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FSPose: A Heterogeneous Framework with Fast and Slow
Networks for Human Pose Estimation in Videos
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SUMMARY  We propose a framework for the integration of heteroge-
neous networks in human pose estimation (HPE) with the aim of balancing
accuracy and computational complexity. Although many existing methods
can improve the accuracy of HPE using multiple frames in videos, they
also increase the computational complexity. The key difference here is
that the proposed heterogeneous framework has various networks for dif-
ferent types of frames, while existing methods use the same networks for
all frames. In particular, we propose to divide the video frames into two
types, including key frames and non-key frames, and adopt three networks
including slow networks, fast networks, and transfer networks in our het-
erogeneous framework. For key frames, a slow network is used that has
high accuracy but high computational complexity. For non-key frames that
follow a key frame, we propose to warp the heatmap of a slow network
from a key frame via a transfer network and fuse it with a fast network that
has low accuracy but low computational complexity. Furthermore, when
extending to the usage of long-term frames where a large number of non-
key frames follow a key frame, the temporal correlation decreases. There-
fore, when necessary, we use an additional transfer network that warps the
heatmap from a neighboring non-key frame. The experimental results on
PoseTrack 2017 and PoseTrack 2018 datasets demonstrate that the pro-
posed FSPose achieves a better balance between accuracy and computa-
tional complexity than the competitor method. Our source code is available
at https://github.com/Fenax79/fspose.

key words: human pose estimation, heterogeneous networks, temporal cor-
relation, fast networks, slow networks

1. Introduction

In the last decade, many technologies have been proposed
for human pose estimation (HPE), which are able to local-
ize human joints (also known as keypoints) in images [1].
Because it provides a compact representation of body shape
and motion, HPE is widely used in human-computer inter-
actions, gaming, virtual reality, video surveillance, sports
analysis, and for understanding human activity [1], [2].
Most existing technologies, such as HRNet [3], are de-
signed for the aforementioned applications with very high
computational complexity. Furthermore, the accuracy can
be improved by using temporal correlation, such as Pose-
Warper [4] with a cost of even higher computational com-
plexity. In contrast, some applications require lightweight
processing under a limited computational resource, e.g., a
real-time application run on a mobile device. For this pur-
pose, there are well-known backbones, such as the Mo-
bileNet family [5], [6], EfficientNet [7], and ShuffleNet [8].

Manuscript received October 13, 2022.
Manuscript revised January 30, 2023.
Manuscript publicized March 20, 2023.
"The authors are with KDDI Research, Inc., Fujimino-shi,
356-8502 Japan.
a) E-mail: ji-xu@kddi.com
DOI: 10.1587/transinf.2022EDP7182

However, their accuracy will likely decrease substantially
compared to those technologies with high computational
complexity, such as HRNet. To the best of our knowledge,
few studies have focused on uniting the high accuracy and
low computational complexity in the HPE task in videos. In
this paper, our goal is to achieve a good balance between
accuracy and computational complexity by combining het-
erogeneous networks for different types of frames in videos.

In terms of the balance between accuracy and com-
putational complexity, the performance of existing meth-
ods using temporal correlation, such as PoseWarper or Al
coach [9], has a very small gain from our preliminary exper-
imental results. One of the reasons for this is the limitedly
gained synergies from the homogeneous network architec-
tures. For example, suppose we have a pose that is difficult
to estimate in several frames including the current frame. In
that case, if homogeneous networks are used, it will prob-
ably fail to estimate the pose in all frames when it fails in
the current frame due to their similar performance capabili-
ties. In contrast, our idea is that it may be better to propose
a heterogeneous framework, referred to as FSPose, includ-
ing a slow network, a fast network and a transfer network
for key frames and non-key frames as shown in Fig. 1. A
slow network is a neural network that probably has high ac-
curacy but high computational complexity; a fast network
is a neural network that probably has low accuracy but low
computational complexity; and a transfer network is a neu-
ral network to warp the heatmap from one frame to another.
Even though the fast network fails to estimate the pose in
the current frame, it is possible to warp the heatmap via the
transfer network from the slow network that has a higher
accuracy and hopefully estimate a more correct pose. This
example describes a special case for the synergy effect from
slow networks. In other cases where the transfer network
fails, a fast network helps estimate the pose in the current
frame.

In a heterogeneous framework, it is possible to reduce
the computational complexity by setting a large number of
non-key frames, i.e., long-term frames. The issue here is
that it is rather challenging to extend to the usage of long-
term frames because temporal correlation decreases depend-
ing on the distance between two frames. To realize the
long-term frames, we use an additional transfer network that
warps the heatmap from the neighboring frame for those
non-key frames far away from their key frames. As a result,
the length of a frame set flexibly covers from short-term to
long-term frames as shown in Fig. 1, which realizes the ben-
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Fig.1 A video is divided into two types of frames (key frames and non-
key frames), where each key frame is followed by a fixed number of non-
key frames. The set of a key frame and its following non-key frames is
defined as a frame set. For the key frame, a slow network (orange arrow) is
used. For the non-key frame, a fast network (green arrow) is fused with a
transfer network (blue arrow) that warps the heatmap from the key frame.

efit of allowing a different choice on balancing accuracy and
computational complexity.

In summary, the main contributions of this paper in-
clude the following:

e We propose a heterogeneous framework that uses slow
networks, fast networks and transfer networks for dif-
ferent types of frames, i.e., key frames and non-key
frames.

o We further improve our system’s performance by using
long-term frames. We introduce an additional transfer
network for those non-key frames that are not adjacent
to their key frames.

e We conduct experiments on PoseTrack 2017 [10] and
PoseTrack 2018 [11] datasets to demonstrate that the
proposed FSPose achieves a better balance between
accuracy and computational complexity than the com-
petitor method, i.e., PoseWarper [4].

2. Related Work

In this section, a brief overview of HPE methods is given in
both still images and videos.

2.1 Human Pose Estimation in Still Images

In the past decade, many papers on human pose estima-
tion have been published [1], [12], [13]. They are usually
divided into two categories: bottom-up and top-down ap-
proaches. Because top-down approaches reported better
performance [ 1], this paper also belongs to the top-down ap-
proaches. In this section, we briefly survey the typical net-
works with high complexity/high accuracy and lightweight
ones.

As a typical bottom-up approach, OpenPose [14] de-
tects all the body joints in the first stage and then associates
them with person instances in the second stage. One of the
advantages of bottom-up approaches is that the computa-
tional cost changes little even if the number of people in the
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images increases. One of the disadvantages is that the accu-
racy worsens when the association of joints has errors. More
details can be found in the survey paper [15].

For top-down approaches [15], there are basically two
steps. In the first step, the bounding boxes of people are de-
tected in the input image, and in the second step, the joint
locations are estimated in each bounding box. Here are three
typical top-down approaches. The Cascaded Pyramid Net-
work (CPN) [16] proposes a network structure that includes
GlobalNet and RefineNet. The former extracts good feature
representation, while the latter is employed to address the
“hard” examples. HRNet proposes an architecture that pre-
serves high-resolution feature maps, which consists of mul-
tiple branches with different resolutions. Furthermore, Pose-
NAS [17] proposes using neural architecture search (NAS)
to automatically discover better network architectures for
pose encoders and pose decoders.

The above technologies require the high computational
complexity to conduct the inference. For HPEs in mobile
applications, many lightweight network architectures have
been proposed to replace the backbones in the above tech-
nologies [18]. The MobileNet family [5], [6] uses depthwise
separable convolution to reduce the model size and compu-
tational complexity. EfficientNet [7] uses NAS covering net-
work depth, width, and resolution to further optimize Mo-
bileNetV2 [6]. Alternatively, ShuffleNet [8] factorizes the
weight matrix into a product of a permutation matrix and a
block diagonal matrix.

2.2 Exploiting Temporal Information in Videos

For HPE in videos, it is essential to exploit their temporal in-
formation [10], [11]. Several earlier methods [10], [11], [19]
approached the video pose estimation task as a two-stage
problem, first detecting the body joints in individual frames
and then applying temporal filtering techniques. Later,
recurrent networks, especially LSTM [20] and GRU [21],
were proposed for pose estimation [22], [23]. In addi-
tion, 3D convolution is also useful for temporal informa-
tion [24], [25]. Girdhar et al. [24] extended Mask-RCNN
with 3D convolution for human pose estimation. As a pow-
erful tool for exploiting temporal information, optical flow
was often used to temporally warp the heatmaps from the
preceding frame to the current frame [26], [27]. In addi-
tion to the visual cues, a graph neural network (GNN) [28]
is used to learn the pose dynamics directly, thereby enabling
the recovery of missed poses and the refinement of estimated
poses.

Recently, heatmap transfer/warping was realized by de-
signing a particular subnet (referred to as the transfer net-
work in this paper) [4], [9]. PoseWarper [4], which won
the PoseTrack 2017 Challenge [10], [11], proposes convo-
lutional layers with different dilation rates and deformable
convolutions [29] to warp the heatmap from one frame to
another. PoseWarper is regarded as the competitor method
in this paper due to its outstanding performance in the Pose-
Track 2017 challenge [10]. AI coach [9] proposes a spatial-
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temporal relation network for HPE in sports videos, where
the temporal relation of a specific keypoint is extracted by
a distribution of the position offset. These methods [4], [9]
use homogeneous networks for all frames, which is different
from ours.

3. Proposed Method

In this section, we present our heterogeneous framework,
where we combine slow and fast networks via transfer net-
works. The proposed method not only improves the balance
between accuracy and computational complexity but also re-
alizes the usage of long-term frames.

3.1 Overview

As shown in Fig. 1, we divide a video into two types of
frames: key frames and non-key frames. We select one
frame as the key frame every (K + 1) frames in the video,
where slow networks, such as HRNet, are used. The num-
ber of non-key frames is defined as K. In non-key frames,
fast networks, such as MobileNetV2, are used. The heatmap
from fast network and that from transfer network are fused,
where the transfer network warps the heatmap from slow
network in the key frame, as shown in Fig. 2. Therefore, key
frames are independent, which uses no information from
other frames, and their heatmaps are warped to non-key
frames.

In this paper, we adopt a similar transfer network with
PoseWarper. The complexity of the transfer network is
lighter than that of MobileNetV2, as shown in Table 1. Our
system uses heterogeneous networks that contain fast and
slow networks for different types of frames, while Pose-
Warper uses homogeneous networks all frames. Further-
more, because the input heatmaps of the transfer network
come from two different networks, their resolutions are dif-
ferent from each other. Accordingly, in contrast to Pose-
Warper, it is necessary to resize the heatmaps and train
the transfer networks from scratch. However, it should be
noted that other transfer networks, such as those used in Al
coach [9], can be employed in our system because they share
the similar functions of warping the heatmap from key frame
to non-key frame. In principle, the proposed heterogeneous
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Fig.2  Flow chart of the proposed heterogeneous framework.
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networks have the ability to provide a better balance be-
tween accuracy and computational complexity on an arbi-
trary network architecture used in the fast/slow networks.

In this paper, we adopt floating-point operations
(FLOPs) as a metric of computational complexity [7], [8],
[30] and object keypoint similarity (OKS)-based mean aver-
age precision (mAP) as a metric of accuracy [10], [11], [31],
[32].

3.2 Preliminary Experiment for the Homogeneous Frame-
work

In the preliminary experiments, we investigate the limita-
tion of existing methods that use homogeneous frameworks,
such as the framewise method and PoseWarper, in terms of
the balance between accuracy and computational complex-
ity and also decide the parameters that we should use, such
as the backbones and input resolutions. Note that the results
in the top-left areas basically have a good balance of accu-
racy and computational complexity when they are plotted in
figures, such as Fig. 3.

We compare HRNet_W32 [3] (a typical network with
high computational complexity) and MobileNetV2 (a typ-
ical network for mobile devices) as the backbone of
PoseWarper and use two neighboring frames to fuse the
heatmaps via the transfer network. In addition, there are
several choices for the input resolution in HRNet_'W32. We
adopt two typical resolutions as 384x288 and 256x192. The
former is the highest resolution in HRNet_W32 and the lat-
ter is a smaller one but has just a little drop in accuracy as
reported [3]. For MobileNetV2, we use a popular input res-
olution of 224x224. HRNet_W32, MobileNetV2, and the
transfer networks are fine-tuned or trained on the training
dataset of PoseTrack 2018.

The results of the preliminary experiments are shown
in Fig. 3, where we have three observations. (1) As shown
in Fig. 3, it is demonstrated that the resolution of 384x288
in HRNet_ W32 only has a small gain in accuracy while
largely increasing the computational complexity compared
to the resolution of 256x192. Therefore, we use the lat-
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Fig.3  Comparison of different choices in the PoseWarper and framewise
methods on the PoseTrack 2018 dataset. Red circles denote that the same
backbones are used.
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Fig.4 The basic architecture of a heterogeneous framework with fast
networks, slow networks, and transfer networks in a frame set.

ter in the following investigation. (2) The results of Mo-
bileNetV2_224x224 show that the gain from framewise to
PoseWarper is larger than HRNet_-W32, but the absolute
value of accuracy is much lower than HRNet_W32. (3) As
shown in the circles of Fig.3, if we compare the perfor-
mance differences between the PoseWarper and the frame-
wise methods, the results are pushed to the top-right areas
instead of the top-left areas when using the backbones of
HRNet_W32 or MobileNetV2. This is the issue of homo-
geneous network architectures from multiple frames, which
increases both the accuracy and the computational complex-

ity.
3.3 Proposed Heterogeneous Framework

In this section, we describe the basic architecture of the
proposed heterogeneous framework which can solve the is-
sue of homogeneous network architectures as mentioned in
Sect.3.2.

Figure 4 shows the basic architecture of a heteroge-
neous framework with fast and slow networks in a frame set.
Suppose we have Frame (¢) as a key frame, denoted as F (),
and Frame (r + k) : 1 < k < K as non-key frames, denoted
as F(t + k). The output heatmaps of slow networks (HR-
Net), fast networks (MobileNetV2), and transfer networks
(referred to as Transferl) can be computed as follows:

H(t) = f°(F(1); W*) (1)
H/ (t + k) = fL(F(t + k); W) )
H(t+k) = fP(H(t), H (1 + k); W) (3)

where f*, ff , and f“ denote the slow networks, fast net-
works, and transfer networks with parameters of W*, W/,
and WY, respectively. H*(¢) denotes the heatmap from the
slow network of frame (), H/(t + k) denotes the heatmap
from the fast network of frame (¢ + k), and H” (¢ + k) denotes
the heatmap from the transfer network using frame (¢) and
frame (¢ + k).

Then, for non-key frames, we fuse H/ (t+k) and H”(t+
k) together by simple averaging as follows:

H(G+k=a - H@t+k+(1-a) -H(+k) 4)

where HP(t + k) denotes the fused heatmap for non-key
frame (¢ + k), and « is a weight between 0 and 1, which was
set as 0.5 in our experiment. Note that an adaptive weight
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can also be adopted, which may be proportional to k.

Thus, the joint locations are estimated from the loca-
tions of the maximum value on heatmaps, which can be the
fused heatmap HP?(¢ + k) for non-key frames or the heatmap
H*(¢) for key frames.

3.4 Extension to Long-Term Frames

To effectively reduce the computational complexity, there
should be as many non-key frames that use fast networks in
a heterogeneous framework. Obviously, it is important to
know how many frames are possible to warp the heatmap
effectively.

Since the temporal correlation weakens considerably
for the latter part of the non-key frames in the case that
the frame set length is large, the idea is that we should en-
hance the correlation with an additional frame that provides
a strong temporal correlation with the current frame. Sta-
tistically, the neighboring frame has the strongest temporal
correlation. Accordingly, suppose a frame F(¢+k) in the lat-
ter part be from the A-th frame to the K-th frame, where A is
set as K/2 in our experiments; we select the previous frame
F(t + k — 1) as an additional reference frame, as shown in
Fig.5, the heatmap of which is warped to the current frame
F(t + k) via another transfer network (Transfer2 in Fig. 5) by
the following:

H"P(t+k) = fP(H' (1+k—1), H' (t+k); W*P) (5)

where f“P denotes the additional transfer network with pa-
rameters of W*?. H/(t + k — 1) and H/ (¢ + k) denote the
heatmaps from the fast network of frames F(t + k — 1) and
F(t+k). Note that the network architecture of the new Trans-
fer2 network is the same as that of the Transferl network ex-
cept the input resolution because they share the same func-
tions. Because the input heatmaps of Transfer2 are both
from fast networks, we need to train it independently.

Then, as shown in Fig. 5, three heatmaps are fused by
the following:

HP(t+k) = a -H' (t+ k) + - HP(t+ k) (6)
+(1—a—-p) - H (t+k)
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where @ and § are two weights, which was set as 1/3 in
our experiments. Note that adaptive weights can also be
adopted.

4. Experiments

In this section, we present our results on the PoseTrack
2017 [10] and PoseTrack 2018 datasets [11] to demonstrate
the effectiveness of the proposed FSPose.

4.1 Datasets

Based on the raw videos provided by the MPII Human Pose
dataset [33], the PoseTrack dataset is a large-scale bench-
mark for HPEs in videos and has frequently been used in
many papers, including PoseWarper and HRNet. PoseTrack
2017 contains 250 video sequences for training and 50 video
sequences for validation, while PoseTrack 2018 increases
the number of video sequences and contains 593 for train-
ing and 170 for validations. Because human detection is
beyond the scope of this paper, which is the prerequisite of
HPE tasks, we use exactly the same results as those of Pose-
Warper. In detail, the ground truth person bounding boxes
are directly used to crop the person areas during training.
Because the ground truth of the test videos is unavailable,
we conduct the evaluation on the validation videos as Pose-
Warper did.

4.2 Evaluation Metrics

In the literature [1], [15], there are no evaluation metrics
available, and the results are only plotted in figures, such
as Fig.8. It is preferable to design an objective metric to
evaluate the balance between accuracy and computational
complexity. The naive performance is the linear interpo-
lation of fast network (MobileNetV2) and slow network
(HRNet_W32) as shown by the blue dotted line in Fig. 8.
Our metric measures how far the evaluated method is away
from the linear interpolation. Accordingly, the metric is de-
fined as the distance from a result of the evaluated method
to the line connecting the fast network and the slow net-
work as shown by the orange dotted line in Fig.8. Sup-
pose the results of the fast network and the slow network are
P1 = (x1,y1) and P2 = (x,,y»), respectively. The distance
of the result of the evaluated method P3 = (xo, yo) from the
line connecting P1 and P2 is calculated as follows:
score(P3)= |2 =x1) (Y1 —yo) = (x1 —x0) (Y2 —y1) 7
Voo —x)?+y2—y1)?
where score is the metric to show the distance to the linear
interpolation of fast network and slow network, P1 and P2
denote the results of fast network and slow network, and P3
denotes the result of the evaluated method, as shown by the
red fonts in Fig. 8.

4.3 Experimental Settings

Our loss function used in training the networks is defined as
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Fig.6  The mAP accuracy for each non-key frame with the distance from
the key frame. FSPose_base: just the heatmap from the key frame is warped
and fused as described in Sect. 3.3. FSPose_ext: Both the heatmaps from
the key frame and the previous frame are warped and fused in the latter half
of the non-key frames as described in Sect. 3.4. The accuracy decreases in
the latter half of the non-key frames for FSPose_base, while the accuracy
can be improved considerably in the latter half of the non-key frames for
FSPose_ext.

the mean square error between the predicted heatmaps and
the ground truth heatmaps, commonly used in most HPE
papers, including PoseWarper and HRNet. The ground truth
heatmaps are generated by applying 2D Gaussian smoothing
centered on the group truth location of each keypoint.

Our entire framework, as shown in Fig.5, can be
trained in an end-to-end learning approach. However, be-
cause the size of the dataset is insufficient to apply end-to-
end learning, we independently train the four networks to
avoid overfitting: fast networks for non-key frames, slow
networks for key frames, transfer networks from key frame
to non-key frame (Transferl in Fig.5), and transfer net-
works between two non-key frames (Transfer2 in Fig.5).
We fine-tune the fast network (MobileNetV2) and slow net-
work (HRNet_W32) using their pretrained models on the
COCO dataset[30]. When training the transfer networks
from scratch, we randomly select a key frame from the five
preceding frames. All the training is terminated after 20
epochs. During testing, mAP and FLOPs are calculated by
third-party libraries, such as fvcore [34].
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Table 1  Accuracy and computational complexity in non-key frames of PoseTrack 2017 for fast net-
works and transfer networks used in FSPose_ext16. Transferl denotes the transfer network from key
frame to non-key frame, and Transfer2 denotes the transfer network between non-key frames. As a
reference, we also list the data of slow network in the last row of the table.

network FLOPs(G) | Head Shoulder | Elbow | Wrist | Hip Knee | Ankle | Mean
Fast network (MobileNetV2 [6]) | 0.49 70.34 | 66.63 51.34 39.35 | 57.68 | 48.46 | 38.24 | 54.30
Transfer1 0.20 73.51 | 76.16 60.71 46.27 | 67.19 | 57.33 | 47.95 | 62.12
Transfer2 0.09 74.72 | 69.99 53.48 40.22 | 59.49 | 53.40 | 46.95 | 58.08
Slow network (HRNet_-W32[3]) | 7.65 83.07 | 89.85 83.93 75.59 | 82.15 | 80.83 | 73.74 | 81.43

Input image

4.4 Ablation Study

The first experiment is to check how much the accuracy

Ground truth Fast network

Transfer1 Transfer2 Fused heatmap

Fig.7 Sample results from left to right: input images, heatmaps generated from ground truth,
heatmaps from the fast network, heatmaps warped from the key frame via transferl network, heatmaps
warped from the previous frame via transfer2 network, and fused heatmaps. Red points on the heatmaps
are the locations of the ground truth. The top two rows inside the blue rectangle show successful ex-
amples, while the bottom two rows inside the red rectangle show some failures. Note that the heatmaps
from the fast network are darker because they have lower peaks or flatter distributions.

drops when the frame set length is large and how effective
our extension is to long-term frames. In Fig. 6, FSPose_base
shows the mAP accuracy for each non-key frame with the
distance from the key frame, where it is especially true that
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Comparison of the accuracy (in each keypoint and mean value) and computational complex-

ity on the validation sets of PoseTrack 2017 and PoseTrack 2018. Heterogeneous denotes HRNet_-W32
in key frames, MobileNetV2 in non-key frames, and transfer networks from key frame to non-key frame
or between non-key frames. FSPose_base denotes the basic architecture of FSPose, FSPose_ext denotes
the extension of FSPose_base, and the number (4, 8, 16, 32) denotes the frame number in a frame set.
As a reference, the SOTA results from the original papers are listed with blue digits, the conditions of
which may not be exactly the same as ours.

Method | Backbone | FLOPs(G) | Head [ Shoulder | Elbow | Wrist | Hip | Knee | Ankle | Mean
PoseTrack 2017 validation set

Yang et al. [28] | HRNet + GNN | - 90.9 90.7 86.0 79.2 83.8 82.7 78.0 84.9

PoseNAS [17] L18-C64 14.8 83.8 84.6 80.4 73.1 774 76.7 70.3 78.4

framewise [3] HRNet_-W32 7.65 83.07 | 89.85 83.93 7559 | 82.15 | 80.83 | 73.74 | 81.43
framewise [6] MobileNetV2 0.49 69.22 | 67.19 51.52 39.34 | 58.14 | 49.13 | 3891 | 5441
PoseWarper [4] | HRNet_-W32 7.85 84.41 | 90.56 84.71 77.13 | 83.09 | 8233 | 77.27 | 82.89
PoseWarper [4] | MobileNetV2 0.69 7431 | 70.39 54.56 | 4222 | 60.58 | 53.93 | 48.18 | 58.84
FSPose_base4 Heterogeneous | 2.43 83.02 | 86.3 77.38 66.9 78.34 | 76.10 | 69.66 | 77.23
FSPose_base8 Heterogeneous | 1.56 80.67 | 83.29 71.11 58.39 | 7476 | 68.82 | 60.98 | 71.78
FSPose_basel6 | Heterogeneous | 1.13 76.88 | 78.56 62.98 48.81 | 70.18 | 61.32 | 51.08 | 65.10
FSPose_base32 | Heterogeneous | 0.91 71.73 | 72.58 55.74 41.41 | 63.38 | 54.70 | 45.18 58.74
FSPose_ext8 Heterogeneous | 1.61 81.47 | 82.98 71.29 59.71 | 7472 | 69.76 | 62.83 | 72.47
FSPose_ext16 Heterogeneous | 1.17 79.7 80.43 65.71 52.62 | 71.81 | 64.56 | 55.6 68.04
FSPose_ext32 Heterogeneous | 0.96 76.45 | 76.22 60.57 46.74 | 66.99 | 58.8 50.78 | 63.30

PoseTrack 2018 validation set

Yang et al. [28] | HRNet + GNN | - 85.1 87.7 85.3 80.0 81.1 81.6 77.2 82.7

framewise [3] HRNet_W32 7.65 82.48 | 88.26 83.23 7733 | 79.86 | 80.73 | 77.22 | 81.38
framewise [6] MobileNetV2 0.49 70.60 | 68.81 53.98 43.68 | 59.56 | 5290 | 44.22 | 57.21
PoseWarper [4] | HRNet-W32 7.85 84.31 | 88.87 83.92 78.16 | 80.93 | 81.50 | 78.99 | 82.51
PoseWarper [4] | MobileNetV2 0.69 75.06 | 71.94 56.72 | 4649 | 62.11 | 57.41 | 5323 | 61.40
FSPose_base4 Heterogeneous | 2.43 82.72 | 86.14 79.21 7244 | 77.66 | 7739 | 74.80 | 78.90
FSPose_base8 Heterogeneous | 1.56 80.80 | 83.41 74.03 65.41 | 7458 | 72.20 | 67.95 | 74.50
FSPose_basel6 | Heterogeneous | 1.13 77.37 | 78.98 66.91 56.95 | 6991 | 65.75 | 59.38 | 68.52
FSPose_base32 | Heterogeneous | 0.91 73.12 | 73.81 60.06 49.60 | 6449 | 59.97 | 53.35 | 62.79
FSPose_ext8 Heterogeneous | 1.61 81.21 | 83.03 73.63 65.85 | 7437 | 72.66 | 68.92 | 74.70
FSPose_ext16 Heterogeneous | 1.17 79.58 | 80.80 69.32 60.00 | 71.69 | 68.71 | 63.42 | 71.11
FSPose_ext32 Heterogeneous | 0.96 77.05 | 77.69 64.41 5445 | 6839 | 64.08 | 58.35 | 67.06

the mAP accuracy of the latter part of the non-key frames
becomes lower. However, FSPose_ext, which is our exten-
sion to long-term frames, can effectively improve the ac-
curacy of the latter part of the non-key frames. This experi-
ment shows that an additional heatmap from the neighboring
frame is effective to solve the temporal correlation decreas-
ing problem in the latter part of the non-key frames.

The second experiment is to study the effect of each
component in the proposed heterogeneous framework. We
report the accuracy and computational complexity in non-
key frames of PoseTrack 2017 dataset for fast networks
and two transfer networks used in FSPose_ext16 depicted
in Table 1, which shows that the two transfer networks have
higher accuracy than the fast network. Therefore, the infor-
mation from other frames (key frame and the neighboring
non-key frame) is of high quality, which is helpful in pose
estimation for the current frame. As shown in Table 1, this
is especially true for Transferl, which warps the heatmap
from the key frame. In other words, given a non-key frame,
the mean accuracy will be 54.30% if only using fast network
with the computational cost of 0.49 GFLOPs. With less than
half of computational cost, the Transfer] network provides
an even higher mean accuracy of 62.12%, which results in
a better balance between accuracy and computational com-
plexity.

The third experiment is to provide heatmap samples

generated from the fast network, transfer networks, and
fused results, as shown in Fig. 7. Note that the heatmap res-
olutions, which are defined by the network architectures, are
so small that they look blurred in Fig.7. This implies that
slow motions (in the success cases) are easier to warp than
fast motions (in the failure cases). In the case of failures,
the warped heatmaps from both Transferl and Transfer2 are
incorrect, which implies that the fast motions make transfer
networks less effective. However, in the successful cases,
the warped heatmaps from both Transfer1 and Transfer2 are
correct. In addition, if we compare the fused heatmaps and
heatmaps from each network, e.g., those heatmaps of feet,
we can see that the peaks of fused heatmaps become closer
to the ground truth. This means that the fused heatmaps im-
prove the pose estimation accuracy.

4.5 Comparison with Existing Methods

We report the results of our method and other state-of-the-
art methods on the PoseTrack 2017 and PoseTrack 2018
datasets in Table 2. In the heterogeneous framework of
FSPose, the computational complexity is calculated as fol-
lows. For key frames, the computational complexity comes
from only slow networks. For non-key frames, the compu-
tational complexity comes from fast networks and transfer
networks. Then, we average the computational complexity
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Fig.8 Performance comparison between our methods (FSPose_base,
FSPose_ext) and PoseWarper [4] (competitor method) and framewise meth-
ods (baseline) on PoseTrack 2017 validation set. Beside our results, we
additionally plot three results directly from the existing paper [35], which
are marked with asterisks.

in all the frames. According to Table 2, compared to the
framewise methods, PoseWarper achieves an accuracy gain
of 1.5 points using an HRNet backbone or an accuracy gain
of 4.4 points using a MobileNetV2 backbone for a com-
putational cost of 0.2 GFLOPs using the transfer network.
In contrast, FSPose achieves much greater gains compared
to the framewise methods. For example, compared to the
framewise method of MobileNetV2, FSPose_basel6, which
has 16 frames in a frame set using the basic architecture de-
scribed in Sect. 3.3, achieves an accuracy gain of 10.7 points
for a computational cost of 0.64 GFLOPs. Furthermore, FS-
Pose_ext16, which has 16 frames in a frame set using the
extension architecture described in Sect. 3.4 achieves an ac-
curacy gain of 13.6 points for a computational cost of 0.68
GFLOPs.

For an intuitive comparison with the methods that use
HRNet_W32 and MobileNetV2 as the backbones, Fig.8
shows the results of framewise methods as a baseline, Pose-
Warper as a competitor method, and FSPose as a pro-
posed method, where both FSPose_base and FSPose_ext
are much farther away from the baseline than PoseWarper,
i.e., they are locating the top-left area to PoseWarper. For
FSPose_ext, which provides an additional transfer network
warping the heatmap from the previous frame for the latter
half of the non-key frames, the results are actually rather
close to FSPose_base, although FSPose_ext effectively im-
proves the accuracy, e.g., 4.6 points when there are 32
frames in a frame set. As shown in Table 2, the accuracy
gain decreases as a frame set becomes shorter, i.e., the accu-
racy gains are 4.6 points to 2.9, 0.7, and —0.8 points when
there are 32, 16, 8 and 4 frames in a frame set, respectively.
Thus, FSPose_ext should not be applied to the case that there
are less than 8 frames in a frame set, where the temporal cor-
relation is strong enough. In the case of 4 frames in a frame
set, the negative gain infers that warping the heatmaps of the
previous frames may add noise in the fused heatmaps due to
their relatively low quality compared to those in key frames.

As an objective metric, we also calculate the scores by
Eq. (7). Note that the larger score is, the better the perfor-

IEICE TRANS. INE. & SYST., VOL.E106-D, NO.6 JUNE 2023

4.5
4
35
3 MobileNetV2
@25
g ) HRNet_W32 PoseWarper
w
15 B FSPose_base
1 W FSPose_ext
0.5 I
0
32 16 8 4

frame set

Fig.9 Score comparison between our methods (FSPose_base, FS-
Pose_ext) and the PoseWarper (competitor method) with the same back-
bones (MobileNetV2 and HRNet_W32) used in our methods on the Pose-
Track 2017 validation set.

mance. As shown in Fig. 9, the scores of the proposed meth-
ods (FSPose_base and FSPose_ext) are more than twice as
much as those of the competitor method (PoseWarper) with
different backbones, where the highest score comes from
FSPose_base4. In addition, compared with FSPose_base,
FSPose_ext achieves higher scores if using the same length
of a frame set. Moreover, the score difference is larger when
the frame number is larger in a frame set.

5. Conclusion

We present a heterogeneous framework with transfer net-
works, fast and slow networks for different types of frames,
referred to as FSPose, which is simple yet effectively
achieves a good balance between accuracy and computa-
tional complexity. FSPose is based on the observation that
the high-quality warped heatmap from slow networks helps
improve the accuracy. In addition, there is only a minor
increase in computational complexity in the transfer net-
work. As a result, the heterogeneous framework is better in
terms of the balance between accuracy and computational
complexity. Furthermore, we extend the usage of long-
term frames by solving the temporal correlation decreasing
problem, where an additional heatmap from the neighboring
frame is warped for the latter part of the non-key frames.
The experimental results on PoseTrack 2017 and PoseTrack
2018 demonstrate that FSPose achieves more than twice as
much as a competitor method in terms of scores.

In our future work, we will improve the balance be-
tween accuracy and computational complexity by introduc-
ing an adaptive frame set according to human motions. For
example, the videos with fast motions should have a shorter
frame set than those with slow motions. Another challenge
is to import a third type of frame, where the heatmaps from
both preceding and subsequent frames are warped.
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