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PAPER

A Practical Model Driven Approach for Designing Security Aware
RESTful Web APIs Using SOFL

Busalire Onesmus EMEKA†∗a), Student Member, Soichiro HIDAKA†b), and Shaoying LIU††c), Members

SUMMARY RESTful web APIs have become ubiquitous with most
modern web applications embracing the micro-service architecture. A
RESTful API provides data over the network using HTTP probably in-
teracting with databases and other services and must preserve its security
properties. However, REST is not a protocol but rather a set of guide-
lines on how to design resources accessed over HTTP endpoints. There
are guidelines on how related resources should be structured with hierar-
chical URIs as well as how the different HTTP verbs should be used to
represent well-defined actions on those resources. Whereas security has
always been critical in the design of RESTful APIs, there are few or no
clear model driven engineering techniques utilizing a secure-by-design ap-
proach that interweaves both the functional and security requirements. We
therefore propose an approach to specifying APIs functional and security
requirements with the practical Structured-Object-oriented Formal Lan-
guage (SOFL). Our proposed approach provides a generic methodology
for designing security aware APIs by utilizing concepts of domain models,
domain primitives, Ecore metamodel and SOFL. We also describe a case
study to evaluate the effectiveness of our approach and discuss important
issues in relation to the practical applicability of our method.
key words: RESTful web APIs, SOFL, API security, secure by design,
domain driven design

1. Introduction

Nowadays, most of the web APIs are continuously adopt-
ing REpresentational State Transfer (REST) [1] architec-
tural style which allows building loosely coupled API de-
signs relying on HTTP and the web friendly JSON data
representation format or XML. A web API (Application
Programming Interface) is a set of functions and proce-
dures that allow users to access and build upon the data
and functionality of an existing application available over
the web through the HTTP protocol [2]. The loosely cou-
pling approach makes client applications have flexibility and
reusability of an API in terms of the fact that its elements can
be easily added, replaced, and changed. However, REST is
a design paradigm and protocol-agnostic, an abstraction of
the basic architecture of the HTTP protocol and concentrates

Manuscript received November 4, 2022.
Manuscript revised January 1, 2023.
Manuscript publicized February 13, 2023.
†The authors are with Graduate School of Computer and Infor-

mation Sciences, Hosei University, Koganei-shi, 184–8584 Japan.
††The author is with Graduate School of Advanced Science and

Engineering, Hiroshima University, Higashihiroshima-shi, 739–
0046 Japan.

∗Presently with AlpsAlpine Co., Ltd, Iwaki, Fukushima, 970–
1144 Japan.

a) E-mail: dr.b.emeka@gmail.com
b) E-mail: hidaka@hosei.ac.jp
c) E-mail: sliu@hiroshima-u.ac.jp

DOI: 10.1587/transinf.2022EDP7194

on concepts rather than syntax and technical implementation
details. It does not rely on any set of defined standards to
describe the implementation of a RESTful API. Moreover,
when it comes to security of RESTful APIs, the architectural
style does not provide any built-in security capabilities. Se-
curity depends entirely on the design of the API itself. This
means security must be actively built for data transmission,
deployment, and interaction with clients. These limitations
pose a challenge in the development and testing for satisfia-
bility of a RESTful APIs’ functional and security properties.

In our previous publications [3] we proposed a method
offering a practical approach to specify and verify security
and functional requirements of RESTful APIs using SOFL
(Structured-Object-oriented Formal Language) [4]. In our
approach, we focused on ensuring that all of the expected
functional behaviors provided by an API and their related
security requirements were captured correctly. To achieve
this, we constructed a comprehensible SOFL functional and
security requirement specifications from an API description
written in RESTful API modeling language (RAML) [5].

However, this approach has a couple of shortcomings
in practice. First, engineers need to think about APIs se-
curity vulnerability issues while at the same time focus on
solving business functionality. This is difficult because,
when engineers write specifications and code, mostly their
main focus will be on the functionality they are trying to
implement. Second, it requires every engineer to be well
versed in API security issues, and finally it assumes engi-
neers can think of any potential API vulnerability that may
occur now and in the future. However, practically, a soft-
ware engineer can only provide countermeasures for secu-
rity vulnerabilities that he or she is only aware of. Further-
more, security is relative to a perceived threat model and
an API can be more or less secure to that perceived threat
model. To create secure APIs efficiently, one needs to have
a mindset that focuses more on the design rather than on se-
curity, while at the same time pay attention to APIs’ threat
modeling techniques that can identify common API vul-
nerabilities and their recommended countermeasures. This
makes security to be treated as a concern rather than a fea-
ture in API design and deployment. This approach has the
benefit of providing a comprehensive approach of develop-
ing APIs that are not only protected from published API se-
curity vulnerabilities but also offers a potential of protecting
an API from future mutations of existing API security vul-
nerabilities by just re-running the threat modeling that are
adjusted to the mutated vulnerabilities.
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In this paper, we propose a new practical model-driven
approach that addresses the shortcomings of our previous
publications by proposing a methodology that allows for
both explicit and implicit addressing of API security issues.
We present a Domain Driven Design [6] approach that uti-
lizes a metamodel offering a foundation for what an API
does. The model is strict in the mathematical sense of be-
ing precise and exact that its concepts, attributes, behaviors
and relations are unambiguous. The model relies on domain
primitives [7] which combine secure constructs, and value
objects to define the smallest building blocks of a domain,
and utilizes Ecore [8] metamodel that defines the abstract
syntax, the possible domain elements, and their relations in
between. We adopt Attack-Defense Trees (ADTrees) [9] as
our threat model of choice for identifying countermeasures
to RESTful API security vulnerabilities. Our contribution
lies on the overall methodology of providing a secure by de-
sign approach for writing specifications for RESTful APIs
with semi-automation of some of its processes such as gen-
eration of a scaffold for API domain models from source
RAML document input. Our proposed approach targets de-
sign and implementation of RESTful web APIs for web ap-
plications either internally developed by the same team or
developed by a third party.

Specifically, we have made the following new contri-
butions. We propose, a new model-driven approach for
interweaving functional and security requirements based
on Domain Driven Design principles, Ecore metamodel
and the expressive nature of SOFL process definition to
describe the behavior of our modeled API. This encour-
ages resolving security issues both implicitly and explic-
itly. Implicitly by applying strict invariants on domain prim-
itives [7], and explicitly by applying ADTrees [9] to model
API threats and identify common documented API vulner-
abilities and their associated countermeasures. By focus-
ing on the domain and domain primitives, many security
bugs can be solved implicitly. For example, applying a
strict invariant defined as a domain primitive on an API’s
POST input not only protects the API endpoint against in-
jection attacks but also ensures the specified meaning of
the input is captured. Therefore, any malicious input not
satisfying the definition is rejected and the API endpoint
becomes more secure. We have demonstrated a practi-
cal usage of our approach by our implemented case study
project containing most of the artifacts which is accessible
via this url https://github.com/Egalaxykenya/IEICE-journal-
paper-emeka.

The remainder of this paper is organized as follows.
Section 2 describes briefly SOFL, ADTrees and REST ar-
chitectural style. Section 3 describes our proposed Domain
Driven Design model and metamodel that achieves both im-
plicit and explicit interweaving of API’s security and func-
tional requirements. Section 4 describes an optional speci-
fications testing activity aimed at verifying various consis-
tency properties of the specifications generated via our pro-
posed approach, and whether the specifications reflect the
target API’s requirements. Section 5 gives a brief discus-

sion on the evaluation of our proposed approach. Section 6
focuses on related work and finally Sect. 7 gives conclusions
and outlines areas for our future research.

2. SOFL, ADTrees, DDD, Metamodeling and REST -
Background

In this section, we briefly introduce SOFL, ADTrees, Do-
main Driven Design, metamodeling concepts and REST in
order to pave way for the discussion of our proposed ap-
proach.

2.1 SOFL

SOFL is a formal engineering method that provides a
comprehensible language for both requirements and design
specifications, and a practical method for developing soft-
ware systems [10]. SOFL is designed by integrating differ-
ent notations and techniques on the basis that all are needed
to work together effectively in a coherent manner for spec-
ification construction and verification. The SOFL specifi-
cation language integrates Conditional Data Flow Diagrams
(CDFDs) [10] which describe comprehensibly the architec-
ture of specifications, Petri nets [11] and VDM-SL (Vi-
enna Development Method - Specification Language) [12].
SOFL also uses classes to model complicated data flows and
stores. A data store offers data that can be accessed by pro-
cesses in a CDFD. SOFL adopts a three-step evolutionary
approach to developing formal specifications, starting from
informal specifications to semi-formal specifications and fi-
nally to formal specifications. The informal specification
usually written in a natural language serves as the basis for
deriving the semi-formal specifications in which the SOFL
syntax to some extent is enforced. The formal specification
is then derived from the semi-formal specification through
formalization of the informal parts in the semi-formal spec-
ifications. A SOFL formal specification consists of a group
of modules organized in a hierarchical manner. Each module
encapsulates the related processes that specify the expected
functions, the datastores that specify the data resources ac-
cessed by the process, and the invariants that specify the
constraints to be conformed by the process and data stores.
A process is composed of five parts name, input ports, out-
put ports, pre-condition and post-condition.

The input and output ports specify the input and output
variables of the process. The pre- and post conditions define
the semantics of the process interpreted as follows: When
one of the input ports is available i.e. all of its input vari-
ables are bound to specific values in their types, the process
will be executed. As a result of the execution, one of the
output ports is made available, which means all of their re-
spective output variables are bound to specific values of their
types. If the input variables satisfy the pre-condition before
the execution, the output variables are required to satisfy the
post-condition after the execution of the process, provided
the execution terminates. Listing 1 shows a typical SOFL
formal specification and its corresponding CDFD is shown



988
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.5 MAY 2023

Fig. 1 An Example of a SOFL CDFD

in Fig. 1.
The SOFL formal specifications describe two modules

i.e. Arithmetic and Arithmetic decom. The module Arith-
metic decom is nested within the module Arithmetic. Each
module contains a number of processes where each process
describes an independent system function. Module Arith-
metic consists of processes A, B and C. Process C is repre-
sented as the decomposed module Arithmetic decom in List-
ing 1 lines 17 - 29. These three processes are connected by
data flows, which represents the overall function of mod-
ule Arithmetic. The decomposed lower level module Arith-
metic decom consisting of processes E and F represent pro-
cess C in the parent module. An interpretation of the formal
specifications of process A is as follows. It consists of one
input port and two output ports separated by notation |. It
takes x of integer type as the input variable and produces ei-
ther y or z as the output variable. Its pre-condition is set to
true and its post-condition requires that the output variable y
is equal to the square of x if x is greater than 0, and the exter-
nal variable D will be updated by the following condition D
= ˜D + x; otherwise variable z will be made available. The
˜ sign before the variable D symbolises the initial value of
the variable D before it is updated by the process A.

The semantics of SOFL CDFD are interpreted as fol-
lows: In each CDFD, a process is represented by a rectangle
box with a name in the center. Each input port is denoted by
a narrow rectangle on the left part of the process box, which
receives input data flows. Each output port is denoted by a
narrow rectangle to the right part of the process which pro-
duces output data flows. Multiple input and output ports are
denoted by multiple narrow rectangles to the left and right
parts of the process respectively. The pre- and post con-
ditions are denoted by rectangles located in the upper and
lower parts of the process. While using a supporting tool,
a mouse click on these areas would give access to the pre-
and post conditions respectively. In addition, CDFDs put fo-
cus of attention on data flow but not on control. Therefore,
there is no explicit linking of input and output ports within
a process [13].

More details about the SOFL specifications language
can be found from the SOFL book [4].

1 module Arithmetic
2
3 process A(x: int) y: int | z: sign
4 ext #wr D: int
5
6 pre true

7 post (( x > 0 and D = ˜D + x and y = x**2) or ( x <= 0 and bound(z))
8
9 end_process;

10
11 process B(y:int) r: int
12 pre y > 0
13 post r = y * 5
14 end_process;
15
16 /* Process C decomposed into lower level processes E and F */
17 module Arithmetic_decom
18
19 process E(z: sign, q: int) i:int, j: int
20 pre (q > 0 and bound(z))
21 post ( i = q + 1 and j = q ** 2)
22
23 end_process;
24
25 process F(i: int, j: int) w: int
26 pre ( i > 0 and j > 5)
27 post w = i * j
28 end_process;
29 end_module;
30 end_module;

Listing 1 SOFL formal specification example

2.2 ADTrees

Kordy et al. [9] define an ADTree as a node-labelled rooted
tree describing the measures an attacker might take to at-
tack a system and the defenses that a defender can employ
to protect the system. ADTrees have nodes of two opposite
types: attack nodes and defense nodes, which correspond to
an attacker’s and a defender’s (sub-)goals, respectively. In
their literature, they identify two key features of an ADTree;
the representation of refinements and countermeasures. Ev-
ery node of an ADTree may have one or more children of
the same type representing a refinement into sub-goals of
the node’s goal. A node which does not have any children
of the same type is called a non-refined node. Non-refined
nodes represent basic actions in attack tree threat modelling.

Every node of an ADTree may also have a child of op-
posite type, that represents a defense. Therefore, an attack
node may be represented by several children which refine
the attack and another type of child which defends against
the attack. The defending child in turn may have several
children which refine the defense and one child, i.e., an at-
tack node that counters the defense. A node of an ADTree
can be refined disjunctively or conjunctively. The goal of
a disjunctively refined node is achieved when at least one
of its children’s goals is achieved. The goal of a conjunc-
tively refined node is achieved when all its children’s goals
are achieved. ADTrees core purpose is to model attack–
defense scenarios. An attack–defense scenario can be seen
as an interaction between a proponent and opponent. The
root of an ADTree represents the main goal of the propo-
nent. If the root is defined as an attack node, the propo-
nent in this case will be an attacker and the opponent will
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Fig. 2 Stored XSS ADTree threat modelling

be a defender. Conversely, if the root is defined as a de-
fense node, the proponent in this case will be a defender and
the opponent an attacker. Kordy et al. [9] propose the fol-
lowing graphical semantics when drawing ADTrees. Attack
nodes are depicted by circles and defense nodes by rect-
angles, as shown in Fig. 2. Refinement relations are indi-
cated by solid edges between nodes, and countermeasures
are indicated by dotted edges. Conjunctive refinement of
a node is depicted by an arc over all edges connecting the
node and its children of equal type. To demonstrate an ex-
ample of an ADTree, we consider a manifestation of stored
Cross Site Scripting attack scenario at an API endpoint as
shown in Fig. 2. Its root node is an attack, thus the main
goal expressed by the tree are scenarios that can lead to ex-
ecution of a successful stored XSS attack at any given API
endpoint and their respective countermeasures. To launch
a successful stored XSS attack against a web API endpoint,
an attacker can choose multiple vectors of manipulating web
API’s endpoint accepting user inputs, by providing mali-
cious input which is later interpreted as a Document Ob-
ject Model (DOM) when loaded on a browser thereby exe-
cuting the target attack. Assuming we are dealing with an
API endpoint of a salon management system for updating
a users bio profile as indicated in Fig. 2, the following se-
quence of events need to happen for a successful execution
of a stored XSS attack. First, a malicious user A must regis-
ter an account in the salon management system and must
provide the salon web API endpoint for updating his bio
profile with a malicious XSS payload. The API will then
store the user’s bio profile alongside the malicious XSS pay-
load. Any user who will then access user A’s bio profile via
a web browser will make the uploaded malicious payload
stored alongside user A’s bio profile to be interpreted as a
DOM thereby triggering a successful execution of a stored
XSS attack. Therefore, a quick countermeasure against this
kind of attacks is to sanitize input at any of the target API
endpoints. One way of achieving this is to define a string
processing function that strictly checks for potentially ma-
licious characters that can be interpreted by the browser as
DOM objects from our API payload. A sample specification
implementation of this counter measure can be accessed in
our case study github repository, lines 50 - 74 and 257 -
277 of salon api sofl implicit.txt file. This countermeasure

works towards preventing a successful execution of our at-
tack tree root node goal. Compared to other threat mod-
elling techniques, Attack-Defense Trees provide an intuitive
graphical representation of different attacks which enable
them bridge the gap between stakeholders coming from di-
verse backgrounds. This enables them to not only detect,
analyze, brainstorm, amend results of an attack analysis and
document a wide range of attacks but also define reactive
countermeasures against the attacks. The stakeholders ben-
efit by relying on a framework that provides a succinct and
meaningful structure for a range of potential attack vectors
in their system modeling activities.

2.3 Domain Driven Design(DDD)

Domain models provide unambiguous, strict foundation of
what a system should do [6]. This by extension provides
a powerful tool that defines what a system should not do.
When modeling and implementing that model as require-
ments specifications, it is crucial to have some building
blocks. Domain models are usually based on value objects
and entities with larger structures being presented through
aggregates. An aggregate is a conceptual boundary that you
can use to group parts of the model together allowing you to
treat an aggregate as a unit during state changes. The bound-
ary is not arbitrarily chosen but rather it is carefully selected
based on deep insights of the model. In order to express a
domain model in specifications, you need a set of building
blocks which are entities, value objects and aggregates.

Every part of a domain model has certain character-
istics and certain meaning. Entities are model objects that
have some distinct properties, unique identifiers and are re-
sponsible for coordination of the objects they own, not only
to provide cohesion but also to maintain their internal in-
variants. Let’s take an example of an Online Salon Booking
System (OSBS), where we have a salon class with attributes
such as salon name, address, phone number, establishment
data. Every instance of entities has a unique identifier. The
ability to identify information in a precise manner as well
as coordinating and controlling behavior plays an integral
role in preventing security bugs from sneaking into spec-
ifications. Thanks to this uniqueness, we can distinguish
two instances of the salon class that has the same name, and
even have all the same attribute values, by their identifiers,
even if they can be interchangeable with each other. Entities
are often made up of other model objects. Some attributes
and behaviors can be moved out of the entity itself and put
into other objects thereby becoming value objects or do-
main primitives. Value objects have no identity that defines
them but rather, they are defined by their values, they are
immutable i.e. they describe some attribute or some char-
acteristics but carries no concept of identity, they can ref-
erence entities, they explicitly define and enforce important
constraints and can be used as attributes of entities and other
value objects. Domain primitives represents objects consist-
ing of attributes and behaviors that were moved out of an
entity and put into other objects. They are distilled versions
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Fig. 3 Aggregate, entity, value objects & domain primitive in an example
of a salon service booking system domain model

of value objects with proper invariants. These invariants en-
force security constraints on the behavior of their associ-
ated entities in our API domain model. Figure 3 shows the
relationships among aggregates, entities, value objects and
domain primitives in DDD using our salon service booking
system example. The entity Salon represents the aggregate
root. The Salon entity has a containment relationship with
the entity Customer which in turn has a containment rela-
tionship with both the entity Bio and a value object Address.
The CustomerBio value object has a referential relationship
with the entity Bio. It is a defense mechanism output of
an ADTree analysis on the entity Bio that seeks to provide
an invariant as a domain primitive. This invariant strictly
whitelists a range of characters allowed as valid inputs for a
customer’s Bio description.

2.4 Metamodeling

A metamodel of a model specifies its structure and mean-
ing. It defines the abstract syntax, the possible elements, and
their relations in between. In addition, it specifies its static
semantics, the constraints for well-formed models. There
are two popular meta-metamodels. The Meta Object Facil-
ity (MOF) [14] by the Object Management Group (OMG)
which is used as meta-metamodel for the Unified Model-
ing Language (UML) and Ecore [8] which is part of the
Eclipse Modeling Framework (EMF) and based on Essen-
tial MOF (EMOF) [14]. We choose Ecore because it has
more freely available supporting tool. We shall describe the
needed Ecore elements and their properties next. There are
four Ecore classes needed to represent a metamodel:
EClass Used to represent a modeled class. It has a name,
zero or more attributes, and zero or more references. It can
define a set of EAttributes describing its properties and a set
of EReferences describing its relations to other EClasses.
An EClass can be marked abstract which means an instance
of itself cannot be initiated when created.
EAttribute Used to represent a modeled attribute. At-
tributes have a name and a type.
EDataType Used to represent the type of an attribute. A
data type can be a primitive type like int, float or an object

type.
EReference Used to represent one end of an association be-
tween classes. It has a name, a Boolean flag to indicate if it
represents containment, and a reference (target) type, which
is another class.

We use concepts of metamodeling in step 5 of our pro-
posed approach.

2.5 REST and REST Concepts

The concept of REST was introduced by Roy Fielding in
his PhD dissertation, “Architectural Styles and the Design
of Network-based Software Architectures” [1]. REST re-
lies on HTTP protocol for data communication and revolves
around the concept of resources where each component is
considered as a resource. These resources are accessed via a
common interface using HTTP methods such as GET for re-
trieving a resource, PUT for updating a resource, POST for
creating a resource and DELETE for removing a resource.
Contrary to other web services, REST is an architectural
style and protocol agnostic. The REST architecture focuses
on providing access to a resource for a REST client to ac-
cess and render it [1]. It utilizes Uniform Resource Identi-
fiers (URIs) in identifying each resource and provides sev-
eral resource representations such as XML, JSON, Text etc.
to represent its type. For an API to be considered REST-
ful, it needs to satisfy the design characteristics commonly
referred to as REST constraints [1] i.e., Client-server archi-
tecture, Statelessness, Caching, Uniform Interface, Layered
systems, and/or Code on Demand (optional). A detailed de-
scription of RESTful web APIs is given in [2].

2.5.1 ResourceType and ResourceIdentifierPatterns

A ResourceType represents a RESTful API concept that
models an object and its set of properties. It is defined
as an abstract EClass with a name. It has an attribute
maxResources which specifies the number of resources al-
lowed. The uniform interface REST constraint dictates that
activities which transcend create, read, update, and delete
(CRUD) operations, must be modeled in a different way.
For example, if we are creating an Online Salon Booking
API with a capability for suggesting the best salon, a suit-
able workflow needs to be defined: salons can be suggested,
and customers must share their reviews. Such a suggestion
can be modeled as an ActivityResourceType. An ActivityRe-
sourceType is normally a nominalisation of an activity. A
ResourceIdentifierPattern describes a URI to a Resource-
Type. Since we are specifically modeling RESTful APIs and
by extension adhering to REST semantics, every Resource-
Type must have at least one ResourceIdentifierPattern. A
ResourceIdentifierPattern is abstract and can be a SimpleI-
dentifier which is described using a string or a ComplexI-
dentifierPattern which uses the values of the ResourceType’s
Attributes. A ResourceType contains an unordered set of
named ResourceElements, like attributes and links.
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2.5.2 DataTypes and Attributes

Attributes specify a ResourceType’s properties and conform
to a defined DataType. A DataType can be a Primitive-
DataType, a domain primitive or a CollectionType. Primi-
tiveDataTypes are identified by their name, for example, in-
tegers and strings. A CollectionType represents an ordered
set of values and references the DataType of its contained
elements.

2.5.3 Method, MethodType and Parameter

REST-based services use HTTP interfaces, such as GET,
PUT, POST and DELETE, to maintain uniformity across
the web. The uniform interface, enforces a MethodType. A
MethodType is identified by its name, to be defined for all
existing methods, i.e., the HTTP verbs. A ResourceType is
associated with a set of supported Methods which must have
a MethodType. The Method element is responsible for the
API behavior and determines the set of produced and con-
sumed MediaTypes. In addition, every Method can define
parameters which can be contained in a consumed Medi-
aType or in the resource identifier.

2.5.4 Link and RelationType

Links support hypermedia as the engine of application state
(HATEOAS) [1]. Each Link can define a media type inde-
pendent RelationType [15]. This means the client is aware
of the relation existing between two resources and which
method requests with which meaning can be sent to the tar-
get link. A RelationType can contain pagination information
like next or previous. An InternalLink refers to one target
ResourceType. To model links to resources outside the cur-
rent application ExternalLinks are used. These only go to
the extent of defining resource identifiers.

3. Proposed Model-Driven Approach

3.1 Overview

Our proposed model-driven approach offers a 6 step process
(Fig. 4) and focuses on interweaving APIs’ functional and
their respective security requirements. We adopt concepts
of Domain Driven Design, Ecore metamodels and SOFL as
the building blocks of our methodology. Domain Driven
Design and Ecore metamodel enable our approach achieve
structural modeling of an API while the expressive nature
of SOFL and its definition of SOFL processes enables our
approach to achieve behavioral modeling of an API. Our ap-
proach aims at resolving API security issues both implicitly
and explicitly. Implicitly by applying strict invariants on
a domain primitive, and explicitly by applying ADTrees to
model API threats and vulnerabilities. We rely on official
documented repositories such as OWASP API security top
10 [16] and Common Vulnerabilities Exposure (CVE) [17]

Fig. 4 Our proposed model. Steps 1 and 2 are automated while the rest
of the steps require manual interaction

database as a baseline to guide in identifying common doc-
umented RESTful API vulnerabilities. Figure 4 gives a di-
agrammatic representation of the general overview of our
proposed model. In the following subsequent sections, we
describe in detail the steps of our proposed approach and
how they work.

3.2 Step 1 - RAML Parsing

The first step involves generating a flat file with APIs re-
source listings. In this step, we parse a RESTful API doc-
umentation written in RAML with resource definitions as
input into an RAML parser [18]. A resource in RAML is
identified by its relative Uniform Resource Identifier (URI),
which must begin with a slash (“/”). A resource may refer
to other resources via steps (“/”) in URIs. The resource may
be a containment (child) node or otherwise referred to as a
nested resource, or non-contained resource. Containedness
is determined in a later step. A nested resource will have
its URI relative to the parent resource URI. A sample of a
flat file that is generated as an output of this step is given by
Listing 2. This step is fully automated.
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1 /salons
2 /salons/{salon_id}/service-categories
3 /salons/{salon_id}/service-categories/{category_id}
4 /salons/{salon_id}/service-categories/{category_id}/salon-services
5 /salons/{salon_id}/service-categories/{category_id}/salon-services/{

service_id}
6 /salons/{salon_id}/service-categories/{category_id}/salon-services/{

service_id}/bookings
7 /salons/{salon_id}/customers
8 /salons/{salon_id}/customers/{customer_id}
9 /salons/{salon_id}/customers/{customer_id}/bookings

10 /salons/{salon_id}/customers/{customer_id}/bookings/{booking_id}
11 /salons/{salon_id}/booking-payments
12 /salons/{salon_id}/customers/{customer_id}/bookings/{booking_id}/

booking-payments
13 /salons/{salon_id}/stylists
14 /salons/{salon_id}/stylists/{stylist_id}/salon-services
15 /salons/{salon_id}/stylists/{stylist_id}/bookings
16 /salons/{salon_id}/users

Listing 2 Sample flat file with API resource listings

3.3 Step 2 - API Resource Graph Construction

The second step involves automatic construction of an API
resource graph that will work as a blue print for creating
the target API domain model. The input for this step is
the flat file generated from step 1 and the output is a di-
rected graph(digraph) of API resources. We utilize the al-
gorithm defined in Algorithm 1 which takes a list of lists
of API resource nodes and the defined API root resource
node as an input, and constructs a digraph highlighting all
the API resources as an output. For example, the follow-
ing invocation Entitygraph ([[salons, service-categories],
[salons, salon-services]], salons) returns ({salons, service-
categories, salon-services}, {(salons, service-categories),
(salons, salon-services)}). It is worth noting that in the im-
plementation of the algorithm we had to conduct some pre-
processing on the contents of the input flat file such as strip-
ping of (“/”) and {id} to extract the target API resources from
resource URIs which adopt REST URIs pattern as depicted
by a sample shown in Listing 2.

Figure 5 shows a sample API entity resource digraph
automatically generated by an implementation of the algo-
rithm using Listing 2 as a source input. Note the gener-
ated digraph abstracts containment and reference relation-
ships between the digraph’s resource nodes. A containment
relationship describes a relation where a business object rep-
resented as a resource entity can contain one or more other
business objects with the containing business object known
as the parent object while the contained objects are referred
to as child objects. A reference relationship describes a rela-
tionship between business objects that is not embedding i.e.
when you query a business object, its referenced objects are
not automatically returned like the case of containment rela-
tionships. Similar to step 1, this step is also fully automated.

3.4 Step 3 - Domain Model Construction

In step 3, we use the generated digraph as a guide to manu-
ally define the API’s initial domain model as the target out-

Algorithm 1 API entity resource graph
1: procedure Entitygraph(L, v): � L is a list of list of resource names, v

is root resource name
2: let W be an empty set of resource names
3: let V be an empty set of nodes
4: let S be an empty set of edges
5: let M be an empty map from node names to nodes
6: let r be the root node
7: for all list l of resource names in L do � Extract a set of unique

resource names
8: for all resource names n in l do
9: W ← W ∪ {n}

10: end for
11: end for
12: num← 1
13: r ← new Node() � Node structure consists of name and order
14: r.name← v
15: r.order ← num
16: num← num + 1
17: M ← M ∪ {v �→ r}
18: for all resource names n in (W \ v) do
19: x← new Node()
20: x.name← n
21: x.order ← num
22: num← num + 1
23: M ← M ∪ {n �→ x}
24: V ← V ∪ {x}
25: end for
26: for all list l of resource names in L do� Extract set of unique edges
27: for all pairs of adjacent resource names (m,n) in l do
28: S ← S ∪ {(M[m],M[n])}
29: end for
30: end for
31: return (V, S )
32: end procedure

Fig. 5 API entity resource graph

put with an aggregate root corresponding to the root node
of the input digraph and the rest of the nodes correspond-
ing to domain model entities. In actual sense, the generated
digraph in step 2 is a barebone representation of the target
domain model, but with missing in the domain model at this
stage in the distinction between containment and reference
relationship between entities. As we construct the domain
model, we rely on the encoded business logic defined in the
RAML specifications to explicitly define containment and
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reference relationships between domain model entities. We
define the security schemes captured in the source RAML
specifications as domain primitives in the constructed do-
main model. This encourages traceability between a domain
model and the final generated SOFL specifications in step 6.
The importance of an efficient domain layer is key to a suc-
cessful secure by design API implementation. APIs devel-
oped based on the domain layer ensure businesses and secu-
rity concerns gain equal priority in the view of both business
experts and developers.

The defined domain model describes the entire ecosys-
tem of the modeled API in the form of Domain Driven De-
sign Concepts of aggregate root, entities, entity relationships
and domain primitives.

3.5 Step 4 - Threat Modeling with ADTrees

The fourth step, which takes our newly defined domain
model as input, involves a threat modeling process using
ADTrees to identify potential security vulnerabilities in our
API domain model and their countermeasures. Countermea-
sures that can enforce secure constructs on the attributes and
behavior of their associated domain entities are modeled as
domain primitives. The output of this step is a complete re-
fined domain model with additional security invariants from
the threat modeling process defined as domain primitives in
the refined domain model. This fourth step achieves our first
interweaving of functional and security requirements in an
implicit manner. For countermeasures which involve con-
suming third party services such as rate limiting, request
throttling and authentication, we flag them to be modelled
as guard conditions and enforce their constraints later in the
sixth step during behavioural modelling. The threat mod-
elling process involves an analysis of all the domain entities
for potential security vulnerabilities. The analysis process
is a loop with the condition for proceeding to the next phase
based on completion of exhaustive analysis of all the domain
model entities representing the API resources. Through the
ADTree analysis process, the domain model gets refined
courtesy of new value objects being incorporated into the
domain model as domain primitives.

3.6 Step 5 - API Structural Modeling

The fifth step involves creating an Ecore [8] metamodel that
describes the structure of our API domain model. In this
step, we rely on the refined domain model as input and cre-
ate an Ecore metamodel that our refined domain model cor-
responds to, as an output. Specifically, this step encompass
structural modeling of our target RESTful API. The struc-
tural model describes the possible resource types, their at-
tributes, and relations as well as their interface and repre-
sentations. We model entities as EClasses, value objects as
EAttributes and their data type as EDataType, domain prim-
itives as EClass and entity relations as EReferences. The
modeling of aggregates is omitted since it’s a collection of
entities and value objects.

3.7 Step 6 - API Behavioral Modeling and SOFL Formal
Specification Generation

The sixth and the final step involves behavioral modeling.
The input for this step is an Ecore metamodel from step 5
and the output is formal security aware RESTful API spec-
ifications in SOFL language. Our goal here is to define
RESTful API behaviors that consist of actions correspond-
ing to their respective HTTP verbs i.e., GET, POST, PUT,
DELETE and PATCH. For example, CreateAction creates
a new resource, an UpdateAction provides the capability
to change the value of attributes and ReturnAction allows
for response definition including the Representation and all
metadata. To achieve behavioral modelling, we transform
our API methods into SOFL processes. A SOFL process
definition is by itself a MethodType which takes inputs as
Parameters, yields outputs of either MediaType or Relation-
Type or both, defines a pre-condition and a post-condition,
and can read or write a ResourceType to a data store. A
ResourceType implements an EClass in our Ecore meta-
model, RelationType implements an EReference, and a Pa-
rameter implements an EParameter which can have a type
that is either a primitive data type, or a domain primitive
which defines invariants that must be enforced at their point
of creation. For example, an UpdateAction can be trans-
formed into a SOFL process complete with pre-post con-
ditions where the inputs are treated as the API’s request
parameters and outputs as the response including the Rep-
resentation and all metadata. The semantic constraints of
different MethodTypes are achieved naturally via the defini-
tions of guard conditions in SOFL’s post conditions. This
step yields security aware formal RESTful API specifica-
tions as an output. While modelling the API behaviors
as SOFL processes completed with pre-post conditions and
guard conditions [4], our attention to security is drawn to:

• The resources exposed by the API that are to be pro-
tected

• Data transfer across the API’s trust boundaries and ag-
gregate boundaries

• The security goals that are important such as confiden-
tiality of API resources

• The mechanisms that are available to achieve these
goals such as authentication, access control, audit log-
ging and rate limiting

To guide the formalization process of RESTful API behav-
ior in SOFL, we first define the following SOFL formaliza-
tion techniques with regards to a RESTful API. A REST-
ful API service D is defined as a set of operations D =

(o1, o2, . . . , on) where n ≥ 1. Each operation oi (1 ≤ i ≤ n)
is represented by a pair of input and output messages in
the format oi = (inMsgi, outMsgi). Each input message in
inMsgi is defined as a set of input variables in the format
inMsgi = {v1, . . . , v j} ( j ≥ 1). Similarly, each output mes-
sage outMsgi is defined as outMsgi = {v1, . . . , vk} (k ≥ 1).
The potential functional behaviors are inferred from the re-
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sources method definitions in the RAML source file which
are encoded as EOperations in our API structural model.
RESTful services represent business processes which may
be organized in a hierarchical manner to represent business
goals. Therefore each function can be further decomposed
into low-level business processes. The formal representa-
tion of a REST service process in SOFL therefore involves
2 steps:

• Modularize REST service associated functions into
proper SOFL processes. We adopt the following two
rules during the modularization process:

– Rule 1: If a function F = { f1, . . . , fm} is associated
with service S , we construct a process Pi for each
sub-function fi (i = 1, . . . ,m) of F.

– Rule 2: If a function F requires a stateful data
item x, then we construct a data store d to repre-
sent x. A datastore d specifies the expected data
resource accessed by function F. It represents a
necessary stateful variable that is shared by sev-
eral processes.

• Fully formalize the pre- and post-conditions of these
processes to precisely express the expected operational
semantics upon their associated services.

We formaly define a SOFL process as a five-tuple:
(P, InPortSet,OutPortSet, preP, postP)

• P is the name of the process
• InPortSet = {inPort1, inPort2, . . . , inPort f } defines the

set of input ports of P where inPorti (i = 1, . . . , f ) is
an input port. Each input port is defined as inPorti =

{v j1 , . . . , v jri
} where vk(k ∈ { j1, . . . , jri }) is a variable of

this port.
• OutPortSet = {outPort1, outPort2, . . . , outPortg} de-

fines the set of output ports of P where outPorti (i =
1, . . . , g) is an output port. Each output port is defined
as outPorti = {vl1 , . . . , vlsi

} where vk (k = l1, . . . , lsi ) is a
variable of this port.

• preP is the pre-condition of P, which specifies the con-
dition that the input variables need to satisfy.

• postP is the post-condition of P, which specifies the
condition that the output variables are required to sat-
isfy.

The semantics of a process P with respect to input and out-
put ports corresponds to the interpretation of a CDFD di-
agram as described in Sect. 2.1 i.e. when one of the input
ports in InPortSet, say inPorti, is available, it means that all
of its input variables are bound to specific values of their
types and the process P will be executed. As a result of
the execution, one of the output ports in OutPortSet, say
outPort j, is made available, meaning all of its output vari-
ables are bound to specific values of their types. If the input
variables satisfy the pre-condition preP before the execu-
tion of P, the output variables are required to satisfy the
post-condition postP after the execution of the process P,
provided that the execution terminates.

To interweave security requirements with functional
requirements at this stage, we introduce the concept of
SOFL process functional scenarios [19]. The pre- and post-
conditions of a SOFL process can be transformed into a
number of independent relations called functional scenar-
ios. Let the post-condition Ppost ≡ (C1 ∧ D1) ∨ (C2 ∧
D2) ∨ . . . ∨ (Cn ∧ Dn), where each Ci (i = 1, . . . , n) is a
predicate called guard condition that contains neither out-
put variables nor output external variables of the SOFL pro-
cess and Di is a predicate called defining condition that
contains at least one output variable but does not contain
any guard condition as its constituent expression [20]. Then
each P̃pre ∧ Ci ∧ Di is called a functional scenario, where
˜F for logical formula F of the input/output variables of a
process denotes the value of F before starting execution of
the process. The pre- and post conditions of a process P
can then be transformed into a functional scenario of the
form ≡ (˜Ppre ∧ C1 ∧ D1) ∨ . . . ∨ (˜Ppre ∧ Cn ∧ Dn). Each
functional scenario (˜Ppre ∧ Ci ∧ Di) independently defines
how the output of P is defined using Di under the condition
˜Ppre ∧ Ci. Guard conditions enforce invariants that con-
strain the behavior of their associated processes. In our case
we define guard conditions that enforce security constraints
thereby achieving the second interweaving of API’s func-
tional and security requirements.

4. Specification Testing

To verify whether the interweaved functional and security
requirements implement all expected functions correctly
and satisfy the desired security constraints, we can option-
ally perform specification testing to verify whether the spec-
ifications reflect the user requirements. Given a process
P ≡ (˜Ppre ∧C1∧D1)∨ . . .∨ (˜Ppre ∧Cn∧Dn) where n ≥ 1, if
we define a test set T , then T is said to satisfy the scenario-
coverage of P if and only if ∀i∈{1,...,n}∃t∈T ·Ppre (t) ∧ Ci(t). We
interpret this as: A test set T satisfies the scenario coverage
for the process P if and only if for any functional scenario,
there exists a test case in T such that it satisfies the conjunc-
tion of the pre-condition ˜Ppre and the guard condition Ci.
The test set T ensures that every functional scenario with its
associated security constraint is covered appropriately.

To check for conformance of a process P specifica-
tions relative to user requirements of an API service opera-
tion o, we generate a test case t for each functional scenario
fi ≡ ˜Ppre ∧ Ci ∧ Di using concrete input values and analyze
the test results in order to determine whether violations of
security constraints are detected. If r is the result of an API
service operation o indicated by user specification using a
test case t, and r′ is the animation [21] (explained shortly)
result of a process specification P using a test case t, if r′ of
the process P matches r, then we can confirm that process
P property of operation o represents the users requirements
and its associated constraints.

Implicit SOFL specifications do not indicate algo-
rithms for implementations. However, they are expressed
with predicate expressions involving pre and post conditions
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Table 1 Testing RESTful service operation AddSalon.

Functional Scenario Test Case Execution Result Expected Result
(access token = validtoken
and access token <> Nil and
len(access token) <> 0 ) and
salons table = conc(˜salons table,
salon) and response message =
“HTTP 200”

(validtoken, “xvfKJgT”, salon ) “HTTP 200” “HTTP 200”

access token <> validtoken and
elems(access token) = {} and sa-
lons table = ˜salons table and re-
sponse message = “HTTP 401”

(validtoken, “ ”, salon ) “HTTP 401” “HTTP 401”

access token <> validtoken and ac-
cess token = Nil and salons table =
˜salons table and response message
= “HTTP 401”

(validtoken, Nil, salon ) “HTTP 401” “HTTP 401”

for a process and can be evaluated if all variables involved
are substituted with concrete values of their types with re-
sults of such evaluations being truth values true or false [4].
For our specification testing, we further apply process ani-
mation technique to obtain the set of concrete values of out-
put variables for each functional scenario. An analysis of a
test results is done by comparing evaluation results with the
analysis criteria. The analysis criteria is a predicate expres-
sion representing the properties to be verified. If the eval-
uation results are consistent with the predicate expression,
the analysis show consistency between the process specifi-
cation and its associated requirement. We generate the test
cases for both input and output variables based on the user
requirements. A simple running example can be used to
demonstrate how we conduct specification testing to test if
the specifications meet its critical requirements and also pro-
vides the desired functionality. In our case study, a RESTful
API request operation AddSalon for creating a salon object
needs to be checked on whether it satisfies its interweaved
security requirement that requires an access token i.e. guard
condition to be provided for a successful authorization for
creation of a salon object. The required function on this
operation is formally given as indicated in Listing 3. The
process AddSalon takes a validtoken, an access token and
salon as input variables and returns an appropriate HTTP
response message as an output variable. The validtoken is a
string constant used to verify the validity of the provided ac-
cess token by returning a boolean value. If we examine the
pre-post conditions of the process AddSalon, we get three
functional scenarios as follows:

(1) (access token=validtoken and access token <> Nil
and len(access token) <> 0 ) and salons table =
conc(˜salons table, [salon]) and response message =
“HTTP 200”

(2) access token <> validtoken and elems(access token)
= {} and salons table = ˜salons table and re-
sponse message = “HTTP 401”

(3) access token <> validtoken and access token = Nil
and salons table = ˜salons table and response message
= “HTTP 401”

We can generate test data from each functional sce-

1 module Salon_API;
2 ...
3 token = string;
4 SalonData = composed of
5 id = string
6 owner = SalonUser
7 business_name = string
8 business_type = string
9 business_description = string

10 business_phone_number = string
11 business_email = string
12 business_address = AddressData
13 price_range = string
14 created = Timestamp
15 end;
16 SalonTable = seq of SalonData;
17 var
18 salons_table: SalonTable
19
20 inv
21 forall[i,j: inds(salons_table)] | i <> j
22 => salons_table(i).id <> salons_table(j).id;
23
24 process AddSalon(validtoken:token, access_token:token, salon: SalonData)
25 response_message: string
26 ext wr salons_table
27 /* Pre condition: id of new salon must be unique */
28 pre not exists[i:inds(salon_table)] | salons_table(i).id = salon.id
29 post (access_token = validtoken
30 and access_token <> Nil
31 and len(access_token) <> 0)

32 and salons_table = conc(̃ salons_table, [salon])
33 and response_message = "HTTP 200"

34 or salons_table = s̃alons_table and elems(access_token) = {}
35 and access_token <> validtoken
36 and response_message = "HTTP 401"

37 or salons_table = s̃alons_table and access_token = Nil
38 and access_token <> validtoken
39 and response_message = "HTTP 401"
40
41 end_process;
42 ...

Listing 3 SOFL formal specification for RESTful API AddSalon

nario through specification animation as earlier described.
Table 1 shows sample test cases covering the three func-
tional scenarios and their corresponding results. The test
cases generated are usually based on test targets which are
predicate expressions, such as the pre and post conditions
of a process. To cover for functional scenario (1), we
provided a test case (validtoken, “xvfKjT”, salon) for the
required input variables validtoken, access token and sa-
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lon object respectively. After executing the test case on
a process specification AddSalon, the output value of vari-
able response message is equal to the expected output value
inferred from the defining condition response message =
“HTTP 200”. For functional scenario (2), we run the test
case (validtoken, “ ”, salon) and the value of the output vari-
able response message corresponds to the expected results.
Running the test case (validtoken, Nil, salon) for functional
scenario (3) also yields a value for the output variable that
corresponds to the expected results as per interpretation of
the user requirements. Therefore, we can determine that the
process specification AddSalon does satisfy its critical re-
quirements and as per its user requirements. Since our focus
is on the relationship between input and output variables,
and security concern rather than function, to simplify our
presentation, the current test does not inspect data stores.
For example, if empty access token is given to AddSalon,
then salon datastore should be untouched. In addition, the
validtoken which could be provided by a third party service
such as an authenticating service, is assumed to be always
valid. However, these specifications are not explicitly cap-
tured in the test. We could incorporate data stores by extend-
ing our test cases. It is also worth noting that when testing
for conformance of a process specification to its associated
service operation, we only need to observe the execution re-
sults of the process by providing concrete input values to
all of its functional scenarios analyzing their defining con-
ditions relative to user requirements.

5. Evaluation of Our Proposed Approach

To evaluate the effectiveness of our proposed approach, we
applied our methodology to an empirical case study of a ser-
vice based on an Online Salon Booking System (OSBS). We
first created RAML specifications that defined our OSBS
service. The specifications formed a foundation from which
we built a domain model representing our OSBS. Listing 4
shows an excerpt of a sample RAML description of our
OSBS API. For brevity, we do not showcase all the elements
that went into building our domain model but rather focus on
showcasing the general structure of an RAML description
file. See our GitHub repository† for the full listing. Lines 7-
14 show resources externally defined in separate files e.g.
API data shapes, resource types and the authenticating se-
curity scheme. Lines 16-55 show sample resource type’s
endpoints and their associated HTTP interfaces with their
corresponding request and response data shapes.

We then modeled our domain entities which were sa-
lons, stylists, services and customers as PrimaryResource-
Types. Every salon, service, stylist, and customer has a
name and relevant Attributes. We defined the attributes of
each entity in our domain as value objects. For example, the
salon entity had attributes such as salon id, name, phone,
email, and address. A customer entity had attributes such

†Full case study: https://github.com/Egalaxykenya/IEICE-
journal-paper-emeka

1 #% RAML 1.0
2 title: SalonService API
3 baseUri: http://localhost:8000/api/{version}
4 version: v1
5 mediaType: application/json
6
7 uses:
8 shapes: ./dataTypes/shapes.raml
9

10 resourceTypes:
11 collection: !include resourceTypes/collection.raml
12
13 securitySchemes:
14 oauth_2_0: !include securitySchemes/oauth2_0.raml
15
16 /salons:
17 type:
18 collection:
19 response-type: shapes.SalonData[]
20 request-type: shapes.NewSalonRequestData
21 get:
22 description: Get a list of Salons based on the salon name
23 queryParameters:
24 salon_name:
25 displayName: Salon Name
26 type: string
27 description: Salon’s name
28 example: "Salon Paradise"
29 required: true
30 ...
31
32 post:
33 description: Salon data created correctly for salon business
34 body: shapes.NewSalonRequestData
35 delete:
36 ...
37 /{salon_id}:
38 type: ...
39 get:
40 description: Get the salon with ‘salon_id = {salon_id}‘
41 responses:
42 200:
43 body:
44 application/json:
45 example: |
46 {
47 "data": {
48 "id": "lsVx",
49 "name": "Salon Paradise",
50 "location": "Chuo Ku,Tokyo",
51 "link":"http://localhost:8000/api/v1/salons/SalonParadise"
52 },
53 "success": true,
54 "status": 200
55 }
56 ...

Listing 4 Sample RAML description file

as customer id, name, phone and bio description. Next,
we iteratively conducted threat modeling activities using
ADTrees on our domain model entities. Our goal here was
to identify potential vulnerabilities and attacks that could be
leveraged on our API resources and their appropriate coun-
termeasures. We defined the countermeasures as security
requirements which we implicitly or explicitly interweave
with their related functional requirement. For example, the
bio description attribute could have been assigned a string
data type directly. However, upon using ADTree to model
threats on an API function that would persist a customer en-
tity data shape into our database, we identified that if the
bio description were left to accept any string data type, it
could make its associated API endpoint vulnerable to stored
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Fig. 6 Sample Ecore metamodel for OSBS

XSS [22] attack. An attacker can include malicious script
as part of the bio description which would later be injected
into a browser’s DOM [22] and wreak havoc, whenever the
affected customer entity data shape is retrieved by users with
elevated privileges in our OSBS. By strictly defining a valid
string representation of a bio description with an invariant
such as a custom string processing function that checks for
any script tags or advanced XSS payloads not written in
plain text such as base64 or binary, we can protect our API
endpoint from stored XSS vulnerability.

We achieved this by moving bio description attribute
out of the customer entity and created a domain primitive
value object CustomerBio. This implemented an invariant
that protected our customer entity data shape from stored
XSS vulnerability and its potential future mutations. More-
over, it enforced validation checks that could assert the va-
lidity of the bio description value object for a certain op-
eration while at the same time making it possible for our
OSBS to perform any other specific action on it. This
technique whenever applied in our threat modeling process
achieved implicit interweaving of functional and security re-
quirements. Some of the identified countermeasures con-
strained the behavior of our API end points without the need
for defining them as domain primitives. These counter-
measures whenever incorporated in our modelling process
achieve the explicit interweaving of functional and security
requirements. For example, to protect our OSBS endpoints
that implement PUT, PATCH, POST and DELETE Method-
Types, from Cross Site Request Forgery attacks [23], we
could provide a unique token among other required param-
eters for each API request. We enforced such type of con-
straints later when doing behavioral modeling using SOFL.
We then created a metamodel representing our OSBS do-
main model by transforming our entities to EClasses, value
objects and domain primitives to EDataTypes, and entity re-
lations to EReferences. Figure 6 shows a sample generated
Ecore metamodel of our OSBS even though we only show-
case a few modeled entities for brevity and simplicity pur-
poses.

1 module Salon_API;
2
3 class Address;
4
5 var
6 street, city, region, country: string
7
8 method Init()
9

10 post street = "" and city = "" and country = ""
11 and region = ""
12
13 end_method;
14
15 end_class;
16
17 type
18
19 SalonData = composed of
20 salon_id = string
21 name: string
22 email: string
23 address: Address
24 end;
25 SalonCollection = seq of SalonData;
26 var salon datastore: SalonCollection
27
28 inv /* salon_id uniquely identifies SalonData in salon datastore */
29 forall[i,j: inds(salon datastore)] | i <> j
30 => salon datastore(i).salon_id
31 <> salon datastore(j).salon_id;
32
33 process Search(search id: string) salon object: SalonData
34 ext rd salon datastore
35 pre exists([i: inds(salon datastore)] |
36 salon datastore(i).salon_id = search id)
37 post salon object inset elems(salon datastore) and salon object = search id
38 end_process;
39
40 process UpdateSalon(salon object: SalonData, token: string,
41 salon name: string) status message: string
42 ext wr salon datastore
43 pre exists([i: inds(salon datastore])] |
44 salon datastore(i) = salon object)
45 post len(salon datastore) = len(̃ salon datastore)
46 and (forall[i:inds(̃ salon datastore)] |
47 (̃ salon datastore(i) = salon object
48 => salon datastore(i)
49 = modify(̃ salon datastore(i), name-->salon name))
50 and (̃ salon datastore(i) <> salon object
51 => salon datastore(i) = ˜salon datastore(i)))
52 and token <> "" and status message = "HTTP 204"
53 end_process;
54 end_module;

Listing 5 SOFL formal specification for RESTful API UpdateAction

Finally, we generated formalized RESTful API specifi-
cation via behavioral modeling of our designed metamodel.
Here we transformed all the RESTful API methods for ac-
cessing the different ResourceTypes and Collections into
SOFL processes with SOFL formal notation. A Collec-
tion represents a set of ResourceTypes exposed as XML or
JSON. Listing 5 shows an excerpt of the end result of the
API’s SOFL formal specifications. For example, a REST-
ful API UpdateAction that updates the salon name of a sin-
gle salon is transformed to a SOFL process UpdateSalon
(lines 40-53), corresponding to PUT HTTP verb. The pro-
cess relies on the output of a Search process that yields a sa-
lon object. It then takes the salon object, new salon name
and a unique token as inputs, updates the salon’s object at-
tribute name and generates a status code that highlight suc-
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Table 2 Summary of case study process specifications

No. Process Specification Functional Scenarios Test Cases Passed Test Cases
1 RetrieveSalon 4 4 3
2 AddSalon 4 4 3
3 DeleteSalon 4 4 3
4 GetSalonService 4 4 3
5 DeleteSalonService 4 4 3
6 GetSalonCustomer 4 4 3
7 AddSalonCustomer 4 4 3
8 DeleteSalonCustomer 4 4 3
9 GetSalonBookings 4 4 3
10 GetSalonBooking 4 4 3
11 DeleteSalonBooking 4 4 3
12 AddSalonServiceCategory 3 3 3
13 GetSalonServiceCategories 3 3 3
14 GetSalonServiceCategory 3 3 3
15 DeleteSalonServiceCategory 3 3 3
16 GetSaloncategoryServices 3 3 3
17 CreateSalonService 3 3 3
18 RetrieveSalons 3 3 3
19 GetSalonCustomers 3 3 3

cess or failure of the process operation. The unique token
represents a security requirement that constrains the behav-
ior of the UpdateSalon process as a guard condition (line
52). SOFL offers its own type declarations therefore, the
salon ResourceType (object) will be declared as of a com-
posite type, salon id, new salon name and unique token pa-
rameters as of a string type and the data store declared as
sequence type to represent a Collection of salon Resource-
Types. In SOFL notation, a data store variable with a tilde
sign e.g. ˜salondatastore(i) denotes the value of the data
store before it is updated by a SOFL process. Table 2 gives
a summary of a subset of all the process specifications of
our case study, their number of functional scenarios and
the test cases run for the functional scenarios. Rows 1 -
11 include process specifications which our proposed ap-
proach injected an access control security requirement to
prevent Broken Object Level Authorization API vulnera-
bility. A test relative to original RAML specification fails
in the case where injected security measure (like require-
ment of an object level access control) is not respected, i.e.,
object level access control is not checked. Our generated
SOFL specification correctly rejects such case (i.e., error
message is returned), while the original RAML specifica-
tion (incorrectly) dictates to accept such request, because
it is not aware of such measure. A complete listing of all
the process specifications with their functional scenarios can
be accessed via this† full case study repository in the file
SOFL/salon api sofl PFS.txt.

5.1 Limitations

Through the application of our domain driven approach for
modeling RESTful web APIs via a case study we have been
able to demonstrate how our proposed approach can offer

†Full case study: https://github.com/Egalaxykenya/IEICE-
journal-paper-emeka

a comprehensive formalized approach for designing REST-
ful APIs. However, since we adopt SOFL formalism, this
may impose a learning curve on engineers as they will need
to learn and be conversant with SOFL semantics. However,
in the long run, once they are conversant with SOFL, they
will have the benefit of creating precise security aware API
specifications using our approach. Further more, for most
RESTful API projects, requirements are not fully formal-
ized, rather, they are described in certain informal manner
such as RAML or Swagger [24] and then translated into ex-
ecutable code due to external constraints such as budgetary
limitations or time constraints. In such cases, the formal-
isation requirement may not be preferred by some project
stakeholders. In addition, even though we rely on official
documented databases such as OWASP and CVE to enable
our threat modeling activity in our proposed approach to
provide a wide coverage on API vulnerabilities, we cannot
guarantee that all security vulnerabilities and threats will be
addressed absolutely. However, since the threat modeling
activities in our proposed approach encourage refinement
through iteration, we are confident that our approach will
provide a satisfactory coverage against most API security
threats and vulnerabilities.

In spite of the aforementioned limitations, the applica-
tion of our proposed approach in modeling security aware
RESTful APIs in an implemented project has given us the
confidence that it can help engineers have a blueprint for im-
proving RESTful APIs requirement specifications in prac-
tice.

6. Related Works

As far as the security and modeling of web API’s is con-
cerned, several approaches have been done in the field of de-
veloping RESTful applications, but to the best of our knowl-
edge, there are a few results that provide detailed model
driven techniques with a focus on paying attention to both
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APIs functional and security requirements at the same time.
Fett et al. [25] propose a rigorous, systematic formal analy-
sis of OpenID Financial-grade API (FAPI) based on a web
infrastructure model. They first develop a precise model
of the FAPI in the web infrastructure model, including dif-
ferent profiles for read-only and read-write access, differ-
ent types of clients, and different combinations of secu-
rity features, and use their model of FAPI to precisely de-
fine central security properties of an API. However, their
model treat API security and functional requirements inde-
pendently. Kopecky et al. [26] present hRESTS as a promis-
ing solution for providing a microformat model for RESTful
services. However, their approach focuses more on docu-
mentation and service discovery with limited clarity on the
relationship between API’s security and functional require-
ments and their interdependence. Alqahatni et al. [27] in-
troduce an approach for automatically tracing source code
vulnerabilities at the API level across project boundaries.
Their approach takes advantage of Semantic Web and its
technology stack to establish a unified knowledge represen-
tation that can link and analyze vulnerabilities across project
boundaries. However, they focus at the source code level
rather than the design level. Klien et al. [28] provide an
approach for showcasing how the constraints of REST and
RESTful HTTP can be precisely formulated within temporal
logic. However, their focus is mainly on formal characteri-
zation of REST for automated analysis.

Compared with the aforementioned related works and
with our previous work as mentioned in Sect. 1, which also
focused on interweaving APIs’ functional and security re-
quirements, our new approach provides a formal require-
ment specification methodology with an added advantage
of providing a model driven secure by design approach for
RESTful APIs. This encourages writing precise formal
specifications defined by a metamodel. We take advantage
of Domain Driven Design concepts, Attack-Defense Trees,
Ecore metamodel and SOFL to provide a firm foundation
for structural and behavioral modelling of APIs. In addi-
tion, our methodology lays a foundation for further running
formal proofs and techniques such as specification testing
on an API’s specifications to verify its satisfiability of both
functional and security requirements.

7. Conclusion and Future Works

In this paper, we have proposed a new six step modeling
approach that encourages security aware API design prin-
ciples. We present a Domain Driven Design approach for
secure RESTful API design, that utilizes a metamodel offer-
ing a strict foundation for what an API does. The model re-
lies on domain primitives which combine secure constructs
and value objects to define the smallest building blocks of a
domain and utilizes Ecore metamodel to define the abstract
syntax, the possible domain elements, and the relations be-
tween them. We adopt Attack-Defense Trees as our threat
model of choice for identifying documented API vulnera-
bilities and their respective countermeasures. To support

the efficient use of our proposed model, we plan to enrich
our model by incorporating an optional Object Constraint
Language (OCL) support in our model as well as build a
supporting tool in the future for semi-automating the trans-
formation of generated formal API specifications into exe-
cutable code.
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