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Siamese Transformer for Saliency Prediction Based on Multi-Prior
Enhancement and Cross-Modal Attention Collaboration

Fazhan YANG†, Xingge GUO†a), Nonmembers, Song LIANG†, Member, Peipei ZHAO†,
and Shanhua LI†, Nonmembers

SUMMARY Visual saliency prediction has improved dramatically
since the advent of convolutional neural networks (CNN). Although CNN
achieves excellent performance, it still cannot learn global and long-range
contextual information well and lacks interpretability due to the locality of
convolution operations. We proposed a saliency prediction model based
on multi-prior enhancement and cross-modal attention collaboration (ME-
CAS). Concretely, we designed a transformer-based Siamese network ar-
chitecture as the backbone for feature extraction. One of the transformer
branches captures the context information of the image under the self-
attention mechanism to obtain a global saliency map. At the same time,
we build a prior learning module to learn the human visual center bias
prior, contrast prior, and frequency prior. The multi-prior input to another
Siamese branch to learn the detailed features of the underlying visual fea-
tures and obtain the saliency map of local information. Finally, we use an
attention calibration module to guide the cross-modal collaborative learn-
ing of global and local information and generate the final saliency map.
Extensive experimental results demonstrate that our proposed ME-CAS
achieves superior results on public benchmarks and competitors of saliency
prediction models. Moreover, the multi-prior learning modules enhance
images express salient details, and model interpretability.
key words: saliency prediction, Siamese transformer, multi-prior, cross-
modal

1. Introduction

With the continuous advancement of Internet technology,
massive amounts of video and image data are generated ev-
ery day. How to quickly obtain useful information from
these images and videos has become an increasingly press-
ing issue. The human visual system has the characteristics
of visual attention. In complex external scenes, it can ig-
nore the interference information and quickly perceive and
process critical areas [1]. This mechanism has significant
meaning for us to sort out the information that are needed
or interested in from a large amount of external information.
Inspired by visual attention, people have introduced this vi-
sual attention into the field of computer vision, and a large
number of visual saliency methods for predicting human eye
attention have emerged. Image processing based on this vi-
sual attention mechanism can better allocate limited com-
puter resources to interesting targets, and has made good
progress in various applications, such as image segmenta-
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tion [2], [3], target recognition and detection [4], [5], image
compression [6], [7] and visual quality assessment [8], [9],
etc.

In the past two decades, many visual saliency predic-
tion methods have been proposed, and the prediction effect
has been gradually improved, but there are still many prob-
lems. Traditional saliency prediction methods [10]–[12]
mostly use bottom-up methods driven by data or stimuli to
extract low-level information, such as texture, spectrum, and
color, to find salient regions of images. Traditional methods
are characterized by simplicity, intuition, ease of design, and
a lack of complexity, so early research mostly used bottom-
up methods [13]–[15]. However, the lower-level informa-
tion cannot understand the structure, position, and semantic
information contained in the image, which limits the feature
representation ability of saliency prediction, and it is very
difficult to predict saliency in complex scenes.

Convolutional neural networks have achieved signifi-
cant success in computer vision [16]–[18]. Its powerful fea-
ture extraction and expression capabilities have further im-
proved the performance of saliency prediction algorithms,
and then saliency prediction algorithms based on deep learn-
ing have gradually become mainstream. However, neural
networks also have many shortcomings, perhaps the most
well-known of which is their “black box” nature, which
means that without knowing how and why a neural network
produces a certain output, what is the cause to this predic-
tion. Lack of interpretability. At the same time, convolution
operation lacks the global understanding of image, cannot
model the dependency between features, and cannot make
full use of context information. The convolution operation
based solely on the sliding window makes the significant
prediction of the image’s global contrast model ineffective,
which is very important for the significant detection.

Compared with CNN, the self-attention mechanism of
transformer [19] is not limited by local interactions, and can
not only mine long-distance dependencies but also perform
parallel calculations. It has also achieved remarkable suc-
cess in computer vision tasks. However, the pixels in the
image have a very high resolution. The computational com-
plexity of the transformer used in the visual field is the
square of the image scale, which will lead to an enormous
amount of calculation. Many models will reduce the size
of the image to reduce the amount of calculation, but this
useful information will be lost. The Swin Transformer [20]
model is an improved version proposed by Microsoft based
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Fig. 1 Example of visual saliency prediction. The first row shows natural
images that are recognizable by the human eye. The second row is the truth
map. The third row is the saliency map predicted by our method.

on the transformer model. Transformer not only focuses on
global modeling of information, but also proposes a hier-
archical network structure to solve the multi-scale problem
of visual images using sliding window operations, thereby
reducing the computational complexity of transformer.

Modeling based on prior knowledge is helpful for
learning the details of the underlying features. Biological
vision studies have shown that the visual system is more
sensitive to the contrast of the received information. There-
fore, people will pay more attention to the areas in image
that have a higher contrast than the surrounding objects [21].
The filter response can well reflect the salient regions of the
image. In addition, people generally place objects in the
center of the image or slightly off-center. That is, the central
part of the image is often the most salient area.

Based on this, we propose a Siamese transformer
saliency prediction model with multi-prior augmentation
and cross-modal attention synergy. Transformer extracts the
context information of the image under the self-attention
mechanism, simulates the focus of human perception, con-
centrates on the salient area, and obtains the global saliency
map. At the same time, it combines prior knowledge and
neural networks to obtain high-level local saliency infor-
mation, and guides cross-modal collaborative learning of
saliency features through attention calibration, thereby opti-
mizing the saliency features of the entire scene.

In summary, the main contributions of this paper are as
follows:

1) We propose a multi-prior knowledge module. In
complex contexts, a single prior does not perform well.
Based on the contrast prior and frequency prior, we con-
sider that people generally pay more attention to the center
area, so we add the center prior knowledge module. It en-
hances the salient details of the image and also enhances the
interpretability of the model.

2) We propose a cross-modal attention collaborative
Siamese network, which combines prior knowledge with
deep learning. By using the self-attention mechanism, the
first transformer branch extracts the global features of the
image, and the second Siamese branch enhances the image
significantly based on prior knowledge. Local detail feature
learning, cross-modal collaborative learning of global and
local information under the guidance of the attention cali-
bration module.

3) Our ME-CAS model is verified on three mainstream
saliency prediction datasets. Experiments show that the
ME-CAS algorithm is superior to other mainstream algo-
rithms on multiple evaluation metrics, and its effectiveness
has been verified.

2. Related Work

In this section, we will review the relevant research results of
saliency detection and the development of transformer, and
give a brief overview of related methods. Visual saliency
detection is mainly divided into two types, one is to predict
the focus of human eyes, and the other is to detect salient
objects. Both have their research value. The work of this
paper is mainly to predict the focus of human eyes.

2.1 Visual Saliency Prediction

The traditional saliency model detection mainly uses the
characteristics of the image such as brightness, edge, and
contrast, and considers the difference between the pixel and
the surrounding neighborhood in terms of features, to cal-
culate the saliency map of the pixel. Due to the widespread
application of deep learning techniques, saliency prediction
has progressed greatly compared to traditional methods. Vig
et al. proposed an image saliency detection model eDN
based on a convolutional neural architecture in [22]. The
model uses CNN to output feature vector maps, and these
feature vectors are combined and then input into the linear
SVM classifier. These feature vectors are trained by super-
vised learning to obtain the prediction results of the saliency
map.

Kummerer proposed DeepGaze I [23], the first model
that applies transfer learning to the saliency field. It
uses the features of the trained ImageNet object detection
AlexNet [18] network to train the model of human eye focus.
The prediction effect of the eDN model was obtained, and
then the model was improved, and VGG19 [24] was used for
feature extraction. Since then, there have been a lot of mod-
els about human eye focus detection like mushrooms after
rain.

The DeepFix [25] network utilizes a large convolu-
tional layer of different scales of the receptive field to cap-
ture the semantic information in the picture and introduces
a convolutional layer with a location bias (LBC) to simulate
the central bias of people seeing images. Pan et al. pro-
posed SalGAN [26], a deep network for saliency prediction
trained with adversarial examples. Like all other generative
adversarial networks, it consists of two modules, a gener-
ator and a discriminator, which work together to generate
saliency maps. The SAM-VGG [27] model breaks through
the standard method of saliency prediction using a feed-
forward network to calculate fixation maps and proposes
an accurate saliency prediction model that combines neu-
ral attention mechanisms. The EML-NET [28] model intro-
duces a scalable approach to combine multiple deep con-
volutional networks of arbitrary complexity as encoders for



1574
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

visual saliency-related features.
The DeepGaze IIE [29] model discusses the contri-

bution of various backbones to saliency detection, and it
is found that cascading and fusing multiple backbone net-
works pre-trained on ImageNet can effectively improve the
performance of the saliency detection model. TranSal-
Net [30] is the first saliency model combining CNN and
transformer. Based on the CNN architecture, it uses trans-
former’s self-attention mechanism to learn feature informa-
tion for feature maps of different scales, thereby generating
feature maps. However, the computational complexity of
the classic transformer module it utilizes is the square of the
input scale, which will cause huge computational overhead.
Therefore, the model will reduce the size of the image to re-
duce the computational load or apply it to smaller features,
but this will lose useful information.

Recently, the heterogeneity of saliency maps across
different subjects has attracted the attention of researchers
in computer vision community. In [63], Jiang et al. pro-
posed the use of visual attention to identify individuals with
autism spectrum disorders (ASDs). In [51], Fan et al. inte-
grated emotional factors into the traditional visual attention
prediction and used emotional factors to correct the predic-
tion results of visual attention. In [64], Xu et al. proposed a
saliency prediction method for individual differences, which
can generate different saliency maps for different individ-
uals, and can be applied in personalized recommendation,
personalized advertising and other fields.

2.2 Transformer Development

Transformer was proposed by Google for the machine trans-
lation task in 2017. It uses the multi-head self-attention
mechanism to effectively describe the long-distance depen-
dencies between words in the sequence. This model has
brought a profound shock to the field of natural language
processing. It is a landmark model [19]. With the deepening
of the research, it has been paid more and more attention in
the computer vision task.

Image transformer [31] was the first to migrate the
transformer architecture to the field of computer vision.
Since 2019, the visual model based on the transformer archi-
tecture has developed rapidly, and a large number of note-
worthy results have emerged. Dosovitskiy et al. proposed
the ViT (vision transformer) model [32], an image classifica-
tion scheme based entirely on the self-attention mechanism.
This is also the first work of the transformer to replace stan-
dard convolution, which extracts images as non-overlapping
images. Blocks are used as the input of the encoder to
achieve a word-like sequence, and then the local and global
information between image blocks in the sequence is simul-
taneously extracted through the self-attention mechanism
and positional encoding, respectively. Carion et al. built
a new object detection framework DETR (detection trans-
former) [33] and applied transformer to the field of target de-
tection for the first time. Liu et al. [34] applied transformer
to the salient target detection task. The mode uses trans-

former’s self-attention mechanism to describe the global de-
pendence on salient targets. At the same time, T2T and re-
verse T2T methods are used to enhance the multi-scale char-
acteristics of the representation. The boundary information
is further introduced to refine the boundary of salient target
prediction. After that, the transformer-based basic network
Swin Transformer was applied to various vision tasks. The
SwinNet model [35] applies Swin Transformer to salient tar-
get detection and proposes a salient target detection model
for RGB-D and RGB-T, which achieves better performance.
Inspired by this, this paper applies Swin Transformer to vi-
sual human eye focus detection as a backbone network to
extract multi-scale features.

3. Model Architecture

The overall structure of the model is shown in Fig. 2. First
of all, the image is combined with the center prior, con-
trast prior, and frequency prior that simulate the human
center bias, aiming to further suppress invalid information,
strengthen the expression of details and highlight local in-
formation. Then images and prior features are input into
the Siamese Swin Transformer [20] network to learn remote
context information and local information, and extract four
sets of salient feature maps of different scales from the back-
bone network. Then the attention calibration module (ACM)
is used for detail redirection to guide cross-modal collabora-
tive learning of saliency features. Finally, the CNN decoder
fuses feature maps for saliency prediction.

3.1 Multi-Prior Enhancement

3.1.1 Contrast Prior

To reduce the complexity of the contrast prior, the SLIC
(simple linear iterative clustering) algorithm [36] is used to
form adjacent pixels with similar characteristics in the im-
age into irregular pixel blocks with certain visual signifi-
cance. The position Pi and color Ci of the pixel pi are ob-
tained from the mean value of the spatial positions of all
pixels in the pixel block and the mean value of the LAB
color. The color distance and space distance between pixel
blocks pi and p j are defined as:

dc

(
pi, p j

)
=

∥∥∥Ci −C j

∥∥∥ (1)

dp

(
pi, p j

)
=

∥∥∥Pi − P j

∥∥∥ (2)

where ∥ · ∥ is the L2 norm.
Contrast is the degree of difference between pixel

blocks relative to the overall image. Contrast highlights
salient regions more, and high contrast in adjacent regions
draws more attention than high contrast in distant regions.
For the pixel block p j, if the spatial distance between the
pixel block p j is smaller, the influence of pi on the cal-
culation of p j contrast is greater, and its saliency value is
calculated by calculating its color contrast with other pixel
blocks, so the global contrast of a pixel block pi is defined
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Fig. 2 Architecture of our ME-CAS network.

Fig. 3 Contrast priors. (a) Image, (b) ground truth, (c) pixel block divi-
sion, (d), (e) and (f) contrast prior, σ2 points are 0.3, 0.5, 0.7 respectively.

as:

Cgloi =

n∑
j=1

d2
c

(
pi, p j

)
Wp

(
pi, p j

)
(3)

where wp(i, j) = e−d2
p(pi,p j)/σ2

, and wp(i, j) represents the
spatial difference between the pixel block pi and the pixel
block pi.

3.1.2 Frequency Prior

The bandpass filter can well reflect the salient area of the im-
age for color filtering. In addition, according to the measure-
ment of the biological visual system, our cellular response
is similar to the Log-Gabor function, which is symmetri-
cal in the logarithmic frequency, and the Log-Gabor filter
can be constructed with an arbitrary bandwidth to reduce
low-frequency over-representation [37]. We implement a
saliency frequency prior to using a 2DLog-Gabor bandpass
filter. Through the transfer function of the 2DLog-Gabor fil-
ter, the three channels of the image are band-pass filtered in
the CIELAB color space, and then the saliency map based
on the frequency prior is obtained according to the filtering
results of the three channels. The frequency prior saliency
S f is defined as:

S f =
(
L2 + A2 + B2

)1/2
(4)

Fig. 4 Frequency priors. (a) Image, (b) ground truth, (c), (d) and (e) are
frequency prior, σF are 6.0, 6.2 and 6.4 respectively.

L = F−1 (F (IL)∗ LG) (5)

A = F−1 (F (IA)∗ LG) (6)

B = F−1 (F (IB)∗ LG) (7)

where F(•) and F−1(•) represent Fourier transform and in-
verse Fourier transform, * represents convolution opera-
tion, IL, IA, IB represent the three channels of the image in
CIELAB color space, respectively. LG is the transfer func-
tion of the 2D Log-Gabor filter, expressed in the frequency
domain as:

LG(u) = exp

− (
log
∥u∥2
ω0

)2

/2σ2
F

 (8)

where u = (u, v) ∈ R2 is the coordinates of the Log-Gabor
filter in the frequency domain, ω0 and σF are the center fre-
quency band and bandwidth of the filter, ω0 = 0.002.

3.1.3 Central Prior

Most saliency detection algorithms use center priors as a
complement to contrast or frequency priors to strengthen
the impact of saliency spatial locations on detection results.
Combining previous research, we let the network learn the
prior knowledge of the center, and we constrain each before
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a two-dimensional Gaussian function whose mean and co-
variance matrix are freely learnable. This allows the net-
work to learn its prior knowledge entirely from the data,
without relying on assumptions from biological studies. The
central bias is modeled using a set of Gaussian functions
with a diagonal covariance matrix. The mean and variance
of each prior graph are calculated according to the following
equations:

f (x, y) =
1

2πσxσy
exp

−
 (x − µx)2

2σ2
x
+

(
y − µy

)2

2σ2
y




(9)

3.2 Siamese Transformer

Swin Transformer proposes a method that includes slid-
ing window operations and hierarchically constructs trans-
formers. The model introduces the hierarchical construc-
tion method commonly used in CNN. With the deepening
of the network, downsampling can generate multi-scale fea-
tures. In the self-attention calculation process, the calcula-
tion is constrained to be carried out within the divided local
non-overlapping window, so that the algorithm complexity
changes from the previous square relationship with the im-
age size to a linear relationship, and the calculation amount
is greatly reduced. At the same time, the sliding window is
used to make the information of multiple non-overlapping
windows interact effectively, that is, translation invariance
is maintained without reducing the accuracy rate.

We adopt twin Swin Transformers to extract multi-
level feature information of images and multi-prior knowl-
edge respectively. The model first uses Patch Partition to
divide the input image into non-overlapping patch sets ac-
cording to 4×4 adjacent pixels as a patch, and then linearly
transforms each pixel channel data through the Linear Em-
bedding module, and the feature dimension is converted to
C. Then the data enters multiple Swin Transformer modules
and Patch Merging modules to obtain feature maps of dif-
ferent scales. The size of the feature maps is 1/4, 1/8, 1/16,

and 1/32 of the input, respectively denoted as
{
S c

i

}4

i=1
and{

S p
i

}4

i=1
. Among them, the Swin Transformer based on the

sliding window can be expressed as:

Ẑl = W − MS A
(
LN

(
Zl−1

))
+ Zl−1 (10)

Zl = MLP
(
LN

(
Ẑl

))
+ Ẑl (11)

Ẑl+1 = S W − MS A
(
LN

(
Zl

))
+ Zl (12)

Zl+1 = MLP
(
LN

(
Ẑl+1

))
+ Ẑl+1 (13)

where LN represents the normalized network layer, MLP
represents the multi-layer perceptron including the activa-
tion function GELU, Ẑl represents the output of the self-
attention module, and Zl represents the output of the MLP

module of the l block.

3.3 Attention Calibration Module

Since the position of salient objects in multi-modality im-
age pairs should be the same, the features from different
modalities need to be aligned at first to show the common
salient position. At the same time, image saliency predic-
tion should not only pay attention to the global context in-
formation, but also the local spatial information of the im-
age. Since RGB images show more appearance informa-
tion, feature extraction contains a large amount of global
context information, while prior knowledge features show
more local spatial information. The channel attention mech-
anism aggregates useful feature information by compressing
the two-dimensional space of the feature map. However,
detailed information is lost through the compressed chan-
nel attention weight. The detailed information of the im-
age must be added to the spatial attention mechanism. In
this paper, the attention calibration module combines these
two different feature information, while paying attention to
global contextual information and local spatial information,
and guides the cross-modal collaborative learning of global
and local information to pay more attention to salient con-
tent in each modality.

First, the contextual feature S c
i and the prior feature

S p
i are fused to perform channel attention calculations to

achieve channel alignment of the two modalities:

CAi = Mc

(
S c

i × S p
i

)
(14)

Where × represents element multiplication and Mc(•) rep-
resents channel attention calculation [68].

Then, the spatial attention calculation is carried out,
and the salient content of each mode is spatially calibrated
to achieve detail redirection:

Fc
i = Ms

(
S c

i ×CAi
) × (

S c
i ×CAi

)
(15)

F p
i = Ms

(
S p

i ×CAi

)
×

(
S p

i ×CAi

)
(16)

Where Ms(•) represents channel attention calculation [68].
Finally, the spatial calibration features are fused:

Fa
i = Fc

i × F p
i (17)

After multi-modal information fusion, channel align-
ment and spatial calibration are realized, and strong charac-
terization ability is obtained.

3.4 Saliency Feature Decoder

After passing the attention calibration module, feature in-
formation on multiple scales is obtained. According to the
decoding idea of FPN, the high-level features are gradually
fused with the shallow features. The multi-scale feature in-
formation is up-sampled to obtain a feature map of the size
of its adjacent shallow features. To enhance the long-range
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and multi-scale information of the feature map, the upsam-
pled feature map is concatenated with the feature informa-
tion of the corresponding jump connection. The specific op-
eration is as follows:

Fi =

 Upsample
(
Fa

i

)
i = 1

Concat
(
Fa

i , F̂i−1

)
i = 2, 3, 4

(18)

F̂i = Re LU
(
BN

(
f 3×3 (Fi)

))
i = 1, 2, 3, 4 (19)

Finally, the saliency map with the same input image
size is obtained by upsampling, and the sigmoid function is
used to activate the saliency map:

ŷ = sigmoid
(
U psample

(
F̂4

))
(20)

ŷ is the significance prediction map.

3.5 Loss Function

Saliency predictions are usually evaluated by different met-
rics to determine their quality factors [27]. Recent saliency
prediction studies [38]–[40] show that using saliency evalu-
ation metrics to define loss functions can significantly im-
prove the performance of saliency prediction models. In
this paper, we refer to TranSalNet [30] and use the linear
combination of three different indicators as the loss func-
tion, which is expressed as follows:

L
(
ŷ, yden, y f ix

)
= αLKL

(
ŷ, yden

)
+

βLCC

(
ŷ, yden

)
+ λLNS S

(
ŷ, y f ix

) (21)

where ŷ is the saliency prediction map, yden is the continu-
ous saliency distribution map, and y f ix is the binary map of
the position of human attention. LKL, LCC and LNS S repre-
sent kullback-Leibler divergence, linear correlation coeffi-
cient, and normalized scanpath saliency, respectively, which
are commonly used evaluation indicators in the evaluation
of saliency detection models. According to experimental
verification, we set α, β and λ to 10, -1 and -1.

4. Experimental Results

4.1 Datasets

The models proposed in this paper were trained and
tested on four databases: MIT1003 [41], MIT300 [42],
CAT2000 [43] and SALICON [44]. Each database is de-
scribed in detail below:

MIT1003 [41]: This database contains 1003 images.
This database is also the first large database used to measure
performance in the field of human eye focus detection. The
eye tracker is used to record the eye-focused area in a pic-
ture, and the obtained eye-focused area is Gaussian filtered
to obtain the final saliency map of the human eye-focused
point.

MIT300 [42]: This database contains 300 images, and
the processing process is similar to MIT1003. The truth

map of the focus of the human eye is not public, but pro-
vides an online submission method to allow researchers to
submit their models to the prediction map of the human eye
focus model of the 300 images in this database, to be able to
compare the difference in the performance of the detection
model of each human eye focus.

CAT2000 [43]: This database contains 4000 images,
2000 for training and 2000 for testing. It consists of 20 dif-
ferent categories like cartoon, art, satellite and outdoor, etc.
Its test set is not public and needs to be submitted online for
model evaluation.

SALICON [44]: This dataset contains 20,000 images
selected from the Microsoft COCO dataset, which is by far
the largest dataset in the field of image human eye focus
prediction. It contains 10000 training sets, 5000 validation
sets, and 5000 test sets. This dataset does not record eye
movement data using an eye tracker, but eye movement data
is recorded with a mouse. Its test set is not public, and the
prediction results must be submitted to the SALICON chal-
lenge website [45] for evaluation.

4.2 Evaluation Metrics

There are many evaluation metrics in the field of saliency
prediction research. Previous saliency evaluation studies
have shown that using multiple metrics can improve the
fairness of evaluation. According to the different assump-
tions made by evaluation metrics on visual saliency, they
can be divided into location-based evaluation metrics and
probability distribution-based evaluation metrics: location-
based evaluation metrics treat saliency as a random vari-
able, and probability distribution-based evaluation metrics
treat saliency as a probability distribution [46]. There
are nine commonly used evaluation metrics, but accord-
ing to the MIT and SALICON benchmarks, the follow-
ing seven metrics are usually employed now, among which
the location-specific evaluation metrics include normalized
scanpath saliency (NSS), Area under ROC Curve (ROC
curve), shuffled AUC (sAUC ) and information gain (IG);
location-based evaluation metrics include kullback-leibler
divergence (KL), linear correlation coefficient (CC) and
similarity metric (SIM) [47].

In addition, according to the measurement methods of
different evaluation metrics, they can be divided into simi-
larity measurement metrics and dissimilarity measurement
metrics: the larger the similarity metrics, the better the
model performance; the smaller the dissimilarity metrics,
the better the model performance. Among the metrics used
above, the KL is a similarity metrics, and the rest are non-
similarity metrics.

4.3 Implementation Details

Currently, most models adopt transfer learning, following a
state-of-the-art similar training process, where the param-
eters of the feature extraction network are initialized with
weights trained on ImageNet [48], and other layers are ini-
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Table 1 The prior knowledge ablation study of our model on the
MIT1003 dataset

Contrast Frequency Central sAUC↑ NSS↑ CC↑ AUC↑ SIM↑
0.553 2.196 0.892 0.883 0.713

✓ 0.569 2.231 0.898 0.887 0.725
✓ 0.559 2.242 0.898 0.885 0.719

✓ 0.557 2.201 0.896 0.887 0.726
✓ ✓ 0.567 2.251 0.899 0.890 0.736
✓ ✓ 0.578 2.261 0.897 0.892 0.750

✓ ✓ 0.574 2.264 0.900 0.891 0.748
✓ ✓ ✓ 0.584 2.267 0.901 0.894 0.755

tialized randomly. To prevent the model from overfitting,
we firstly trained the largest dataset SALICON, then freeze
some parameters and fine-tune on MIT1003 and CAT2000.
For MIT1003, we randomly divided it into 900 training sets
and 103 validation sets; for CAT2000, we randomly sam-
pled 10 images from each category as the validation set, and
the rest were training sets.

The size of the input picture is adjusted to 384 ×
384, the batch-size of the training network is set to 2, the
Adam [49] optimizer is used to train the network, and the
initial learning rate is set to 1 × 10−5. During the train-
ing process, the verification frequency is limited to 1, and
the verification is performed every time the training is per-
formed. Finally, save the parameters and use the test set to
test the final detection ability of the model.

4.4 Ablation Study

4.4.1 Analysis about Prior Knowledge

In order to verify the effectiveness of each prior knowledge,
a series of ablation experiments were conducted to compare
the performance of the models under different combinations
of prior knowledge. We evaluated the contribution of each
prior knowledge using the MIT1003 dataset.

Table 1 shows the quantitative results of the multi-prior
knowledge ablation experiment. The results show that mul-
tiple tests can predict better significance graph. All evalu-
ation metrics are constantly improving. For example, the
sAUC aspect achieves a result of 0.553 without a priori.
Contrast priors, frequency priors and center priors were
added to achieve a relative improvement of 2.8%, 1.0% and
0.7%, respectively. When two priors are used, the results are
further improved. For example, when contrast priors and
center priors are added, the results are improved by 1.5%
compared with only contrast priors. Finally, the multi-priori
knowledge is further improved by 1.0% compared with the
two priori, and by 5.6% compared with no priori.

4.4.2 Analysis about Module

In order to further analyze the actual gain of the multimodal
network and prior knowledge, the ablation experiment of
the multimodal network and prior knowledge was conducted
in this paper following the same experimental setup. Base
represents single-mode network, and the trunk network uses

Table 2 Ablation study of our model on MIT1003, CAT2000, and SAL-
ICON validation sets.

Dataset Model sAUC↑ NSS ↑ CC↑ AUC↑ SIM↑

MIT1003
Base 0.703 2.930 0.690 0.897 0.608
CAS 0.731 2.914 0.783 0.900 0.611
ME CAS 0.763 2.930 0.787 0.913 0.629

CAT2000
Base 0.548 2.115 0.867 0.836 0.743
CAS 0.553 2.196 0.892 0.883 0.713
ME CAS 0.584 2.267 0.901 0.894 0.755

SALICON
Base 0.698 1.830 0.879 0.847 0.736
CAS 0.744 1.935 0.903 0.860 0.792
ME CAS 0.746 1.985 0.916 0.869 0.804

single-branch Swin Transformer to extract features. Mean-
while, the channel space attention module is replaced by
cbam module. CAS represents multi-modal network, and
the multi-modal input is RGB image, but there is no multi-
prior knowledge. ME-CAS represents our cross-modal col-
laborative network. The input of one branch is RGB image,
and the input of the other branch is multi-priori knowledge.

Table 2 shows the results of our model’s ablation ex-
periments on three data sets. Through analysis, we can see
that our multi-priori knowledge and cross-modal collabora-
tion are very important parts and have indispensable con-
tributions to the improvement of performance. Specifically,
on the SALICON dataset, continuous improvement was ob-
served for all indicators. For example, base is 0.879 in terms
of CC, but after cross-modal collaboration and multi-priors
cross-modal collaboration, the results are 0.903 and 0.916
respectively, an increase of 7.6% and 9.2%. A similar phe-
nomenon can be seen for other measures across all three data
sets. The qualitative results are shown in Fig. 5.

4.5 Performance Comparison

To further verify the effectiveness of the saliency prediction
algorithm proposed in this paper, a comparative analysis
was conducted with existing algorithms on SALICON [44],
MIT300 [42], and CAT2000 [43] databases. The methods
compared are all part of an excellent paper on human eye
attention zone prediction published in top conferences or
journals in the field of computer vision in recent years.

For the SALICON database, we submit the prediction
results to the official SALICON website, and the results are
evaluated on the SALICON challenge website [45]. The
competition uses a unified evaluation process, resulting in
more fair results. Table 3 shows the results of various eval-
uation metrics on the SALICON dataset. It can be seen that
our model has achieved high performance, and our model
has achieved multiple first places. Although some metrics
did not make the top three, their performance scores are still
impressive.

For the MIT300 database, we use the MIT1003
database to fine-tune the model, generate saliency maps,
and submit them to the MIT benchmark for testing. From
benchmarks we know that benchmarks evaluate models on
different criteria, i.e. a model must be explicitly declared as
probabilistic or non-probabilistic and thus can be evaluated
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Fig. 5 Comparison of significance prediction performance of three model variants in ablation studies.

Table 3 Performance on test set of LSUN’17 Competition (SALICON-
2017-version).

Model sAUC↑ NSS↑ CC↑ AUC↑ SIM↑ KL↓
SAM-Res [27] 0.741 1.990 0.899 0.865 0.793 0.610
DeepGaze IIE [52] 0.767 1.996 0.872 0.869 0.733 0.285
MD-SEM [53] 0.746 2.058 0.868 0.864 0.774 0.568
GazeGAN [39] 0.736 1.899 0.879 0.864 0.773 0.376
DINet [54] 0.739 1.959 0.902 0.862 0.795 0.864
UNISAL [55] 0.739 1.952 0.879 0.864 0.775 -
MSI-Net [56] 0.736 1.931 0.889 0.865 0.784 0.307
FBNet [57] 0.706 1.687 0.785 0.843 0.694 0.708
TranSalNet [30] 0.747 2.014 0.907 0.868 0.803 0.373
ACNet [50] 0.739 1.948 0.896 0.866 0.786 0.228
SalFBNet [40] 0.740 1.952 0.892 0.868 0.772 0.236
Ours 0.746 1.970 0.909 0.869 0.805 0.378

fairly within the category it belongs to. As with MIT signif-
icance benchmarks, we do not assume that our models are
probabilistic. As suggested by TranSalNet, for the fairness
of the results, we only compare the non-probability model
with the traditional model. Table 4 shows the results of each
evaluation metrics. According to the findings of Bylinskii
et al. [46], under the assumption of non-probabilistic mod-
eling, NSS and CC provide the fairest comparison, and if
evaluating probabilistic models, KL is recommended; our
model ranks first on the metrics CC, while NSS ranks sec-
ond. At the same time, our metrics also rank first in SIM and
sAUC, which shows that our model may be the best proba-
bility model.

For the CAT2000 dataset, CAT2000 is used for model
fine-tuning, and the saliency map predicted by the model is
submitted to the MIT saliency benchmark. The compared
model results are from the MIT saliency benchmark web-
site, and the comparison results are more fair. Table 5 shows
the results of each evaluation index. It can be seen that the
model in this paper has achieved good significance perfor-
mance, and several evaluation indexes rank first.

To further illustrate the advantages of this chapter’s ap-
proach, Fig. 6 shows the results of qualitative comparison

Table 4 Performance on test set of MIT300.

Model AUC↑ sAUC↑ CC↑ SIM↑ NSS↑ KL↓
GBVS [11] 0.806 0.629 0.479 0.887 1.245 0.887
CAS [10] 0.758 0.640 0.384 0.431 1.018 1.072
LDS [58] 0.810 0.602 0.517 0.522 1.364 1.063
BMS [59] 0.771 0.691 0.413 0.445 1.151 1.023
ConvSal [60] 0.811 0.589 0.500 0.505 1.336 1.722
DVA [61] 0.843 0.725 0.663 0.584 1.930 0.629
SalGAN [26] 0.849 0.735 0.674 0.593 1.862 0.757
eDN [22] 0.817 0.618 0.451 0.411 1.139 1.136
EML-NET [28] 0.876 0.746 0.789 0.675 2.487 0.843
CASNet II [51] 0.855 0.739 0.705 0.580 1.985 0.585
SAM-Vgg [27] 0.847 0.730 0.663 0.598 1.955 1.274
SAM-Res [27] 0.852 0.739 0.689 0.611 2.062 1.171
ML-Net [62] 0.838 0.739 0.663 0.581 1.974 0.800
TranSalNet [30] 0.873 0.746 0.807 0.689 green2.4131.014
GazeGAN [39] 0.860 0.731 0.757 0.649 2.211 1.339
Ours 0.874 0.757 0.819 0.697 2.436 1.281

Table 5 Performance on test set of CAT2000.

Model AUCJ↑ NSS↑ sAUC↑ CC↑ SIM↑ EMD↓
Itti [12] 0.56 0.25 0.52 0.09 0.34 4.46
GBVS [11] 0.80 1.23 0.58 0.50 0.51 2.99
SUN [65] 0.70 0.77 0.57 0.30 0.43 3.42
LDS [58] 0.83 1.54 0.56 0.62 0.58 2.09
eDN [22] 0.85 1.30 0.55 0.54 0.52 2.64
EYMOL [66] 0.83 1.78 0.51 0.72 0.61 1.91
SDDPM [67] 0.81 1.22 0.54 0.51 0.52 2.31
DeepFix [25] 0.87 2.28 0.58 0.87 0.74 1.15
SAM-Vgg [27] 0.88 2.38 0.58 0.89 0.76 1.07
MSI-Net [56] 0.88 2.30 0.59 0.87 0.75 1.07
Ours 0.88 2.38 0.59 0.90 0.77 0.98

with other advanced models. The images are from SALI-
CON and MIT1003 data sets. It can be seen that the method
in this chapter can more accurately predict significant areas,
including indoor, outdoor and track and field scenes. For ex-
ample, in lines 1-3 of the SALICON dataset and lines 1 and
2 of the MIT1003 dataset, the positions predicted by most
methods are too “concentrated” and the prediction ability of
details is weak. In lines 4 and 5 of the SALICON dataset,
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Fig. 6 Comparison of qualitative results generated by our saliency model with state-of-the-art meth-
ods. Images are from SALICON and MIT1003 datasets.

most prediction methods fail to make significant predictions
in non-significant positions. In line 3-5 of MIT1003 dataset,
most other methods cannot fully predict significant objects,
while the model in this chapter successfully fully predicts
them. In general, other methods can accurately predict high-

level semantic scenes, including faces, objects, and other
categories, but cannot predict truly significant areas for com-
plex scenes. However, the method proposed in this paper
can effectively cope with challenging scenarios.
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5. Conclusion

In this paper, we propose a multi-prior knowledge-based
cross-modal saliency prediction model called ME-CAS. In
our model, the main novelty is the combination of prior
knowledge and neural networks, which enhances the expres-
sion of details through multiple prior knowledge. At the
same time, the Siamese transformer is applied to saliency
prediction. The two branches extract global saliency in-
formation and local detail information respectively and
learn saliency features across modes. Ablation experiments
demonstrate the contribution of multiple prior knowledge to
the model while proving the necessity of cross-modal syn-
ergy. Extensive experiments demonstrate that our proposed
method achieves better predictive performance on public
saliency benchmarks compared to other existing models.
Our model has achieved good performance on the public
natural datasets, but there is still a lack of further explo-
ration in the direction of significance personalization. In the
traditional cognitive field, there are many classical theories
and models about visual attention, which are more consis-
tent with biological principles. Therefore, it is necessary
to combine deep learning with classical cognitive theory to
further explore new theories and models.
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