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PAPER

Enhancing Cup-Stacking Method for Collective Communication

Takashi YOKOTA†a), Kanemitsu OOTSU†, and Shun KOJIMA†∗, Members

SUMMARY An interconnection network is an inevitable component
for constructing parallel computers. It connects computation nodes so that
the nodes can communicate with each other. As a parallel computation
essentially requires inter-node communication according to a parallel al-
gorithm, the interconnection network plays an important role in terms of
communication performance. This paper focuses on the collective com-
munication that is frequently performed in parallel computation and this
paper addresses the Cup-Stacking method that is proposed in our preced-
ing work. The key issues of the method are splitting a large packet into
slices, re-shaping the slice, and stacking the slices, in a genetic algorithm
(GA) manner. This paper discusses extending the Cup-Stacking method
by introducing additional items (genes) and proposes the extended Cup-
Stacking method. Furthermore, this paper places comprehensive discus-
sions on the drawbacks and further optimization of the method. Evaluation
results reveal the effectiveness of the extended method, where the proposed
method achieves at most seven percent improvement in duration time over
the former Cup-Stacking method.
key words: interconnection networks, parallel computers, collective com-
munication, packet splitting, packet scheduling, genetic algorithms

1. Introduction

A parallel computer consists of (many) computation nodes
that are connected by an interconnection network [1], [2].
As parallel computing essentially requires communications
between the computation nodes and the communication per-
formance largely affects (or sometimes dominates) the total
performance of the parallel computation, the interconnec-
tion network is an inevitable component.

A typical interconnection network of today’s parallel
computer forms as an aggregate of routers (or switches) that
are connected by (physical) links to each other. In an in-
terconnection network, a router receives a packet from the
corresponding node, the packet is transferred in a router-
to-router fashion according to the routing algorithm, and,
finally the packet arrives at the destination node. Actually,
many packets simultaneously move in the network and this
raises many research issues.

In many interconnection networks, each router exe-
cutes the packet-transfer operations individually and no cen-
tral control is applied. Many parallel computers assume
lossless packet switching, where no packets are dropped
even when the network is severely congested. To support
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the assumption of the lossless network, the interconnection
network employs buffers that keep up the incoming packets
to absorb the temporal conflict of packets.

However, when the buffer becomes full, it blocks fur-
ther incoming flow of packets for avoiding packet drops,
and the corresponding packet transfer is suspended. This
packet blocking sometimes causes further blocking like a
chain-reaction and the blocked situation propagates over the
network. We recognize the situation as congestion.

A congested situation spreads fast and it sustains long,
in general. Once the congested situation covers the net-
work, the communication performance is drastically de-
graded. Thus, as a countermeasure to the congestion, ef-
ficient congestion control is a crucial issue in discussing the
interconnection network methods as well as high-speed and
high-performance networks.

This paper focuses on the congestion control issue from
a unique viewpoint of Cup-Stacking [3]. This paper assumes
packet-switching communication in a regular network (2D-
torus) that employs a deterministic routing algorithm. This
paper specifically discusses collective communication per-
formance and takes a static approach where the traffic pat-
tern is determined beforehand. This paper comprehensively
discusses possible extensions of the Cup-Stacking principle
for obtaining better congestion control methods.

The rest of this paper is organized as follows. After
Sect. 2 overviews related work, Sect. 3 states our previous
work, the Cup-Stacking method. Then, this paper starts pre-
liminary discussions to extend the method in Sect. 4, and
proposes the extended Cup-Stacking method in Sect. 5. This
paper furthermore discusses two different aspects of draw-
backs and improvements. Section 6 deals with the com-
putational complexity issue to reduce the evaluation costs.
Section 7 investigates some ideas for optimal solutions. Af-
ter that, overall discussions and future work are placed in
Sect. 8. Then, Sect. 9 concludes this paper. Appendix A
shows the common evaluation environment and conditions.

2. Related Work

The start-point of this work is to relax network congestion
for accelerating communication performance. In a dense
communication situation, a local conflict of packets causes
a temporal block of the packet transfer, and, sometimes, the
blocked packet fills up a packet buffer and causes another
suspension of packet transfer. When the blocking and sus-
pension spread in the network, as Pfister et al. stated as tree
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saturation [4], heavy congestion appears and the communi-
cation capability of the network is drastically degraded.

With respect to congestion control in the interconnec-
tion network, some static/dynamic approaches are discussed
toward smooth communication flows in the network. One
of the typical approaches is throttling [5] that restricts new
packet injection in a crowded situation. Another approach
is pacing [6] that intends to suppress a crowded situation by
inserting a sufficient interval of packet injection. Takano et
al. also reported a pacing technique in an MPI communica-
tion in a Grid environment [7].

Timing of packet transfer is one of the crucial con-
cerns for efficient network communication. Morie et al. dis-
cuss MPI rank optimization from a viewpoint of conflict-
avoidance [8]. In optical and wireless systems, efficient
communication methods are discussed with respect to low
power consumption [9]–[12]. However, their objectives do
not match our issue.

Agarwal has mentioned in literature [13]: “We believe
higher throughput might be achieved with splitting if some
delay is introduced between sending the submessages at the
source, or by randomizing the routes taken by the submes-
sages.” As this message suggests, we can now find some
studies in terms of packet splitting. Matsuda et al. [14] pre-
sented an MPI collective communication in a high-speed
WAN environment. They split a message to some sub-
messages so that the sub-messages can be transferred in
different paths in the WAN. Since the communication dis-
tributes over the network resources, efficient packet transfer
can be expected. Tu et al. also presented a method that split
messages in MPI communication [15], however, their ob-
jective is to fit the (sub-)message to the L1 cache in a SMP
multiprocessor system.

With respect to a delay idea, we have presented a
kind of packet scheduling method by introducing a meta-
heuristic method of particle swarm optimization (PSO) [16].
However, this study deals only with an optimal schedule
of packet injection and no idea of packet splitting nor re-
shaping is placed.

The core ideas of the Cup-Stacking are (1) splitting a
large packet into multiple slices, (2) re-shaping the slice so
that the effective thickness of the slice becomes sufficiently
thin, and, (3) launching the successive slices with a short
interval. No similar studies are reported so far, until our
preceding paper [3], and this paper extends the fundamental
idea of the original Cup-Stacking.

3. Cup-Stacking Method

Literature [3] presents our preliminary work on the Cup-
Stacking method. The method initially comes from our ob-
servation results of the network behaviors in some collective
communication in a two-dimensional torus network, where
each node injects a packet that destines a certain node ac-
cording to the given traffic pattern. When the payload of
a packet is large, the network is heavily congested and the
duration time becomes extremely long (Fig. 1 (a)).

Fig. 1 Abstract model of Cup-Stacking concept.

Our previous work found that the duration time could
be shortened when every packet is split (into slices) and the
slices are injected with an appropriate interval (Fig. 1 (b)).
This situation illustrates the network behavior as cup-
stacking. If the cup is appropriately formed, cups can be
stacked densely (Fig. 1 (c)).

Inspired by this characteristic, we have reached the
Cup-Stacking method. The novel method forms the slice
communication through Genetic Algorithm (GA) so that the
cups are stacked densely and the total duration time is dras-
tically reduced (Fig. 1 (d)).

As our previous work [3] reported, the proposed
method considerably reduces the duration time of collec-
tive communication in some traffic patterns, however, dis-
cussions on the preliminary results suggest some room for
further improvement. So, this paper comprehensively inves-
tigates and extends the original Cup-Stacking method.

4. Different Virtual Channel Arbitration

The previous paper concentrates on obtaining an ideal form
of cup (i.e., slice traffic) by re-shaping, however, it does not
touch internal functions of routers. This paper firstly thinks
of an arbitration method of packets, since literature [17]
shows that a different arbitration method conducts the net-
work to a different behavior that results in different perfor-
mance scores.

An arbitration method allows incoming packets to a
router to go out in a different order. When packets A and
B race for the same resource (e.g., an output port), an arbi-
tration method selects A, for example, while an alternative
one firstly selects B instead of A.

We assume a simple (non-pipelined) router whose or-
ganization is illustrated in Fig. 2 ([18]). In the router model,
the arbitration task in a router consists of two steps: queue
selection and virtual channel (VC) selection. In the queue
selection, every input queue whose queue-top is a header flit
sends a transfer request to an appropriate VC (in an output
port) that is determined by the routing algorithm. Then, if
the requested output VC is idle, the arbitration grants one
of the transfer requests. Note that the queue selection is
performed in a channel-by-channel fashion when multiple
virtual channels have valid transfer requests. The queue se-
lection corresponds to the central crossbar-switch in Fig. 2.

In the VC selection, when an output port is requested
for multiple virtual channels simultaneously, the port selects
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Fig. 2 Router model.

Table 1 Variants in channel selection arbitration.
symbol category start from evaluation order
C00 round-robin previous channel ascending
C01 round-robin next channel ascending
C02 round-robin previous channel descending
C03 round-robin next channel descending
C04 fixed priority channel 0 ascending
C05 fixed priority channel 1 ascending
C06 fixed priority channel 2 ascending
C07 fixed priority channel 0 descending
C08 fixed priority channel 1 descending
C09 fixed priority channel 2 descending

one of the requested channels. The VC selection corre-
sponds to the multiplexer in every output port that is de-
picted in Fig. 2.

As the first-step discussion in this paper, we introduce
variance in arbitration in the VC selection phase. Actu-
ally, we prepare ten arbitration schemes that are categorized
as round-robin and fixed priority. A round-robin scheme
searches from the previously selected (or next) channel in
the descending (or ascending) order. A fixed priority one
starts from a certain channel (0, 1, or 2) in the descending
(or ascending) order. Table 1 summarizes the schemes with
associated symbols C00–C09.

4.1 Evaluation by Simple Stacking

We evaluated the effects of the arbitration schemes listed in
Table 1 on the collective communication performance. For
every arbitration scheme in Table 1, we measured duration
times by varying the inter-slice interval. We call the evalua-
tion simple stacking. In this evaluation, the injection timing
of individual packets is not arranged, i.e., all the packets are
injected in unison in every slice. Evaluation environment
and conditions are summarized in Appendix A.

Figure 3 shows the results in the following condition:
bit-rotation (brot) traffic pattern, two slices each of eight-flit

Fig. 3 Changes in duration times for inter-slice intervals. (16×16 2D-
torus, brot traffic, two slices, 8-flit packets)

Table 2 Shortest duration times in simple stacking. (16×16 2D-torus,
two slices, 8-flit packets)

C00 C01 C02 C03 C04 C05 C06 C07 C08 C09
bcmp 104 102 104 102 104 91 101 101 91 91
brev 179 194 179 194 172 208 173 173 208 208
brot 147 155 147 155 176 146 189 189 146 148
shfl 152 154 152 154 161 147 159 159 147 150
torn 131 131 131 131 131 138 131 131 138 138
trns 138 138 138 138 138 137 138 138 137 137

[cycles]

packet size, and a 16×16 two-dimensional torus network.
Although some of the arbitration schemes show an identi-
cal curve, we can find considerable variants in arbitration
schemes.

Table 2 summarizes the shortest duration times for
every arbitration scheme (C00–C09) in every traffic pat-
tern. Other evaluation conditions are the same with those in
Fig. 3. Underlined values show the shortest duration times
in each traffic pattern. The underlined results are also sum-
marized in the third column in Table 4†. We can find that
the selection of an arbitration scheme is an alternative and
important key to improve the cup-stacking method. The first
and second columns in Table 4 show the duration times in
non-split cases and results in our previous paper [3], respec-
tively. Parenthesized values are shown for comparison pur-
poses.

4.2 Evaluation with Timing Adjustment

Evaluations in Fig. 3 and Table 2 do not include timing ad-
justment of packet injection in every slice. We further eval-
uated the shortest duration times for every combination of
arbitration scheme and traffic pattern by adjusting injection
timing in every slice in a GA manner. Appendix A describes
the evaluation environment and conditions.

Table 3 summarizes the results††. Underlined values
†Evaluation results are integrated in Table 4 in an at-a-glance

form. The bottom row refers to the corresponding sections and
literature.
††Literature [3] uses the C00 scheme for evaluation. Some re-

sults in Table 3 differ from those in the literature, since all the ar-
bitration schemes C00–C09 are newly evaluated and some values
of C00 differ from constitutive indeterminacy in the GA method.
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Table 3 Shortest duration times in simple stacking with timing adjust-
ment. (16×16 2D-torus, two slices, 8-flit packets)

C00 C01 C02 C03 C04 C05 C06 C07 C08 C09
bcmp 90 94 90 93 97 88 93 92 87 86
brev 153 157 153 155 156 162 157 156 162 163
brot 140 146 140 146 150 135 154 153 136 136
shfl 131 130 132 130 136 134 136 135 134 135
torn 131 131 131 131 131 138 131 131 138 138
trns 138 138 138 137 138 136 138 138 136 136

[cycles]

show the shortest duration times, which are also summa-
rized in the fourth column in Table 4.

We can find considerable improvement in duration time
by adjusting injection timing, except in tornado (torn) and
transpose (trns) traffic patterns. We can also recognize that
selection of the arbitration scheme still affects the shortest
duration time.

5. Extended Cup-Stacking Method

The previous section shows that the arbitration schemes af-
fect the performance of the Cup-Stacking method. This
result suggests that the Cup-Stacking method has enough
room for further improvement of performance by extend-
ing parameters in exploiting optimal solutions. This section
firstly argues an ideal solution and its feasibility, and then, it
leads to a practical solution that is the core part of this paper.

5.1 Toward an Ideal Solution

Here, we discuss an ideal situation for the Cup-Stacking
method. Literature [3] has left the following fact and open
consideration:

• after forming a slice shape, slices can be stacked with
an inter-slice interval that is less than the thickness of
the slice, and
• the phenomena suggests that a slice includes bubbles

that can tolerate inter-slice interference.

As an extreme solution, if we can obtain an ideal slice, the
stacked slices perform ideally, i.e., they can achieve the the-
oretically best performance.

The problem here is how we can obtain the ideal slice.
As an ultimate solution, we discuss precise control of packet
flow. Ideally, if a router can precisely control the timing
(and order) of packets that pass across the router, the slice
shape can be fully optimized for the theoretical minimum.
For example, suppose a router receives four packets A, B,
C, and D from one or more input ports and channels during
a slice communication, the timing (and order) of the trans-
ferred packet is strictly scheduled in advance, such as the
packet A goes out at TA-th cycle and B goes out at TB-th,
and so on.

Although the ideal method has the potential for fully
optimized solutions, it is not practical due to the vast ex-
ploitation space. As the size of the network grows, the num-
ber of passing packets increases largely. In this method, as

each output port has its own packet schedule, the total search
space of the schedule becomes extraordinarily large. We
draw a conclusion that the ideal solution is not practical due
to the extremely large search space.

5.2 Toward the Practical Solution

As we discussed in the previous subsection, we abandon the
perfectly precise (and ideal) solution and leave it for our fu-
ture work. Then, we discuss the secondary but practical one.
The results in the previous section suggest that arbitration
schemes could be a hopeful option for obtaining meaning-
ful solutions.

As a simple discussion, key issues in the ideal method
(in Sect. 5.1) are timing and order of the transferred packets
via each output port. In the Cup-Stacking method, injection
scheduling can control the arrival time of incoming packets
to a router. Our solution in the extended Cup-Stacking is to
employ arbitration methods. An arbitration method possibly
changes the order of the transferred packet when the packets
conflict. Although the arbitration methods do not offer pre-
cise control of the order of output packets, if we can adjust
the arbitration method in every output port, we can expect
that a meta-heuristic method can find preferable set of arbi-
tration methods in every router so that the duration time can
be satisfactorily reduced.

As described in Sect. 4, an arbitration task in the router
consists of two steps and one of these, queue selection, has
been left untouched. The queue selection step arbitrates the
requests from input queues (in input ports) to a certain vir-
tual channel (in an output port). In our router model [18], the
central crossbar-switch connects between every input queue
(in input ports) and every output virtual channel (in output
ports).

The second step, VC selection, arbitrates simultaneous
requests from the virtual channels in the same output port. In
the queue selection, practical action is not so complicated,
since substantive choices are limited by the routing algo-
rithm and virtual channel allocation scheme. Actually, in
our router model, possible choices are directions of input
ports. For example, channel-0 in the east output port may
have only three choices for selection as CPU port (channel
0), north input port (channel 0), and west port (channel 0).
The maximum number of selection candidates is four.

Our next idea is to represent the evaluation order in the
queue selection choices. The evaluation order is determined
at every virtual channel in every output port. The queue
selection step firstly refers to the evaluation order and ar-
bitrates the incoming requests according to the order. This
paper operates the evaluation in a round-robin fashion ac-
cording to the order information, i.e., when the selected re-
quest is completed, its corresponding entry stands at the tail
of the line.

5.3 Extending Chromosome Expression in GA

Discussions in this section have introduced several parame-
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ters to optimize the Cup-Stacking method. We summarize
the parameters (genes) that formulate a chromosome in the
GA meta-heuristic method as follows.

Inter-slice interval (V): each slice begins to send a split
packet with this interval. This parameter is applied to
the whole nodes†.

Injection timing (Ii): after a new slice begins, each node
pauses for a period of cycles until it injects a new slice
packet. This parameter is given for every node individ-
ually.

Channel selection scheme (Cid): as Sect. 4 mentioned, this
parameter formulates the second step of arbitration in
our router model. This parameter is given for every
output port in every router.

Queue selection order (Qidc): this parameter specifies the
evaluation order in the first arbitration step in our router
model. This parameter is given for every virtual chan-
nel in every output port in every router.

Note that i indicates a node as i-th node, d specifies the in-
put/output port that includes the CPU port, i.e.,

d ∈ {N(orth),E(ast),S(outh),W(est),P(rocessor)}, (1)

and c represents the virtual channel number:

c ∈ {0, 1, 2}. (2)

The i-th node injects its s-th slice packet at the (sV + Ii)-th
cycle from the beginning (s = 0, 1, 2, . . . , S − 1, where S
is the total number of slices). Each node (referred to as i-th
node) arbitrates the requests of the incoming packets accord-
ing to the two parameters Qidc and Cid for queue selection
and VC selection, respectively.

Then, we refer to the geometric issues from our pre-
vious work [3], before we discuss the definition ranges of
the parameters. A slice is conceptually projected as a cup
that has a certain height and thickness. Given the height td
and the effective thickness Te, duration time of S slices is
described as

Td ≤ Te(S − 1) + td. (3)

td is given as the duration time of a slice and effective thick-
ness is given by the maximum occupation time, which is
defined as the time length between the first and last flits that
are transferred through a physical link. Given that the oc-
cupation time of k-th link is Ok, the effective thickness of a
slice is defined as

Te = max(Ok). (4)

The minimum value of the inter-slice interval V equals to
the length of packets, lc, and the maximum value is Te − lc.
Thus, the range of V is given as

†We have tried to change the interval on the per-node basis.
The experiment was failed due to the vast search space in the GA
method.

lc ≤ V ≤ Te − lc. (5)

Injection timing Ii may have the smallest value 0 and it does
not exceed td − lc:

0 ≤ Ii ≤ td − lc. (6)

Each queue selection order Qidc parameter is represented as
an array of five entries, where five corresponds to the number
of input/output ports. Each element Qidc[∗] represents a pos-
sible input direction. The router checks whether a valid re-
quest comes from the direction Qidc[ j] from j = 0, 1, . . . , 4,
and it accepts the first request. If a request is accepted, the
entries of Q are rotated so that it forms the round-robin fash-
ion. Unused entry is marked as N/A. Each channel selection
parameter has one of ten symbols listed in Table 1:

Cid ∈ {C00,C01, . . . ,C09}. (7)

5.4 Evaluation of Extended Method

(1) Evaluation by Full GA

We evaluated the extended Cup-Stacking method that em-
ploys the chromosome expressions shown in Sect. 5.3. The
evaluation environment and conditions are given in Ap-
pendix A. The fifth column in Table 4 shows the results,
where marked as full GA.

We can find that the extended Cup-Stacking method
outperforms the original Cup-Stacking method with at most
seven percent improvement in duration time (by compar-
ing the second (prev. work/C00) and fifth (proposal/full GA)
columns in Table 4). The proposed method achieves at most
1.91 times improvement in shfl traffic performance from the
non-split case (as listed in the first column (prev. work/S=1)
in Table 4).

(2) Evaluation without Timing Adjustment

We further evaluated the extended Cup-Stacking with a sim-
plified version of chromosome expression, where timing ad-
justment is omitted. In this evaluation condition, every node
injects its packet just at the beginning of the slice (Ii = 0).
The evaluation results are shown in the sixth column in Ta-
ble 4 where marked as w/ Tad j.

This evaluation insists to show the potential of the tim-
ing adjustment by comparing the full-GA results in the fifth
column in the table. In the traffic patterns bcmp, brot and
shfl, the proposed method (full-GA) outperforms the w/o
Tad j cases. This result suggests that the timing adjustment is
one of the key issues for re-shaping the slice. On the other
hand, from the brev traffic results, the arbitration scheme
is the alternative key. Furthermore, results in this section
place another issue in resolving ideal slice configuration.
Sections 7.1 and 8 discuss the issue.

6. Reduction of Complexity in Cup-Stacking

The extended Cup-Stacking method, proposed in the pre-
vious section, achieves considerable performance enhance-
ment from the original method. The good performance
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comes from the strong capability of the meta-heuristic
method, genetic algorithm (GA). In general, GA methods
essentially require large computational complexity. They
sometimes take a long time for obtaining satisfactory re-
sults. Our proposed methods, including the original Cup-
Stacking and the extended one, are not the exceptions. Ac-
tually, we need large computational resources and long exe-
cution times until we can obtain the results given in the pre-
vious section. Thus, we should discuss how we can reduce
the complexity in the Cup-Stacking method.

6.1 Slice Extrapolation

Our first idea is extrapolation. A typical GA method con-
sists of the following two steps: (1) evaluation of chro-
mosomes and (2) genetic operation. A genetic operation,
which includes mutation and crossover, generates the chro-
mosomes that are alive in the next generation.

The dominant part of the Cup-Stacking method, in
terms of execution time, is the former step, i.e., chromosome
evaluation. To obtain an evaluation value of a chromosome,
we should run a simulator that can precisely simulate the
interconnection network in which the parameters embedded
in the chromosome are applied. The simulation process re-
quires a large cost in time, although we use a high-speed
simulator [18].

The execution time of the simulator depends on the sys-
tem size and the number of slices. If we can obtain satisfac-
tory results by extrapolating the results in fewer slices, it
is worth discussing. We call the method Slice Extrapola-
tion. For example, if a four-slice Cup-Stacking is resolved
by using single-slice results, the total evaluation time can be
reduced to 1/4.

Here, we discuss the actual extrapolation method. In
this paper, we use chromosome information that is recorded
during GA runs. We extended our GA-based evaluation sys-
tem so that it can record whole chromosome information
that marks the best score of the evaluation value.

We further modified the evaluation system so that it can
reload a set of recorded chromosome information to accu-
rately re-configure the network states and parameters and
find an optimal inter-slice interval time for the configuration
that corresponds to the recorded chromosome.

The system firstly runs a simulation of a single-slice
communication after it reads the corresponding chromo-
some and it measures the occupation time, i.e., effective
thickness of a slice. Then, as the second step, the system
runs simulations of the targeted number of slices repeatedly
until it finds the minimum duration time. During each evalu-
ation, it varies the inter-slice intervals from the packet length
to the occupation time.

The evaluation results are listed in the seventh column
in Table 4, labeled as slice extr./S1–S2 where two-slice per-
formance is conducted from single-slice results. The results
show that the extrapolation method does not exceed the ex-
tended Cup-Stacking method given in the previous section,
however, these performance scores are close.

Furthermore, for comparison purposes, we evaluated
other combinations of the extrapolation method. The eighth
and ninth columns in Table 4, marked as S2–S2 and S4–
S2, respectively, show the results. S2–S2 means that chro-
mosome information in the two-slice evaluation is used to
extrapolate the two-slice cup-stacking. These results may
sound meaningless at first glance, however, they confirm the
appropriateness of the extended Cup-Stacking method with
respect to the inter-slice interval.

S4–S2 similarly means that results of four-slice evalua-
tions are used for a two-slice situation. The method is mean-
ingless in terms of reducing evaluation costs, although, we
can learn that the results in a certain condition in terms of
the number of slices are not always applicable to different
slice conditions, i.e., in this case, four-slice results do not
override those of the two-slice condition.

6.2 Rough Estimation Method

The extrapolation method, given in the previous subsec-
tion, succeeds in short evaluation time with satisfactory so-
lutions that are close to the extended Cup-Stacking method.
However, the extrapolation method is not optimized to fit
the Cup-Stacking concept: cups (i.e., slices) are compactly
stacked with short thickness (i.e., inter-slice interval). That
is, the extrapolation method does not evaluate the thickness.
Thus, as the second step in this section, we discuss an alter-
native and practical method that corresponds to the funda-
mental idea of Cup-Stacking.

Our idea here is simple. We extended the evaluation
function in the GA operation. The preceding methods, in-
cluding Cup-Stacking and extrapolation methods, evaluate
no other factors than the duration time of the collective com-
munication. As a rough estimation method, we modified the
evaluation function to estimate the targeted duration time
T est

d by using the single-slice performance metrics:

T est
d = Te(S − 1) + td (8)

as a simple application of Eq. (3), where S represents the
number of slices, Te is the effective thickness, and td is the
duration time of a slice as described in Sect. 5.3.

The rough estimation method firstly runs GA opera-
tions of single-slice cases with the modified evaluation func-
tion (Eq. (8)), and records the whole information of the final
chromosome that marks the best estimation score. Then, the
method reloads the recorded chromosome information and
investigates the optimal inter-slice interval in the same way
with Sect. 6.1.

Evaluation results of the rough estimation method are
shown in the tenth and eleventh columns in Table 4, marked
as E2–S2 and E4–S2, respectively. E2–S2 means that su-
perior chromosomes are selected by the estimation result of
Eq. (8) with S = 2 and the best chromosome is recorded in
every GA run.

E4–S2 results are conducted from the estimation re-
sults with S = 4 instead of S = 2 in the E2 configura-
tion. The E4–S2 configuration is experimental for compar-
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ison purposes. Note that this configuration does not raise
evaluation costs in GA operations, unlike the experimen-
tal configuration of S4–S2 in the extrapolation method (in
Sect. 6.1). Furthermore, we can find that this configuration
achieves slightly better performance than those of E2–S2 in
the bcmp and brot traffic patterns.

The major difference between E2–S2 and E4–S2 is the
weight of the effective thickness (occupation time) in the
evaluation function. As stated in the previous work [3] and
given in Eq. (3), the actual minimum duration time is much
smaller than the estimated values from Eq. (8), except in
torn and trns traffic patterns. This phenomenon suggests
that a slice has a level of flexibility that can absorb a strong
pressure in the stacked situation. The shorter thickness does
not guarantee a better performance in the Cup-Stacking,
however, we can find some levels of correlation between the
effective thickness and Cup-Stacking performance, from the
results in Table 4.

6.3 Post-Stacking Method

As we described in Sects. 6.1 and 6.2, we further extended
our GA-based evaluation system to record the whole infor-
mation of chromosome that marks a high-score at that time.
Thus, each GA run records the chromosome information of
the final solution and its synonyms, which can perform the
same score to the final (and best) solution.

The number of the recorded synonyms of the best-score
has a wide variety in each GA run, according to our observa-
tions. Many of GA runs record hundreds or often thousands
of synonyms. Characteristics of the synonyms, in terms of
behavior, are far from uniform. The recorded chromosomes
have a potential to perform high-scores.

This consideration led us to the further novel idea of
Post-Stacking method. Basically, this method mines and
unveils valued solutions from the synonyms, however, we
should discuss practical issues, i.e., possible extra-large
number of synonyms. For example, when we run 1,000 GA
sessions and each of them produces 1,000 synonyms, the
method has to examine one million candidates.

To fit the practicality problem, we further introduce the
following metrics that can represent the internal behavior
of the network so that we can suppress the number of syn-
onyms.

the number of in-order arbitrations (ir):
the number of out-of-order arbitrations (or):

these metrics reflect the first half of the arbitration task,
queue selection (described in Sect. 4). The queue selec-
tion arbitrates the requests from the input queues and
grants only one of them. In a multi-slice situation in the
Cup-Stacking method, slices are started with a certain
interval, however, sometimes packets that are launched
in the preceding slice co-exist with those from the sub-
sequent slice. Thus, the arbitration process possibly
blocks a preceding packet and passes succeeding one
and vice versa. or counts the number of blocks in the

out-of-order cases, and ir counts the in-order cases.
the number of in-order VC blocking (ib):
the number of out-of-order VC blocking (ob):

similar to ir and or, these metrics count the number of
blocked cases in-order and out-of-order, respectively,
in the second half of the arbitration task, virtual channel
selection.

the number of physical line blocking (lb):
this metric counts the total number of physical lines
where output packets are blocked due to unavailable
(busy) states of the corresponding input buffers.

We extended our GA-based evaluation system so that
the best-score information is associated with the introduced
metrics (ir, or, ib, ob, and lb) as well as the effective thick-
ness (Te, which equals to the maximum occupation time
(oc)). When the evaluation system finds a new synonym, it
compares the properties of the synonym to the current best-
score record. If one or more properties of the synonym ex-
ceed that of the recorded best-score, the system records the
whole chromosome information and updates the best-score
record.

Evaluation results of the post-stacking method are
shown in the twelfth to fifteenth columns in Table 4. Results
in the twelfth column, marked as C00(S1), are conducted
by applying the Post-Stacking method on the recorded syn-
onyms during the fixed VC arbitration (C00) with timing
adjustment in single-slice condition (S1). These results cor-
responds to those in the first column in Table 3.

Results in the thirteenth to fifteenth columns show the
Post-Stacking results for the extended Cup-Stacking on one-
, two-, and four-slice situations that are marked as S1, S2,
and S4, respectively. Results in the S1 column, which corre-
sponds to the fifth column (i.e., the extended Cup-Stacking
with full GA), show the effectiveness of the Post-Stacking
in terms of performance. The results in the column are very
close to those of the slice extrapolation, which are shown in
the seventh column (marked as S1–S2). This means that the
mining effort in the Post-Stacking hardly improves the per-
formance, however, it can achieve very close performance
to the slice extrapolation.

Results in the S2 and S4 columns are for comparison
purposes. Results in the S2 column are conducted from the
extended Cup-Stacking method in the two-slice situation.
Each result in the column (S2) marks the same value with
its corresponding one. This proves that the results of the
extended Cup-Stacking are sufficiently optimal in terms of
inter-slice interval†.

On the other hand, by considering that the S4 evalu-
ation requires four and two times longer time than that of
S1 and S2, respectively, the S4 column does not show sat-
isfactory results. This result comes from the difference in
inter-slice behavior in S2 and S4 situations. In the optimal

†The Post-Stacking method searches the shortest duration by
adjusting the inter-slice interval. Thus, if the recorded chromo-
some (in S2 evaluation) is not fully optimized in inter-slice interval,
the method will find the optimal one and improve performance.
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solution, the succeeding slice is launched before the preced-
ing one is not completed, thus, contiguous slices interfere to
each other. In our observations, in multiple slice conditions,
slice behaviors are not the same due to the inter-slice inter-
ference. Thus, it is natural that the solutions (in the form of
recorded chromosome) are different in S2 and S4 cases.

7. Improving Solutions

The previous section discussed to reduce computational
complexity, with respect to practical issues, in the Cup-
Stacking principle. This section argues further improve-
ments in performance in terms of short duration time.

7.1 Optimal Inter-Slice Interval

Inter-slice interval is the only parameter that is commonly
used in all routers. As Fig. 3 illustrates, a duration time
curve shows a local minima in a macroscopic view, however,
the curve does not monotonically decrease (nor increase) to-
ward the local-minima point.

We have arrived at a perturbation idea, where the inter-
slice interval is optimized for the duration time for ev-
ery chromosome in every GA generation. In the modified
method, called perturbation method, at every chromosome
evaluation process, the inter-slice interval is varied with the
range of ±five cycles and the best one survives.

Evaluation results of the method are shown in the six-
teenth and seventeenth columns in Table 4. Results in the
sixteenth column, marked as full GA, correspond to those
of the fifth column (proposal/full GA), and the seventeenth
column results correspond to the sixth column.

As the table shows, the perturbation method can mark
the best scores, which exceed the extended Cup-Stacking in
many traffic patterns, however, we should recognize the fatal
drawback. The perturbation method requires additional sim-
ulation runs according to the variation of inter-slice inter-
vals. Since simulation time is dominant in the Cup-Sacking
methods, the additional runs result in about ten times long
execution time. We measured 5540.1 seconds and 563.2
seconds elapsed times with and without perturbation, re-
spectively, in a common condition of 16x16 network, brev
traffic and 2-slice communication on a Ubuntu 20.04.5LTS
platform with Intel Core i5-10500T and 16GiB memory.

It stays in the opposite position from those in the
methods in Sect. 6, however, the method marks the best-
performance and suggests further improvements in the Cup-
Stacking approach.

As a possible extension of the perturbation method, we
can discuss extending the injection delay parameters in each
node, since similar characteristics of non-linearity will be
observed in the parameter. However, we will leave the dis-
cussion for future work.

7.2 Additional Sort Keys and Functions

Section 6.3 introduced some network metrics for represent-

ing internal behaviors numerically and the section uses the
metrics so that it can distinguish synonyms of chromosomes
effectively. However, we did not discuss the meaning of the
metrics in that section.

For example, out-of-order arbitration (or) and out-of-
order VC blocking (ob) metrics represent the degree of inter-
ference between the successive slices. Other metrics, such
as Te (effective thickness) and lb (physical line blocking),
also characterize the network behaviors at a certain level.
For example, a large lb suggests that the network is heavily
congested by frequent collisions of packets.

This subsection introduces some metrics as the sec-
ondary sort keys in the GA operations (i.e., crossover func-
tion). Chromosomes are sorted by the first key (i.e., duration
time) and, if the key value is the same, the secondary key is
used for sorting. Alternatively, we tried to change the first
sort-key to Te.

Furthermore, we introduce two new functions in the
GA-based evaluation system: slice re-initialization and slice
interlocking. The former re-initializes the router functions
in a node when the node receives a packet that destines the
node itself. This idea comes from the original cup-stacking
concept where the cups form exactly the same shape to ease
stacking. Some of the arbitration methods employ a round-
robin fashion (as described in Sects. 4 and 5), thus, succeed-
ing slices possibly have different shapes. We can expect
that re-initialization fixes up the broken slice and achieves
shorter duration times†.

The latter one, slice interlocking, is another idea to re-
shape the slice geometry. In the sections before, each node
injects a packet according to the inter-slice interval and in-
jection delay. Slice interlocking temporarily suspends the
injection of a new packet until the node receives a packet
that destines the node. This function intends to reduce inter-
slice interference.

We experimentally evaluated the additional items indi-
vidually. Table 5 lists the additional items with their asso-
ciated symbols (T01–T10)††. Table 6 shows the evaluation
results of T01–T10 in the 16×16 2D-torus network.

Results in the category of additional sort keys in Ta-
ble 6 are similar to each other except T07 (physical line
blocking, lb). These results suggest that (1) out-of-order
behaviors (T02 (or) and T03 (ob)) and VC blocking (T06
(tb = ib + ob)) do not significantly affect the communica-
tion performance with some worse situations, (2) effective
thickness (T04 and T05 (Te)) also does not show signifi-
cant difference in the performance results, which is against
our expectation, and (3) physical line blocking (T07 (lb))
is a hopeful candidate for future improvement in the Cup-
Stacking method.

Catastrophic results of T09 (sort only by the effec-

†Note that the re-initialization does not guarantee strictly the
same shape of slices.
††T01 employs no additional items and it is identical to the ex-

tended Cup-Stacking method that is presented in Sect. 5. Thus, the
first column in Table 6 is a simple copy from the fifth column in
Table 4.
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Table 4 Evaluation results.
prev. work VC arb. (C0*) proposal slice extr. rough est. post-stacking optimal int.

w/ full w/o S1 S2 S4 E2 E4 C00 full w/o
S=1 C00 simple Tad j GA Tad j –S2 –S2 –S2 –S2 –S2 (S1) S1 S2 S4 GA Tad j

bcmp 109 91 91 86 85 91 87 (85) (86) 88 (87) 89 87 (85) (86) 83 90
brev 199 151 172 153 145 138 148 (145) (144) 149 (149) 151 148 (145) (144) 141 137
brot 178 143 146 135 134 139 137 (134) (136) 137 (135) 142 137 (134) (136) 130 137
shfl 243 133 147 130 127 136 130 (127) (127) 126 (128) 133 130 (127) (127) 125 135
torn 123 131 131 131 131 131 131 (131) (131) 131 (131) 131 131 (131) (131) 131 131
trns 130 138 137 136 136 137 136 (136) (136) 136 (136) 138 136 (136) (136) 135 136
(refer to) lit. [3] §4.1 §4.2 §5.4 §6.1 §6.2 §6.3 §7.1

Table 5 List other items on optimization.

symbol category description
T01 (no additional issues)
T02 additional sort key out-of-order arbitration (or)
T03 additional sort key out-of-order VC blocking (ob)
T04 additional sort key effective thickness (Te)
T05 additional sort key Te in reverse order
T06 additional sort key total VC blocking (tb = ib + ob)
T07 additional sort key physical line blocking (lb)
T08 additional function re-initialize every slice
T09 different sort key sort by Te

T10 additional function slice interlocking

Table 6 Evaluation results of additional items.
T01 T02 T03 T04 T05 T06 T07 T08 T09 T10

bcmp 85 85 85 85 86 85 84 84 94 86
brev 145 145 147 146 147 145 144 145 160 148
brot 134 134 134 135 136 135 134 134 148 135
shfl 127 126 127 125 127 126 126 126 137 129
torn 131 131 131 131 131 131 131 131 133 131
trns 136 136 136 136 136 136 136 135 136 136

[cycles]

tive thickness (Te)) are explained that the method does not
consider the targeted duration time. Re-initialization (T08)
marks preferable results in some traffic patterns and it can
also be a hopeful candidate. Slice interlocking (T10) fails
to achieve close results to the extended Cup-Stacking, how-
ever, it does not largely contribute to the performance.

Although Table 6 shows good results, no one in T01–
T10 can mark extraordinary results. We can have high ex-
pectations of additional sort keys (lb and Te) and slice re-
initialization. The clear advantage of the additional keys is
cost-effective since the dominant part of the GA approach
consumes time in the chromosome evaluation in which the
communication is precisely simulated. Discussions on the
practical method based on the results are our future work.

8. Discussions and Future Work

8.1 GA Parameters

Figure 4 depicts some typical behaviors in the GA operation.
This figure shows the time series variations of the average
(avg) and the best duration times in some typical GA runs.
The horizontal axis shows the GA generation number and
the vertical axis shows the duration time as GA evaluation
value. Note that the vertical axis starts from 100 [cycles]

Fig. 4 Time series variation examples in GA operation.

(not zero) for a magnification purpose. In this figure, pre-
fixes w and l correspond to the watchdog and lifetime in the
GA parameters, respectively, and the following number is
simply an identification.

The average value only includes the scores of newly
evaluated chromosomes, where values of un-updated ones
(which have survived) are excluded. Periodical lower peaks,
which appear in avg(l0) and avg(l1) curves, correspond
to the crossover operation, where the operation overwrites
many of chromosomes. From a different viewpoint, these
curves suggest that many of mutation operations fail to im-
prove the duration times, however, some survivals conduct
the gradual improvement, which leads to successful results.

The avg(l0) curve gradually increases at around the
540th generation. This shows that the survived chromo-
somes are killed by the lifetime limitation† at that time. The
curve increases again at around the 840th generation. This
behavior suggests that the GA run (l0) fell into strong local-
minima. On the other hand in the l1 case, the behavior of
avg(l1) is rather stable and the best duration time is steadily
updated as the GA generations go on. Note that there are
no differences between l0 and l1 in evaluation parameters
and the only difference is the random seed. The avg(w3)
curve shows a sudden increase (around the 590th genera-
tion). This shows that the watchdog timer invokes at the
time and re-initializes all chromosomes.

Through the discussions on Fig. 4, GA functions of

†200 generations in this case.
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Fig. 5 Best duration time versus average one.

watchdog and lifetime work appropriately for avoiding
local-minima situations. However, to obtain satisfactory re-
sults, we should run multiple GA operations, due to strong
attraction of local-minima solutions.

Then, we discuss the degree of variations in the GA
results. Figure 5 shows the variation in the extended Cup-
Stacking method. In this figure, each traffic pattern has 288
combinations of the GA parameters and each combination
executes five GA runs (a total of 1440 runs). Each dot rep-
resents the average (in the horizontal axis) and the best (ver-
tical axis) results in its five GA runs. The solid line simply
represents y = x. We can find that the best duration time has
some levels of correlation to the average duration, however,
a low average does not guarantee the best duration.

Throughout the vast GA evaluations in this study, we
found out some levels of tendencies in the GA parameters.
Mutation ratio (rm) is set rm ∈ {0.1, 0.05, 0.02} as described
in Appendix A.3 (3). In our experiments, larger mutation
rates did not work well. This implies that a gradual im-
provement is effective.

On the other hand, crossover rate (rc) varies from 0.1
to 0.9 as Appendix A.3 (4) describes. The crossover rate
represents the ratio of the exchanged genes. In the rc = 0.10
case, ten percent of genes are exchanged and the remaining
90 percent are inherited to the child chromosome, and in the
rc = 0.9 case, 90 percent of genes are replaced and only 10
percent are inherited. A small crossover rate preserves many
of genes in the original chromosome and it keeps a wide
variety of chromosomes that lead to wide search capability.
On the other hand, a large crossover rate generates almost
copy of the strong chromosome and it leads to a steep search
capability that results in good solutions, whereas it possibly
fall into a local-minima situation. In our experiments, we
could not find the best crossover rate that is applicable to
any conditions of traffic patterns and slices.

With respect to the crossover operation, the interval (ic)
is used as a GA parameter, and this paper sets ic ∈ {10, 20}.
A crossover operation sometimes triggers a seed of the next
best duration time, which is improved by the following mu-

tation operations. In our experiments, we found that 10 and
20 generations of crossover intervals are appropriate. Fur-
thermore, watchdog and lifetime parameters strongly corre-
late to the crossover interval. Short values of these parame-
ters disturb the gradual improvements by the crossover and
mutation operations. Thus, we use 100 and 200 [genera-
tions] for these parameters.

Despite the discussions above, we could not find the
silver bullet (optimal set of GA parameters) at this stage,
and we should still execute multiple runs of GA operations.
We leave this issue as our future work.

8.2 Search Space

Next, we discuss the search space in the Cup-Stacking
method, since this paper introduces many genes that widen
the search space in the GA operation. The major issue to dis-
cuss is effective exploitation in the different kinds of genes.

As Sect. 5.4 (2) described, a subset of the extended
Cup-Stacking method (i.e., without timing adjustment) ex-
ceeds the performance in the brev traffic pattern. Similar
result is found in the optimal inter-slice interval discussions
(as the perturbation method) in Sect. 7.1.

These results clearly show that the optimal solutions of
the Cup-Stacking stay at unbalanced locations in the search
space in some traffic patterns (specifically brev traffic in this
paper). The w/o Tad j case sometimes exceeds the full-GA,
where the injection timing Ii is set to zero. This fact means
that the remaining genes sufficiently affect the shape of the
slice. The GA operation employed in this paper consists of
the crossover and mutation as described in Appendix A.3.
The GA operation widely searches in the injection timing,
although, it rarely visits near Ii = 0 situations. This dis-
cussion leads us to different meta-heuristic methods, such
as particle swarm optimization (PSO) as literature [16] em-
ployed. However, PSO methods are not well applicable to
other genes in Sect. 5.3. We will further discuss effective
methods in our future work.

8.3 Visualizing Behaviors

The effectiveness of the extended Cup-Stacking method is
shown in Table 4, although, internal behaviors in the net-
work are not discussed. Despite this paper introduced some
metrics that can quantitatively represent internal situations
and behaviors of the network in Sect. 6.3, we still cannot
grasp the network situation intuitively.

Figure 6 visualizes the communication behaviors in
bcmp traffic in a 16×16 2D-torus network. In this figure,
each horizontal position shows the corresponding (physical)
link of the router. For example, the leftmost position corre-
sponds to the north link of the router (0,0). The vertical axis
shows time (simulation step). This figure draws a colored
dot when a flit is transferred via the link. Different colors
of red, green, blue, and cyan correspond to the first, second,
third, and fourth slices, respectively. A gray dot represents
that the packet transfer is suspended because of the busy
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Fig. 6 Visualized communication behaviors. (16×16 2D-torus, bcmp traffic, 4 slices)

buffer and a white dot shows the link is not used at the time.
Figure 6 shows one-fourth of the total drawing in the x-

axis direction, due to the space limitation. Figures 6 (a), (b),
and (c) show the simple stacking without re-shaping slice,
the (original) Cup-Stacking result, and the extended Cup-
Stacking case, respectively. As the figures show, the ex-
tended Cup-Stacking method can effectively stack the slices
to reduce the total duration time.

We then place a different point of view, i.e., slice
shapes. As the fundamental idea of the Cup-Stacking
method is simply to stack thin cups (slices) to shorten the
total height (duration time) as Sect. 3 stated, the idea implies
that we expect an identical shape of slices. As Fig. 6 (c) de-
picts, the shape of the first slice well keeps in the succeeding
slices. Slice shapes are not exactly identical, since slices are
pressed by the short inter-slice interval, however, the distor-
tion portion is limited.

9. Conclusions

Congestion control is one of the most crucial subjects to
achieve peak network performance. The Cup-Stacking
method intends to improve collective communication per-
formance by splitting a large packet into small slices and
re-forming the slices to stack in a short duration time. Pre-
liminary discussions and evaluation results are drawn in the
succeeding paper [3], however, some rooms are left open.

This paper discussed possible extensions to the Cup-
Stacking method and proposed the extended one, which im-
proves performance at most seven percent in duration time
over the original method and accelerates at most 1.9 times
over the non-stacking communication.

This paper further discussed practical and ideal issues:
large computing complexity and optimal (or better) solu-
tions, respectively. These discussions intend to offer the
wide knowledge on the Cup-Stacking principle obtained
during the study, which will benefit wide readers. The for-
mer discussion leads to three meaningful methods, slice ex-
trapolation, rough estimation, and post-stacking. The latter
discussion includes an ideal inter-slice interval (as the per-
turbation method) and additional evaluation items.

Despite the comprehensive discussions on the Cup-
Stacking principle, many issues are left for future work; ef-
ficient search method with some meta-heuristic methods for
the vast search space and further extension. Robustness of
the Cup-Stacking methods is another important issue, since,
in practical situations, exact reproduction of the communi-
cation situation is quite difficult.
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Appendix A: Common Evaluation Environment and
Conditions

A.1 Evaluation Environment

We extended our interconnection network simulator that is
based on the unique concept of cellular automata [18]. This
simulator originally intends to accelerate (ultra-)large-scale
simulation in a GPGPU environment, however, it achieves
sufficient performance in simulation speed even in an ordi-
nary processor (i.e., not GPU) system.

Major extension points are (1) to fit to router behav-
ior to the precise control of parameters that correspond to
the chromosome expression (as given in Sect. 5.3), and, (2)
to add two operation modes for GA operation and post-
stacking. The behavior of the extended evaluation system
is precisely specified by run-time parameters. The evalua-
tion system runs in one of the two operation modes: GA
mode and parameter-loading mode.

Figure 2 shows the logical organization of the router.
The simulator models a simple non-pipelined router and it
assumes two-dimensional torus topology. Throughout the
evaluations, the number of virtual channels (VC) is three
and each VC has a four-flit buffer at every input port of the

router. The network employs a deterministic routing algo-
rithm, dimension order routing, where each packet firstly
traverses along the x-axis then goes in y-direction until it
reaches the destination. Every packet is injected in the first
virtual channel (VC-0). When a packet goes across the date-
line at x = 0, y = 0, x = N/2, and y = N/2, its virtual chan-
nel number is increased, where the network forms an N×N
torus.

We use six traffic patterns: bit-complement (bcmp),
bit-reverse (brev), bit-rotation (brot), perfect shuffle (shfl),
tornado (torn), and transpose (trns). Table A· 1 summarizes
the traffic patterns. In this table, X and Y represent x- and
y- addresses, respectively. Small letters show bit represen-
tation: xi means the i-th bit in X. W is the concatenation of
Y and X: W = w2n−1 · · ·w0 = yn−1 · · · y0xn−1 · · · x0. In this
paper, we use 8-flit packets.

A.2 Chromosome Expression

Each chromosome expression consists of the following
items (genes): (a) inter-slice intervals (V) for each node,
(b) injection timing (delay from the inter-slice interval, Ii)
for each node, (c) virtual channel selection scheme (Cid) for
every output port in every node, and, (d) queue selection
order (Qidc) for every virtual channel in every output port
in every node. As the chromosome expression is designed
for flexibility, thus, for some evaluation conditions, a group
of chromosome expressions are set to the same value. For
example, the extended Cup-Stacking model without timing
adjustment was evaluated on the evaluation system with the
injection timing parameters (Ii) are forced to zero. Note that,
in this paper, inter-slice intervals are set to the same value
for all the nodes.

A.3 GA Operation Mode

As described in Appendix A.1, the evaluation system has
two operation modes. One of them is the GA operation
mode. This mode executes GA operations of the specified
number of chromosomes for the specified number of gen-
erations. We unalterably set the number of chromosomes
to fifty (50) and the number of generations to one thou-
sand (1,000) throughout this paper. The GA mode inhibits
crossover function in the first one hundred (100) genera-

Table A· 1 Traffic patterns used.

abbrevi- description
ation
bcmp bit-complement.

w2n−1w2n−2 · · ·w0 −→ w2n−1 w2n−2 · · ·w0

brev bit-reverse.
w2n−1w2n−2 · · ·w0 −→ w0 · · ·w2n−2w2n−1

brot bit-rotation.
w2n−1 · · ·w1w0 −→ w0w2n−1 · · ·w1

shfl perfect shuffle.
w2n−1w2n−2 · · ·w0 −→ w2n−2 · · ·w0w2n−1

torn tornado. W −→ mod(W + N/2,N2)
trns transpose. (X,Y) −→ (Y, X)
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tions. In this period of generations, each chromosome trains
by a mutation operation. This intends to a preferable set of
initial chromosomes for the succeeding GA operations. Af-
ter the initialization phase is finished, the GA operation runs
mutation and crossover, according to the given parameters.

Every chromosome is marked with a 32-bit signature
to distinguish identical sets of parameters and avoid cloning.
This paper uses CRC-32 code, which is generated from all
of the genes in the chromosome. The evaluation system
records all the signatures of the best-score cases. When a
chromosome marks the same score with the current best, the
evaluation system calculates its CRC-32 code and checks
whether the identical CRC-32 code is already recorded. If
the identical code is recorded, the corresponding chromo-
some is initialized.

In the GA operation mode, the evaluation system firstly
runs a single-slice simulation with randomly selected Cid

and Ii = 0, and measures the duration. That duration value
(td0) is used for the upper limit of the inter-slice interval (V)
and injection timing (Ii).

(3) Mutation

Mutation operation selects the given ratios of the alter-
able chromosome expressions (genes) and alters their values
within the defined range to generate a child chromosome.
For example, injection timing (Ii) may be changed within
the range of [0 :Imax], where Imax = td0−lc and lc is the packet
length. If the altered chromosome (child) performs better
than its parent, the child survives for the next generation.
Otherwise, the parent survives and the child is killed. In this
paper, we set the mutation ratios rm ∈ {0.1, 0.05, 0.02}.
(4) Crossover

Crossover operation is executed intermittently in the given
intervals of generations: ic ∈ {10, 20}. The operation firstly
sorts the chromosomes in the evaluation value order. For the
tie chromosomes, which have the same evaluation score, we
used two options: random and age. The former arranges tie
chromosomes randomly and the latter arranges the chromo-
somes by the age order.

Then, after chromosome ordering is fixed, it system-
atically selects two chromosomes from the sorted order as
(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), and so on, where
(a, b) means a combination of two chromosomes at the
a- and b-th orders. The child chromosome overrides the
weaker parent and the stronger one survives. The crossover
function substitutes randomly-selected genes in the a-th
chromosome (Ia) to the corresponding genes in the b-th
chromosome (Ib) as Ia

i = Ib
i . Every gene in the chromo-

some is selected to crossover at a given possibility rc ∈
{0.1, 0.2, 0.4, 0.6, 0.8, 0.9}. When the crossover operation is
not carried out, a mutation operation is applied.

(5) Watchdog and Lifetime

Furthermore, to prevent local-minima situations, we intro-
duce lifetime and watchdog timer in the GA operation. The
former restricts the maximum number of generations of a

chromosome, and the latter re-sets a timer at every up-
date of the best score of the evaluation value. The timer
re-initializes all the chromosomes at their expiration time.
Lifetime is given as lt ∈ {0, 100, 200} [generations] and the
watchdog timer is set as wd ∈ {0, 100, 200} [generations],
where lt = 0 and wd = 0 mean that the corresponding func-
tions are inhibited.

(6) GA Operation Run

We ran possible combinations of parameter values and
sorting options (random and age, described in Ap-
pendix A.3 (4)), where each combination has five simulation
runs. Since the watchdog and lifetime operations are mutu-
ally exclusive, thus, when the lifetime lt > 0, the watchdog
operation is prohibited, and vice versa.

A.4 Parameter-Loading Mode

The other mode of the evaluation system is the parameter-
loading mode. This mode reads a set of chromosome in-
formation that is recorded in a file during a GA-mode run.
Once the chromosome loading is succeeded, the evaluation
system runs a network simulation according to the loaded
chromosome and run-time parameters and it measures nec-
essary metrics such as the duration time and occupation
time. For example, the Post-Stacking method was evalu-
ated in the parameter-loading mode, varying the inter-slice
intervals by the corresponding run-time parameter.
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