
dividual designs for each layer, eliminates the need to con-
sider resource allocation when allocating each layer sepa-
rately to the FPGA board. However, the shape of the feature
map of the first convolution layer and the last FC layer are
different from other convolution layers in ResNet. Thus,
it is necessary to prepare individual designs. These layers
are designed to save resources so that they can be mounted
on the same board with the convolution layers of common
design. In addition, a max-pooling layer and an average-
pooling layer consume fewer resources and can be mounted
on the same board with the other layers without any prob-
lems. The convolution layers that make up the majority of
the ResNet are implemented by using the common design
module iteratively. With the above design, any layer can be
allocated to the M-KUBOS board without running out of re-
sources. Since the distribution of layers can be determined
without resource constraints, only execution time is taken
into account when deciding on the division of ResNet.

The distribution of layers is determined by the follow-
ing procedure. To make the processing time of each board
as equal as possible, first, high-level synthesis is performed
by Vivado HLS by Xilinx, and where we should divide the
network is determined from the estimation of the execution
time of each layer. After that, it is executed on the real
PYNQ cluster to measure the execution time, and the divi-
sion is fine-tuned. This adjustment is necessary because the
communication with the DRAM is likely to make a differ-
ence between the Vivado HLS estimation and the real ma-
chine behavior. Figure 8 shows an example of dividing and
implementing ResNet-50 on multiple FPGA boards. Lay-
ers shaded in blue indicate that they are implemented with
convolution layers of common design. Also, the red arrows
indicate that board-to-board communication takes place.

5.2 Implementation and Execution Flow

Figure 9 shows the procedure from implementation to ex-
ecution. This example describes the case of running the

IEICE TRANS. INF. & SYST., VOL.E106-D, NO.7 JULY 2023

1 1
1 1
1 1 —
_ 1 1 ]
o §_ 2| :I :l :| ! ! :| :I :',' ﬁ
Sl ™ E ™2 S[MEP o PE|™E™ B2
© o o o o o o = o
£ 3 Sl S S| 1| 8 S o =
1 1 1 2
1 1 1
1 1 1
1 1 1
1 1 1
Board 0 : Board 1 : : Board N
(First Board) 1 1 | (Last Board)
1 1 1
1 1 1
1 1 1

Fig.8 Example of dividing and implementing ResNet-50 on multiple
FPGA boards.

ResNet-50 accelerator on 4 boards. First, we get the pre-
trained quantized model and the parameters from PyTorch.
The parameters are sorted according to the order in which
they are used, then saved in text files. Each text file holds
the minimum parameters needed to run on each board. Next,
we rewrite the model definition in C++ to improve the per-
formance and generate the accelerator IP by using Vivado
HLS. The generated accelerator IP is synthesized with the
shell part of M-KUBOS which contains the STDM switches
and DRAM controller by Vivado and the bitstream files for
the PL part of M-KUBOS are generated. This is the end of
the implementation process.

The shell part of M-KUBOS and interfaces are de-
signed as follows. Input data are packed into 256-bit width
data and transferred with DMA from the PS to PL on board 0
using the Xilinx DMA IP. The data passed between boards
are transferred in 170-bit width data to the STDM switch
through the AXI4-Stream interface and Aurora IP. As a re-
sult, we can connect modules between multiple boards by
extending the block design for a single board. In this imple-
mentation, 128 bits out of 170 bits are used for the data part;
the other parts are necessary for transmission and reception
with the STDM switch. Quantization from a 32-bit floating-
point to an 8-bit integer is performed for feature maps and
weights; thus, sixteen 8-bit integer numbers are sent and re-
ceived together in the 128-bit width of the data part. In ad-
dition, DDR-4 SDRAM on each board is used for holding
weight data.

To execute our ResNet-50 accelerator on the PYNQ
cluster, initialization in Fig.9 is required. First, the host
program is executed on each board and the corresponding
text file and bit file are loaded. Next, the parameters read
from the text file are sent to DRAM, and the bit file is sent
to PL to complete the initialization. After the initialization
is completed, the main process can be operated. On each
board, computations on PL are executed. Especially, on the
first board, the input data is transferred to PL by DMA. Each
board sends intermediate results to the next board after it has
finished processing on its allocated layers. The last board
displays the inference result on the command line. The main
process flow is also shown in Fig. 7. The main process can
run repeatedly once it has been initialized. The bitstream
file and DRAM are not rewritten while the image recogni-
tion task is executed in the main process.



FUKUSHIMA et al.: PARALLEL IMPLEMENTATION OF CNN ON MULTI-FPGA CLUSTER

1203
PyTorch
Quantized Model def. | Parameters ~ parameter file
param_0.txt
param_1.txt
param_2.txt
param_3.txt
Vivado HLS Vivado
C++ code P bit file
RN50_0.cpp RN50_0 RN50_0.bit
RNsOLcop (NN enso WENENS  rnso b
RN50_2.cpp RN50_2 RN50_2.bit
RN50_3.cpp RN50_3 RN50_3.bit
(a) Implementation flow.
PYNQ Cluster
M-KUBOS 0 M-KUBOS 1 M-KUBOS 2 M-KUBOS 3
Initialization Initialization Initialization Initialization
Load param_0.txt Load param_1.txt Load param_2.txt Load param_3.txt
Load RN50_0.bit Load RN50_1.bit Load RN50_2.bit Load RN50_3.bit
Send params to DRAM Send params to DRAM Send params to DRAM Send params to DRAM
Burn bitstream Burn bitstream Burn bitstream Burn bitstream
Main process Main process Main process Main process
Input image data Execute computation on PL Execute computation on PL Execute computation on PL
DMA image data to PL Show Result
Execute computation on PL

(b) Execution flow.

Fig.9  Procedure from implementation to execution.

5.3 Quantization

As mentioned above, in this implementation, the model
trained with 32-bit floating-point numbers was quantized to
8-bit integer numbers for both the weight and feature map.
The quantization method is described in [18]. Quantization
can reduce the requirements for memory bandwidth and on-
chip memory resources. While the multiplication of 32-bit
floating-point numbers requires three DSP units, the multi-
plication of 8-bit integer numbers can be performed by one
DSP unit; thus, the DSP unit of the FPGA can be saved with
quantization. Moreover, if an 8-bit integer is used for both
the weight and feature maps, two MAC operations can be
performed with one DSP[19].

We examined the accuracy between this implementa-
tion and the floating-point model, and the results are shown
in Table 3. Inference by ResNet-50 was performed using
1000 images of ImageNet, and the recognition accuracies of
Top-1 and Top-5 were compared. Top-1 and Top-5, which
show whether the correct class is included in the top 1 or 5
of the inference results, respectively, are often used to evalu-
ate the recognition accuracy of CNNs. Float32 in Table 3 is
the original floating-point model, and INT8 is the precision
of this implementation quantized to an 8-bit integer. As a
result, it was confirmed that there is almost no decrease in

Table 3  Comparison of recognition accuracy between quantization re-
sult and the floating point model.

Float32 | INTS8
Top-1 Accuracy | 74.4% 74.2% (-0.2%)
Top-5 Accuracy | 93.0% 92.8% (-0.2%)

accuracy with quantization.
5.4 Parallelizing Convolution Operations

Here, we show the method used to speed up the convolution
operation in ResNet-50. In the explanation, the following
symbols are used: ICH is the number of channels in the
input feature map, IH is the height of the input feature map,
IW is the width of the input feature map, OCH is the number
of channels in the output feature map, OH is the height of
the output feature map, OW is the width of the output feature
map, and K is the kernel size. The convolution operation
generates the output feature map OH x OW x OCH from
the weights OCH X ICH x K x K and the input feature map
IH x IW x ICH. The amount of calculation is expressed in

Eq. (1).
conv_operations = OHXOWXKXKXOCHXICH (1)

Speeding up is achieved by executing this operation



1204

in parallel on the FPGA. Parallelization is achieved by un-
rolling the input/output channel loops, as shown in [12]. Be-
cause the number of input/output channels of the convolu-
tion layers other than the first convolution layer are powers
of 2, the unrolling factor is selected by dividing the input
and output channels by powers of 2. The number of input
channels and output channels is 64 or more in convolution
layers other than the first convolution layer of ResNet-50.
Because the convolution layers other than the first convo-
lution layer are based on a common design, it is possible
to achieve the maximum degree of parallelism of 64 in the
calculation. The degree of parallelism is limited by the com-
putational resources of the FPGA board used in this imple-
mentation. Here, the kernel loops are not unrolled because
sufficient parallelism can be ensured only by unrolling the
input/output channel loops.

The design space exploration for determining the un-
rolling factor of the input/output channel is shown in Algo-
rithm 1. In this algorithm, 7o and T'i are alternately doubled
unless ToxT'i does not exceed twice the number of available
DSPs. Note that it is possible to perform two MAC opera-
tions with one DSP by 8-bit quantization. Accordingly, the
input channel unrolling factor 7'i and the output channel un-
rolling factor To are obtained, and To X Ti multiplications
are executed in parallel.

Algorithm 1 Design space exploration

Set available DSP: DSP_.NUM
Input Channel Size: ICH
Output Channel Size: OCH
To <1
Tie1
while Tox Tix2 < DSP.NUM x 2 do
ifTi<To && Tix2<ICH then
Ti x=2;
else if To X2 < OCH then
To x=2;
else
break;
end if
end while

In addition, the weight required for the calculation
must be fetched from the DDR4 SDRAM. In this imple-
mentation, double buffering is performed to hide the time re-
quired to fetch the weights, two buffers that hold the weights
are prepared, and they are used alternately for the calcu-
lation. As a result, while the calculation is performed us-
ing the data in one buffer, the weights required for the next
calculation can be fetched using the other buffer. The pro-
cessing time is not the sum of the time for the calculation
and the fetching of the weights; rather, it is equivalent to
the processing time of only the one that takes more time
than the other. From the policies described so far, the algo-
rithm for the convolution operation is shown in Algorithm
2. Double buffering, pipeline processing, and loop unrolling
are performed by inserting the pragma provided by Vivado
HLS. As shown in Fig. 10, at the same time as fetching the

IEICE TRANS. INF. & SYST., VOL.E106-D, NO.7 JULY 2023

DRAM

Off Chip T

On Chip r---
1
! Ping Pong Buffer

Weight Buft Weight Buf2
ToxTi To xTi

Output Buf
OW x OH x OCH

: Output Feature Map
e e OW x OH x OCH
e 0

Bias & Scale

Input Feature Map |
W IH x ICH

Fig.10  Architecture of CONV Layer.

weight with one Weight Buf, the other Weight Buf and the
Input Feature Map are used to execute the multiplication of
To x Ti in parallel. The result is accumulated in the Output
Buf. In the example of this figure, the case of To = 2 and
Ti = 3 is shown, and six multiply and accumulate operations
are performed per clock. The weight data are pre-sorted in
the order of use, and they can be efficiently fetched by burst
transfer. Because all operations on the fetched weights are
completed before the operation on the next weights is com-
pleted, all the weights are completely reused and the number
of DRAM accesses is minimized. After these processes, the
intermediate result is subjected to bias addition and scaling
processes and is held in the on-chip buffer as the Output
Feature Map. This output feature map is used as an input
feature map of the next layer.

Algorithm 2 Convolution operation

Require: input_feature_map:/W X IH x ICH; output_buf:OW x OH x
OCH; weight buf:To x Ti
Ensure: output
for r0o = 0; to < OCH|To; to + + do
for ti = 0; ti < ICH/Ti; ti + + do
for each(ky, kx) within(K, K) do
pragma HLS DATAFLOW
load_weight(weight_buf, ddr)
for each(h, w) within(OH, OW) do
pragma HLS PIPELINE
for too = 0; too < To; too + + do
pragma HLS UNROLL
for 7ii = 0; tii < Ti; tii + + do
pragma HLS UNROLL
output_bu f[w][h][toxT o+too]+=input_feature_map

[S Xw+kx—P][S Xh+ky— Pl[ti Xx Ti+ tii] X
weight_buf[too X Ti + tii]
end for
end for
end for
end for
end for
end for




FUKUSHIMA et al.: PARALLEL IMPLEMENTATION OF CNN ON MULTI-FPGA CLUSTER

6. Evaluation
6.1 Experimental Result

In this implementation, an IP of the calculation part is gen-
erated from the code written in C++ with the high-level syn-
thesis tool Vivado HLS 2019.1.3 and implemented with the
synthesis tool Vivado 2019.1.3. A rather conservative op-
erational frequency of 100 MHz is adopted for easy design.
The resource utilization of each board in the implementation
on 4 boards after placement and routing is shown in Fig. 11.
It is evident that this implementation can utilize a consider-
able amount of the on-chip memory and DSPs.

The execution time and power consumption of each
board are listed in Table 4. The power consumption was
evaluated with a real board of the cluster. Analog Device
DC2086A and DC1613A were used to monitor the supply
current and voltage. AMD LTpowerPlay was used for con-
trol software. All power for the system, FPGA core, 1/O,
high-speed links, and DDR SDRAM modules are included.
The data of power consumption are an average of 5 seconds
during execution. Since the performance is determined by
the part with the longest execution time in pipeline process-
ing, it is possible to process one data every 13.3 ms in this
implementation. Of this time amount, the time required for
communication between boards is approximately 0.6 ms at
most; thus, there is no significant impact on overall perfor-
mance. In the latter layer of ResNet, communication with
DRAM is bound owing to the size of the number of weights,
and the execution time per layer is long. The execution time
of board 3 is shorter than that of other boards. However, if
more layers are assigned to board 3, the execution time of
board 3 exceeds 13.3 ms, so allocation of our work is opti-
mal. As a result, the throughput is 1/0.0133 = 75.1 FPS.
It can be said that it has sufficient ability to process 60 FPS
videos, which is one of the general frame rates. In addi-
tion, because the total calculation amount of ResNet-50 is
3.88 x 10°, the performance is 3.88 X 10°/0.0133 = 292
GOPS. The power efficiency is obtained from the perfor-
mance and total power consumption, and this implementa-
tion achieves 7.81 GOPS/W.

Figure 12 shows the performance when ResNet-50 was
implemented on 2, 3, 4, 5, and 6 boards. Implementation
on a single board was not possible due to the unsuccessful
placement and routing on Vivado. This is one of the reasons
why huge CNN models should be implemented on multiple
FPGAs. From 2 boards to 5 boards, it can be observed that
the performance improves linearly with the increase in the
number of M-KUBOS boards. However, from 5 to 6 boards,
the improvement is slower. In the convolution layer, where
the number of parameters is particularly large, the commu-
nication time with DRAM becomes a bottleneck and the ex-
ecution time becomes large. This makes the finer grain par-
titioning difficult and prevents the linear speedup.

From Table 2, it can be seen that the number of pa-
rameters is larger for the residual block at the back. In

1205
100
X 90 - .
c 80
2 70
T 60 M Board 0
= 50 M Board 1
o]
o 40 Board 2
s Board 3
32 20 oar
3
2 10 H
0 | | L
LUT FF BRAM URAM DSP
Fig.11  Resource utilization of each board.
Table4  Evaluation of each board.
Board 0 Board 1 Board 2 Board 3
Execution Time (msec) 12.7 13.3 11.6 9.7
Power Consumption (W) 9.49 9.40 9.11 9.37
450
400
E 350
o
® 300
@ 250
o
S 200
§ 150
£
o 100
o
50
0

1Board 2Board 3Board 4Board 5Board 6 Board

Fig.12  Performance when implementing on 2-6 boards.

this implementation, conv2_x, conv3_x, and conv4_x are
compute-bound, while conv5_x is memory-bound. The ex-
ecution time required for conv2_x, conv3_x, and conv4_x
is approximately 150,000 clocks per residual block, on the
other hand, each residual block of conv5_x requires about
400,000 clocks. Since the split in this implementation is
performed in residual block units, conv5_x interferes with
distributing layers such that each board’s execution time is
even. This is the main reason why the performance improve-
ment with 6 boards is saturated. If the number of boards
becomes large, balancing the load on each board tends to
be difficult. Thus, although we can expect a small speed up
by distributing the load of the heaviest board, increasing the
number of boards by more than five is not desirable from the
viewpoint of energy efficiency.

In this implementation, the performance of the serial
link did not become a performance bottleneck. Even if the
link performance was not as high as the M-KUBOS cluster,
a similar performance was likely obtained.

6.2 Performance Comparison

The execution time, power consumption, and power effi-
ciency of this implementation on 4 boards are compared
with those of the CPU and GPU, as shown in Table 5. For
comparison, the AMD Ryzen Threadripper 3990X was used



IEICE TRANS. INF. & SYST., VOL.E106-D, NO.7 JULY 2023

1206
Table 5  Performance comparison with CPU and GPU.
CPU GPU Embeded GPU Our Implementation
Devic AMD NVIDIA NVIDIA Xilinx
evice Ryzen Threadripper 3990X | GeForce RTX 3090 | Jetson Nano Zynq UltraScale+
Frequency (MHz) 2900 1400 N/A 100

Software implementation

PyTorch 1.8.1
+ Python3.6.8

PyTorch 1.8.1
+ Python3.6.8

Hello AI World [20]

Xilinx Vivado HLS 2019.1.3

+CUDA 11.1
Precision Float32 Float32 Float32 INT8
Top-1 Accuracy (%) 74.4 74.4 - 74.2
Top-5 Accuracy (%) 93.0 93.0 - 92.8
Latency (msec) 230.7 8.2 166.5 13.3
Performance (GOPS) 17 473 23.7 292
Power Efficiency(GOPS /W) | 0.06 1.35 2.37 7.81
Table 6  Performance comparison with the related work and Vitis Al implementation.

Our Implementation (4-board) | Our Implementation (5-board) | [15] (4-board) [15] (16-board) Vitis AI Implementation (single board)
Xilinx Xilinx Xilinx Xilinx Xilinx

Device Zynq UltraScale+ Zynq UltraScale+ Virtex UltraScale | Virtex UltraScale | Zynq UltraScale+
(XCZU19EG) (XCZU19EG) (XCVU095) (XCVU095) (XCZU9YEG)

Frequency (MHz) 100 100 150 150 281

CNN Model ResNet-50 ResNet-50 ResNet-152 ResNet-152 ResNet-50

Precision INT8 INT8 Fixed16 Fixed16 INT8

Performance (GOPS) | 292 380 62.9 256.6 338.9

as the CPU, and NVIDIA GeForce RTX 3090 was used as
the GPU. The deep learning framework PyTorch was used
for both the CPU and GPU, and the inference was executed
and evaluated using the pre-trained ResNet-50 model. The
CPU ran with 64 threads, which is the default thread number
of PyTorch. It also showed a comparison with Nvidia Jetson
Nano, a highly efficient embedded GPU. We ran ResNet-50
inference using Hello AT World [20] and evaluated the ex-
ecution time. Jetson Nano was operated in MAXN mode,
which uses up to 10 W.

As shown in Table 5, this implementation on 4 boards
achieved 17 times faster speed and 130 times more power
efficiency than the CPU deep learning framework imple-
mentation. Although it was inferior to the GPU in terms
of speed, it achieved a 5.8 times improvement in terms of
power efficiency. Note that the GPU used here must be
connected to a host server, and such a system is difficult
to introduce to a base station as a MEC server, while the
PYNQ cluster consists of four small boards with only a sim-
ple power supply and a fan. In addition, our implementa-
tion shows competitive results even compared to embedded
GPUs.

A comparison with the related research [15] that imple-
ments the CNN in the multi-FPGA system is shown in Table
6. As in this research, ResNet was implemented on multiple
FPGA boards. Thus, it can be stated that it is appropriate
as a comparison target. ResNet has the same basic structure
even if the number of layers is different. By using GOPS
instead of FPS as an index of performance, the difference
in the total amount of calculation can be almost ignored. It
is therefore possible to compare these models. Compared
to the 4-board implementation of [15], this implementation
achieved 4.6 times its performance. In [15], the utilization
rate of DSP was only approximately 20%. It can be inferred

that the DSP could not be allocated efficiently in the divi-
sion. On the other hand, in our work, by using a common
design for the convolution layer, the DSP utilization rate was
high and the performance was higher than that of [15]. In
addition, a comparison with the implementation using Vitis
Al is also shown in Table 6. Since Vitis Al does not work on
the M-KUBOS board, we have shown a comparison with the
ZCU102, which is close to what we used in our implementa-
tion. We refered to the performance published by Xilinx in
[21]. Our 4-board implementation is inferior in performance
to the implementation using Vitis Al, but our 5-board imple-
mentation is superior to the implementation using Vitis Al
Such scalability is the strength of multi-FPGA implementa-
tions.

Note that the frequency of FPGA and communication
between FPGAs are not specialized for this implementation
because it is assumed that the implementation of commu-
nication and frequency in the FPGA cluster is used as the
server of MEC. In addition, because this implementation fo-
cuses on mounting on multiple boards and does not incorpo-
rate speed-up methods such as the Winograd algorithm [22],
FFT [23], and pruning [24], there remains room for further
performance improvement. Also, to avoid performance sat-
uration as the number of boards increases, it is conceivable
to prepare implementations with a small number of boards
and use several of them independently. It is our future work.

7. Conclusion

In our work, as an example of image recognition for MEC
applications, ResNet-50 was divided and implemented on
a PYNQ cluster consisted of M-KUBOS boards. The
throughput was improved by performing pipeline process-
ing between the multiple boards. The speed was further in-



FUKUSHIMA et al.: PARALLEL IMPLEMENTATION OF CNN ON MULTI-FPGA CLUSTER

creased by using quantization to an 8-bit integer, loop un-
rolling, and double buffering. By using our PYNQ clus-
ter in which FPGAs were directly connected by high-speed
serial links, stream processing without network bottlenecks
and pipeline processing between boards could be realized
easily. The proposed implementation on 4 boards achieved
a throughput of 75.1 FPS, performance of 292 GOPS, and
power efficiency of 7.81 GOPS/W. It achieved 17 times
faster speed and 130 times greater power efficiency com-
pared to the implementation on the CPU and 5.8 times
greater power efficiency compared to the implementation
on the GPU. Also, it can be observed that the performance
improves linearly with the increase in the number of M-
KUBOS boards from 2 boards to 5 boards.

There remains room for performance improvement,

such as by using other CNN speed-up methods. Because
ResNet has multiple models with a maximum of 152 layers,
it is possible to expand it step by step in the future. Further
research is needed on the division method, and automation
of division is a future challenge.

Acknowledgments

This work was supported by JST CREST, Grant Number
JPMJCR19K1, Japan.

References

(1]

(2]

(3]

[4]

(51

(6]

(71

(8]

[91
[10]

[11]

[12]

PALTEK, “FPGA computing platform M-KUBOS,” https://www.pal-
tek.co.jp/design/original/m-kubos/ (accessed 2021-1-20).

T. Inage, K. Hironaka, K. lizuka, K. Ito, Y. Fukushima, M. Namiki,
and H. Amano, “M-KUBOS/PYNQ cluster for multi-access edge
computing,” CANDAR2021, Nov. 2021.

Xilinx Inc, “PYNQ - Python productivity for Zynq - Home,”
http://www.pynq.io/ (accessed 2021-1-22), 2019.

K. Ito, K. Tizuka, K. Hironaka, Y. Hu, M. Koibuchi, and H. Amano,
“Implementing a multi-ejection switch and making the use of mul-
tiple Lanes in a circuit-switched multi-FPGA system,” CANDAR20
Workshop, Nov. 2020.

K. Hironaka, K. lizuka, M. Yamakura, A.B. Ahmed, and H. Amano,
“Remote dynamic reconfiguration of a multi-FPGA system FiC
(Flow-in-Cloud),” IEICE Trans. Inf. & Syst., vol.E104-D, no.8,
pp.1321-1331, Aug. 2021.

“Slurm Workload Manager.” https://slurm.schedmd.com/ (accessed
2021-12-01).

M. Yamakura, R. Takano, A.B. Ahmed, M. Sugaya, and H. Amano,
“A multi-tenant resource management system for multi-FPGA sys-
tems,” IEICE Trans. Inf. & Syst., vol.E104-D, no.12, pp.2078-2088,
Dec. 2021.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2016 IEEE Conference on Comput. Vis. Pattern
Recognit. (CVPR), pp.770-778, June 2016.

MLCommons, “MLPerf,” https://mlcommons.org/ja/ (accessed
2021-6-18).

Microsoft Research, “Project Brainwave,” https://www.microsoft.c-
om/en-us/research/project/project-brainwave/ (accessed 2021-6-18).
H. Sharma, J. Park, D. Mahajan, E. Amaro, J.K. Kim, C. Shao, A.
Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to FPGAs,” 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp.1-12, 2016.

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimiz-
ing FPGA-based accelerator design for deep convolutional neural

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

1207

networks,” Proc. 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’15, New York, NY, USA,
pp.161-170, ACM, Feb. 2015.

X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W. Hwu, and D. Chen,
“DNNBuilder: an automated tool for building high-performance
DNN hardware accelerators for FPGAs,” 2018 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), pp.1-8,
Nov. 2018.

C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, “Energy-
efficient CNN implementation on a deeply pipelined FPGA cluster,”
Proc. 2016 International Symposium on Low Power Electronics and
Design, ISLPED ’16, New York, NY, USA, pp.326-331, Associa-
tion for Computing Machinery, Aug. 2016.

W. Zhang, J. Zhang, M. Shen, G. Luo, and N. Xiao, “An efficient
mapping approach to large-scale DNNs on multi-FPGA architec-
tures,” 2019 Design, Automation Test in Europe Conference Exhi-
bition (DATE), pp.1241-1244, March 2019.

T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Patel, and M. Herbordt,
“A framework for acceleration of CNN training on deeply-pipelined
FPGA clusters with work and weight load balancing,” 2018 28th
International Conference on Field Programmable Logic and Appli-
cations (FPL), pp.394-398, 2018.

Y. Fukushima, K. lizuka, and H. Amano, “Parallel implementation
of CNN on multi-FPGA cluster,” MCSoC-2021, Dec. 2021.
PyTorch, “Quantization — PyTorch 1.9.0 documentation,” https://
pytorch.org/docs/stable/quantization.html (accessed 2021-6-18).

D. Nguyen, D. Kim, and J. Lee, “Double MAC: Doubling the per-
formance of convolutional neural networks on modern FPGAs,” De-
sign, Automation & Test in Europe Conference Exhibition (DATE),
2017, pp.890-893, 2017.

NVIDIA Developer, “Two Days to a Demo,” https://developer.nvi-
dia.com/embedded/twodaystoademo (accessed 2022-12-26).
Xilinx, “Al-Model-Zoo,” https://github.com/Xilinx/Vitis-Al/tree/m-
aster/model_zoo (accessed 2022-12-26).

Y. Liang, L. Lu, Q. Xiao, and S. Yan, “Evaluating fast algorithms for
convolutional neural networks on FPGAs,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol.39, no.4, pp.857-870, April
2020.

C. Zhuge, X. Liu, X. Zhang, S. Gummadi, J. Xiong, and D.
Chen, “Face recognition with hybrid efficient convolution algo-
rithms on FPGAs,” Proc. 2018 on Great Lakes Symposium on VLSI,
GLSVLSI "18, pp.123-128, New York, NY, USA, Association for
Computing Machinery, May 2018.

L.Lu,J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An efficient
hardware accelerator for sparse convolutional neural networks on
fpgas,” 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp.17-25,
2019.

Yasuyu Fukushima received B.E. de-
gree from Keio University, Yokoghama, Japan,
in 2021. He is a master student in the De-
partment of Information and Computer Science,
Keio University in the presence. His reserch in-
terests are deep learning accelerators and recon-
figurable architectures.


http://dx.doi.org/10.1109/CANDAR53791.2021.00020
http://dx.doi.org/10.1109/CANDAR53791.2021.00020
http://dx.doi.org/10.1109/CANDAR53791.2021.00020
http://dx.doi.org/10.1109/CANDARW51189.2020.00049
http://dx.doi.org/10.1109/CANDARW51189.2020.00049
http://dx.doi.org/10.1109/CANDARW51189.2020.00049
http://dx.doi.org/10.1109/CANDARW51189.2020.00049
http://dx.doi.org/10.1587/transinf.2020EDP7165
http://dx.doi.org/10.1587/transinf.2020EDP7165
http://dx.doi.org/10.1587/transinf.2020EDP7165
http://dx.doi.org/10.1587/transinf.2020EDP7165
http://dx.doi.org/10.1587/transinf.2021PAP0005
http://dx.doi.org/10.1587/transinf.2021PAP0005
http://dx.doi.org/10.1587/transinf.2021PAP0005
http://dx.doi.org/10.1587/transinf.2021PAP0005
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/MICRO.2016.7783720
http://dx.doi.org/10.1109/MICRO.2016.7783720
http://dx.doi.org/10.1109/MICRO.2016.7783720
http://dx.doi.org/10.1109/MICRO.2016.7783720
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1145/3240765.3240801
http://dx.doi.org/10.1145/3240765.3240801
http://dx.doi.org/10.1145/3240765.3240801
http://dx.doi.org/10.1145/3240765.3240801
http://dx.doi.org/10.1145/3240765.3240801
http://dx.doi.org/10.1145/2934583.2934644
http://dx.doi.org/10.1145/2934583.2934644
http://dx.doi.org/10.1145/2934583.2934644
http://dx.doi.org/10.1145/2934583.2934644
http://dx.doi.org/10.1145/2934583.2934644
http://dx.doi.org/10.23919/DATE.2019.8715174
http://dx.doi.org/10.23919/DATE.2019.8715174
http://dx.doi.org/10.23919/DATE.2019.8715174
http://dx.doi.org/10.23919/DATE.2019.8715174
http://dx.doi.org/10.1109/FPL.2018.00074
http://dx.doi.org/10.1109/FPL.2018.00074
http://dx.doi.org/10.1109/FPL.2018.00074
http://dx.doi.org/10.1109/FPL.2018.00074
http://dx.doi.org/10.1109/FPL.2018.00074
http://dx.doi.org/10.1109/MCSoC51149.2021.00019
http://dx.doi.org/10.1109/MCSoC51149.2021.00019
http://dx.doi.org/10.23919/DATE.2017.7927113
http://dx.doi.org/10.23919/DATE.2017.7927113
http://dx.doi.org/10.23919/DATE.2017.7927113
http://dx.doi.org/10.23919/DATE.2017.7927113
http://dx.doi.org/10.1109/TCAD.2019.2897701
http://dx.doi.org/10.1109/TCAD.2019.2897701
http://dx.doi.org/10.1109/TCAD.2019.2897701
http://dx.doi.org/10.1109/TCAD.2019.2897701
http://dx.doi.org/10.1145/3194554.3194597
http://dx.doi.org/10.1145/3194554.3194597
http://dx.doi.org/10.1145/3194554.3194597
http://dx.doi.org/10.1145/3194554.3194597
http://dx.doi.org/10.1145/3194554.3194597
http://dx.doi.org/10.1109/FCCM.2019.00013
http://dx.doi.org/10.1109/FCCM.2019.00013
http://dx.doi.org/10.1109/FCCM.2019.00013
http://dx.doi.org/10.1109/FCCM.2019.00013
http://dx.doi.org/10.1109/FCCM.2019.00013

1208

Kensuke lizuka received B.E. degree from
Keio University, Yokoghama, Japan, in 2018
and MLE. degree from Keio University, Japan, in
2020. He is a Ph.D. student in the Department of
Information and Computer Science, Keio Uni-
versity in the presence. His reserch interests are
deep learning accelerators and reconfigurable
architectures.

Hideharu Amano received Ph.D. degree
from the Department of Electronic Engineering,
Keio University, Japan in 1986. He is currently
a professor in the Department of Information
and Computer Science, Keio University. His re-
search interests include the area of parallel ar-
chitectures and reconfigurable systems.

IEICE TRANS. INF. & SYST., VOL.E106-D, NO.7 JULY 2023



