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PAPER

A Lightweight End-to-End Speech Recognition System on
Embedded Devices

Yu WANG†,††, Nonmember and Hiromitsu NISHIZAKI††a), Senior Member

SUMMARY In industry, automatic speech recognition has come to be
a competitive feature for embedded products with poor hardware resources.
In this work, we propose a tiny end-to-end speech recognition model that
is lightweight and easily deployable on edge platforms. First, instead of
sophisticated network structures, such as recurrent neural networks, trans-
formers, etc., the model we propose mainly uses convolutional neural net-
works as its backbone. This ensures that our model is supported by most
software development kits for embedded devices. Second, we adopt the
basic unit of MobileNet-v3, which performs well in computer vision tasks,
and integrate the features of the hidden layer at different scales, thus com-
pressing the number of parameters of the model to less than 1 M and achiev-
ing an accuracy greater than that of some traditional models. Third, in order
to further reduce the CPU computation, we directly extract acoustic repre-
sentations from 1-dimensional speech waveforms and use a self-supervised
learning approach to encourage the convergence of the model. Finally, to
solve some problems where hardware resources are relatively weak, we use
a prefix beam search decoder to dynamically extend the search path with an
optimized pruning strategy and an additional initialism language model to
capture the probability of between-words in advance and thus avoid prema-
ture pruning of correct words. In our experiments, according to a number
of evaluation categories, our end-to-end model outperformed several tiny
speech recognition models used for embedded devices in related work.
key words: automatic speech recognition, embedded and edge devices,
end-to-end, prefix beam search, self-supervised learning

1. Introduction

Automatic speech recognition (ASR) systems are widely
used in various embedded equipment, such as smart home
devices or in-vehicle infotainment (IVI) systems. ASR sys-
tems benefit from some cutting-edge technologies, includ-
ing deep neural networks (DNN) [1], weighted finite state
transducers (WFST) [2], and self-supervised learning [3]–
[5].

When running ASR systems, large amounts of mem-
ory and computing power are normally required. Cur-
rent ASR systems require thousands of hours of transcribed
speech to achieve an acceptable level of performance [6]–
[8]. Using Kaldi [9], which is one of the most popu-
lar open-source speech recognition toolkits, and the Mini-
Librispeech dataset, which has only 5 hours of speech tran-
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scription, the memory occupied in the hard disk for build-
ing a WFST decoding graph is about 530 MB. On the other
hand, most ASR systems for industrial products require low-
latency real-time recognition of speech. That is, the corre-
sponding time of the ASR algorithm needs to be completed
within one second [10]. Therefore, an ASR system is typ-
ically deployed on a cloud server and communicates with
edge devices through a wireless network. However, per-
forming speech recognition on embedded devices locally is
also an important requirement when the network is unavail-
able or when the user’s personal data is not allowed to be
uploaded.

When installing an ASR system on an embedded de-
vice, less computation and lower memory occupation are ex-
pected. Compared with the traditional modeling approach of
the ASR system (which makes a decoding graph [2] from a
hidden Markov model (HMM)-based acoustic model (AM),
a pronunciation lexicon transducer and a statistical language
model (LM)), end-to-end (E2E) model [11]–[13] (which
only has a single end-to-end trained neural network model)
is favored because of its smaller model size and state-of-the-
art accuracy. Regarding the E2E modeling framework, there
are a range of excellent papers on the topic of this frame-
work and how it can be used to address the challenges of
implementing speech recognition on embedded devices.

In [14], a combination of connectionist temporal
classification (CTC)-based E2E AM and recurrent neural
networks (RNN)-based [15] LM and beam-search decod-
ing [16] was used for speech recognition in mobile and em-
bedded devices. In this model, the number of parameters
in the final E2E model was about 15 M. StreamE2E [17]
also achieved faster computation and better recognition ac-
curacy on mobile devices by optimizing the structure of
the RNN transducer (RNN-T) model [18] and using text-to-
speech (TTS)-based speech augmentation.

Thus, speech recognition has been achieved on edge
devices, which are devices that have many available re-
sources. However, two major problems must be solved in
order to drive speech recognition on many general-purpose
edge devices. First, on most embedded devices, model ar-
chitecture is limited, depending on the software develop-
ment kit (SDK) provided by the hardware manufacturers.
The Android platform is widely used on edge platforms, and
there are some excellent open-source frameworks like Ten-
sorRT [19] and NCNN [20] to help developers deploy their
models. However, there are still many platforms and embed-
ded devices active in industrial products that are not compat-
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ible with these open-source frameworks. In addition, many
edge devices do not utilize advanced neural network struc-
tures like LSTM and transformer [21]. Therefore, many of
the network structures proposed in previous work may be
hard to install. Second, differing from the decoding algo-
rithms using WFST, the beam search family decoders do
not build a large static decoding graph, but dynamically ex-
pand the search path during decoding. Therefore, they are
also mainstream decoding algorithms for E2E models on
mobile devices. However, generally speaking, the perfor-
mance of beam search decoders is a matter of contention,
and related research is less concerned with the optimization
of beam search algorithms for ASR decoding. The problems
discussed above are the focus of this paper.

Therefore, our goal is to propose a smaller, faster ASR
system with stronger SDK compatibility and high accuracy.
We hope that the number of parameters of the neural net-
work model is within 1 M, the memory size of the whole
ASR system is less than 10 M, the single core occupancy on
an ARM-32 architecture chip, which is often used on a low-
end embedded device, is not more than 20%, and the char
error rate (CER) on the open source dataset Librispeech is
less than 10%. Furthermore, we hope that the CER on a spe-
cific domain can reach less than 5%. This setting can ensure
that our ASR system can be used on most mobile products
for custom ASR tasks and provide a good user experience.

In this paper, we propose the following improvements
to satisfy the above requirements in order to run highly
accurate and memory-saving speech recognition on edge
devices. First, convolutional neural networks (CNN) [22]
have a natural computational advantage on graphics pro-
cessing units (GPUs) or neural processing units (NPUs) and
are compatible with most SDKs. Therefore, regarding the
model structure, in this study, we propose to mainly use
CNN layers in order for the model to be deployed on edge
devices as easily as possible. To compensate for the short-
comings of the CNN layer in capturing information over a
long distance, we fuse features of different scales. More-
over, instead of manual speech features such as mel-scale
frequency cepstral coefficients (MFCC) or mel-filter banks
(fBanks), we adopt a CNN feature extraction module to
compute acoustic representations from audio waveforms di-
rectly. With this model, all inference processes are assigned
to the dedicated GPUs or NPUs. Second, in the training
stage of the model, we use a self-supervised learning ap-
proach based on wav2vec2.0 [5]. This strategy ensures that
our tiny model can be converged and, in the case of the
small amount of real data we can collect, plays an impor-
tant role in improving accuracy. In our experiments, our
E2E model performs competitively compared to some pop-
ular lightweight models, in terms of not just the model size
but also the error rate. Finally, in terms of decoding, we
propose a decoder using an improved prefix beam search to
handle CTC probability output. We separate acoustic prun-
ing for different prefixes, which prevents the right path from
being excluded by mistake. In addition, instead of a word
piece LM, which always takes up a large amount of mem-

ory, we design a joint method of sub-word LM and initialism
LM to capture the context information within and between
words, respectively.

Our proposed model had about 0.79 M parameters. Us-
ing the greedy decoder, the CER on Librispeech [6] test-
clean was 13.57%. Although this accuracy rate is still
far from our goal, it is better than that of some popular
lightweight models, including a ResNet-18 [23] model and
MobileNetv3 [24] model. Then the model was transferred
to our specific task. Using the improved prefix beam search
decoding algorithm, the error rate on our test dataset was
4.86%, slightly higher than the result 3.99% of the widely
used WFST decoder, our ASR system only have four thou-
sandths of the memory compared to said WFST decoder.
Our improvement approaches yielded good results experi-
mentally.

The contribution of this paper is to show that it is pos-
sible to realize an ASR model with high ASR performance
that works in real-time and with little memory on edge de-
vices. This ASR model could be realized without using a
transformer model, which provides high ASR accuracy, but
with a model mainly based on convolutional layers, utilizing
pre-training based on wav2vec2.0, learning rate adjustment,
and a prefix beam search algorithm with an initialism LM.

The remainder of the paper is organized as follows. In
Sect. 2, we describe the E2E model architecture adopted in
this work. In addition, the self-supervised training stages are
derived, and we discuss how the decoding algorithm is im-
proved and explain how to build an initialism LM. In Sect. 3,
we describe the implementation of the proposed model. All
experiment details and results are presented in Sect. 4. We
conclude our work in Sect. 5.

2. Design of Lightweight End-to-End ASR Model

2.1 Outline of Model Architecture

In recent years, deep learning models have shown amaz-
ing potential in vision-related tasks and are widely de-
ployed on embedded devices, such as ResNet [23] series,
Yolo [25], [26] series, MobileNet [24] series, and so on. A
CNN-based model has been proven to have better compati-
bility with most mobile devices and has also been introduced
into ASR tasks [22], [27] because of its a small mount of pa-
rameters and fast inference. Figure 1 shows an example of
the inference time and CPU occupation of an E2E ASR sys-
tem on an embedded device with Android as its OS and a
CPU of ARMv7 with four cores. The acoustic feature is
296 × 128-dimensional fBanks and the model is built using
ResNet-18 backbone. When running with CPU only, the
ASR algorithm takes up a non-negligible amount of com-
putational resources, not only during model forwarding but
also during the extraction of acoustic representations. As
a result, we design our model architecture according to the
following criteria:

• mainly using CNN layers in order to reduce parame-
ters and ensure that the model can be deployed to most
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Fig. 1 The power consumption of an E2E ASR system on an embedded
device. The device with the Android OS and ARMv7 CPU with four cores
was developed by Streamax Technology Co., Ltd. The extraction of fBank
feature takes about 40 ms. The model forwarding takes about 600 ms,
and the beam search takes about 2 ms. The CPU occupation of the ASR
algorithm is about 25% on single core.

embedded devices,
• being able to transfer the entire model to the GPU or

NPU in order to speed up the inference process,

as well as reducing the number of parameters of the model.
Figure 2 illustrates the basic modules of our E2E

model. The model consists of three components: the con-
volutional feature extractor “Feature Extractor,” the feature
reconstruction module “Encoder,” and the projection head
“CTC Projector.” Feature Extractor module extracts raw
acoustic representations from 1-dimensional audio wave-
forms. In Encoder, with reference to feature pyramid net-
work (FPN) [28] and U-Net [29], we use multiple CNN lay-
ers to embed the raw acoustic representations to different
scales and skip connections to fuse these features in order to
capture local and long-distance linguistic relations in a con-
text of a certain length. As shown in Fig. 2, there are three
acoustic features generated in our model: Raw Feature, Bot-
tleneck Feature and Rebuild Feature. These features can be
used for different tasks. For the ASR task, we select Re-
build Feature, which contains more sophisticated semantic
information, and finally input it to the CTC projector. In our
experiment, we trained various Feature Extractors and En-
coders, which varied in performance in terms of model size
and accuracy. Section 3 details the proposed model struc-
tures.

2.2 Self-Supervised Training

In the training stage of the E2E ASR model, it is necessary
to train a feature extractor to extract acoustic representations
from waveforms. For this purpose, we adopt the recently
proposed concept of wav2vec2.0. The original wav2vec2.0
is an elaborate self-supervised pre-training framework that
can perform powerful feature extraction for speech recogni-
tion. Therefore, we believe that using this framework will
make the training of the feature extractor consisting of con-
volutional layers that we use in this study more robust. It
trains an ASR model through two steps: pre-training and
fine-tuning. In the pre-training stage, the fully convolu-
tional networks are used to extract the acoustic represen-
tations from raw waveforms, and then the acoustic repre-

Fig. 2 The basic architecture of our E2E model. Feature Extractor and
Encoder use multiple CNN layers with different kernel sizes. Skip connec-
tion connects only the hidden outputs of the same scale.

sentations are sent to the multi-layer transformer network to
reconstruct the feature map. At the same time, the acous-
tic representations are processed using masking and product
quantization to generate learning targets. Then, by mini-
mizing the contrastive loss and diversity loss between the
reconstructed feature map and the targets, the feature extrac-
tor can obtain the ability to represent acoustic information,
and the encoder can understand this information. Through-
out the entire pre-training stage, speech transcripts are not
required. After pre-training, the parameters of the feature
extractor are fixed and a projection layer is appended be-
hind the Transformer encoder, and then the parameters of
these two modules are fine-tuned by calculating the CTC
loss with the speech transcripts. This step requires labeled
data.

For the E2E ASR model to work on edge devices, the
original wav2vec2.0 is difficult to deploy on embedded de-
vices because it uses Transformer, which is not supported
by many SDKs, but we can apply its training approach to
other layer structures such as our proposed model. We
train our E2E speech recognition model in a similar way
to wav2vec2.0 in order to achieve higher accuracy with the
small amount of speech data collected on the device, as
well as to help training convergence in a model with as
small a number of parameters as possible. In the feature
extractor, we use fewer layers than the feature extraction
module of wav2vec2.0, as well as replace the traditional
two-dimensional convolutional layer with the customized
Mobilenet-v3 block where one-dimensional convolutional
layer is used, thus reducing the number of parameters. As
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mentioned in Sect. 2.1, because CNN is mainly selected, we
have designed a completely different model structure from
the transformer encoder of wav2vec2.0. Through these op-
erations, our model structure has been greatly compressed.

Compared to the ASR system deployed in the cloud,
the device-side ASR system is usually used for specific
tasks. Therefore, developers pay more attention to maxi-
mize the accuracy in a specific domain under the limited
model architecture than to its universality. However, the
corpus of a specific domain is often very difficult to col-
lect, for example due to commercial rights. With the help
of wav2vec2.0, we can achieve high accuracy even with a
small amount of domain data through self-supervised train-
ing. This is exactly what we need. However, compared to
wav2vec2.0, the model structure we propose is smaller, so
the upper limit of the accuracy it can achieve is theoretically
lower. Therefore, instead of directly using a small amount
of domain data to fine-tune the model, we first use labeled
public data for fine-tuning, and then use the domain data
for transfer learning. In summary, differing from original
self-supervised learning strategy of wav2vec2.0, we train
the model with an extra step: transfer-learning. We first
use large-scale unlabeled data to pre-train Feature Extractor
and Encoder and fine-tune the Encoder. Then, a transfer-
learning process is performed using the fine-tuned model
with a small amount of target domain speech data.

When conducting the fine-tuning and transfer-learning
steps, we change the learning rate in order to obtain the ASR
model with a better character error rate (CER). We use a
classic cosine annealing scheduler, but once the parameters
of the model have converged, we find the best model param-
eter that has been saved in advance and restart the training
cycle with a motivated initial learning rate. Because the co-
sine annealing scheduler constantly scales the learning rate
during the training process, the initial learning rate can be
used again. After the model converges, values of the learn-
ing rate that are less than the current initial learning rate are
likely to no longer get better results. Therefore, in the next
cycle, we allow the learning rate to be magnified to a greater
value than the current initial value. The mechanism used in
our experiment is shown in Eq. (1). n is the number of cy-
cles, and γ0 is the initial learning rate of the first training
loop.

γn = 2n−1 × γ0 (n > 0) (1)

Figure 3 shows the change in learning rate and CER
after using this trick during the fine-tuning step in our ex-
periment. We stimulated the learning rate to different initial
values on two occasions (see the black dots), and each time,
we got better results than before. Figure 3 indicates that the
learning rate incentive method has a certain positive effect
on model training.

In our experiment, we used an early stop strategy,
which makes the training loop stop if the CER does not de-
crease in a certain time. This trick may lead to the early
end of training before a new round of learning rate would
be increased to the initial value. To avoid this situation, we

Fig. 3 Changes in learning rate and CER after using the learning rate
incentive strategy. The solid line represents CER, and the dash-dot line
represents the learning rate after magnification by 10000 times. The black
dots mark the time when the learning rate incentive occurs.

amplified the learning rate to the same value as before and
achieved a better result. Therefore, the early stop strategy
may cause the model to miss the opportunity to get better in
the new learning round.

2.3 Decoding with Prefix Beam Search

The WFST decoder is a popular algorithm in both traditional
ASR systems and novel E2E systems. In our experiment, we
used a token-lexicon-grammar (TLG) [30] decoding graph
and obtained amazing accuracy. However, because it con-
structs from word piece LM, such a WFST decoding graph
always has a large size, as interpreted in Sect. 1. Therefore,
we prefer the beam search algorithm and propose several
improvements that could be made to the algorithm. A prefix
beam search algorithm is widely used to decode CTC proba-
bility on optical character recognition (OCR) [16] and ASR
because of its flexibility and excellent precision, and we use
this algorithm in our system. In the process of merging pre-
fix beams, we dynamically search words in the lexicon trie
tree. However, differing from most beam search algorithms,
we do the acoustic pruning after a prefix is decided. We list
the lexicon-based pruning strategy in Algorithm 1.

We define an object beam to carry a tracker responsible
for searching forward in the lexicon trie and finding the path
whose chars can be combined into a complete word. There-
fore, instead of using a common pruning candidate list con-
taining all char ids, we use a respective list for each beam
by searching the next destinations of its tracker. This small
change can reserve as many search paths as possible under
the same beam size and avoid pruning the correct word, es-
pecially when the probability of a path is not high enough.

Another improvement in our work is the initialism of
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Algorithm 1: Prefix beam search
Input: probability matrix M with T frames and D dimensions,

blank index bid, blank probability threshold α, beam
size β

Output: words

1 // beam is object whose properties contain at least last char id
lastcid, probability of blank branch pb and non-bank
branche pnb, and the tracker to a lexicon trie node ptr;

2 lastBeams = {};
3 put an initial beam into lastBeams;
4 for t to T do
5 if M[t, bid] > α then
6 skip frame t;
7 end
8 newBeams = {};
9 for pbeam In lastBeams do

10 topK = {};
11 set variable cids to all char ids which ptr of pbeam

can arrive to on trie;
12 for cid In cids do
13 put cid into topK;
14 end
15 put bid into topK;
16 put lastcid of pbeam into topK if it is not

appeared in topK;
17 sort topK by the probability of each cid in topK at

frame t, then keep top β candidates;
18 for cid In topK do
19 set variable nbeam to a new beam or an existed

beam in newBeams according to what the cid
and lastcid of beam are;

20 update lastcid, pb, pnb and ptr of nbeam;
21 end
22 end
23 sort newBeams by the sum of pb and pnb of each beam;
24 clear lastBeams;
25 select top β beams from newBeams and put them into

lastBeams;
26 end
27 return words of best beam in lastBeams;

LM. The ASR system on embedded devices generally builds
a grammar graph to recognize limited commands. How-
ever, for large vocabulary continuous speech recognition
(LVCSR), we need to leverage the power of statistical LMs.
If a word piece LM is used, the score is accumulated when
and only when a word is outputted. The right path may have
been incorrectly pruned before the word was synthesized.
LM using sub-word units is one solution, but it is difficult
to capture the contextual relationship between words. We
use two methods to address this problem, as shown in Table
1. First, we mark the position for the initial sub-word with
a specific tail symbol “ ” in order that the LM can recog-
nize the beginning of a new word, so that the implicit con-
textual information between words can be inferred during
decoding. We call this method the position dependent (PD)
sub-word LM. The second is called initialism LM. Just as
the initial abbreviation of a phrase can represent the seman-
tics of the phrase, we propose a new language modeling ap-
proach: modeling for the initialism. Because only the initial
sub-words are used, this LM can be very compact in size

Table 1 Various language modeling units of an example phrase “Au-
tomatic Speech Recognition.” “∥” represents space. The sub-word is the
character level. PD is short for “Position Dependent”. We only mark the
position of the initial letter of the word with “ ” on the PD sub-word level.

word AUTOMATIC∥SPEECH∥RECOGNITION
sub-word A∥U∥T∥O∥M∥A∥T∥I∥C∥

S∥P∥E∥E∥C∥H∥
R∥E∥C∥O∥G∥N∥I∥T∥I∥O∥N

PD sub-word A ∥U∥T∥O∥M∥A∥T∥I∥C∥
S ∥P∥E∥E∥C∥H∥
R ∥E∥C∥O∥G∥N∥I∥T∥I∥O∥N

initialism A∥S∥R

and easily added to the search path as well as the sub-word
model. The final score of a search path can be calculated as
follows:

Pbeam = a · PCTC + b · PcLM + c · PiLM (2)

where a, b, c are the weights of CTC probability PCTC , sub-
word LM score PcLM and initialism LM score PiLM , respec-
tively. Equation (3), (4) and (5) give the computing methods
of these three probabilities. All probabilities are scaled to
the sub-word level by length regularization. In these equa-
tions, Pb is the score of the blank path; Pnb is the score of
the no-blank path; P(cUNK) is the score of the unknown
symbol of char LM; p(iUNK) is the score of unknown sym-
bol of initialism LM; Nchar is the number of decoded chars;
Nword is the number of decoded words; P(S c) is the score of
n-gram char LM; and P(S i) is the score of n-gram initialism
LM.

Parameter a can simply be set to 1.0, leaving only b and
c to be control. These two values can be fine-tuned accord-
ing to the decoding results. Generally, we can find the best
values by parameter search. In our experiment, we used the
search range of b ∈ [0.05, 1.0], c ∈ [0.05, 1.0].

PCTC = (Pb + Pnb)/(N f rame) (3)

PcLM =

P(cUNK) if Nchar = 0,

P(S c)/(Nchar + 1) if Nchar > 0.
(4)

PiLM =

P(iUNK) if Nword = 0,

P(S i)/(Nword + 1) if Nword > 0.
(5)

3. Implementation of the E2E ASR Model

Figure 4 illustrates the details of the implementation of our
lightweight E2E ASR model. We name the feature extrac-
tor LW-extractor (lightweight feature extractor) and the en-
coder LW-encoder (lightweight encoder). In the CDG block
in Feature Extractor, we use a large kernel-size CNN layer
to filter out unimportant signals in the waveform. In the
nextFeat block, we use 3 layers of CNN with a small ker-
nel size to refine the acoustic features. There are three skip
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Fig. 4 The LW-extractor + LW-encoder model architecture. The Hswish is a non-linear activation
function, and SeModule is an attention block. Both of these modules have been proposed in previous
work on MobileNet-v3. The ⊕ is an element-wise “plus” operation. The ⊗ is a channel-wise “concat”
operation. There is a residual connection in the DownSample block, which only works when the input
and output dimensions are different. Whether the ReLU or Hswish and SeModule are used depends on
the location of the DownSample layer.

connections in Encoder. The DownSample block is a dupli-
cate of the MobileNet-v3 basic block but with different ar-
guments. In FPN architecture, the encoder yields features of
multiple scales. In our model, we only select the outermost
output, which maintains the same size as the input feature,
so it is more convenient to calculate wav2vec2.0 loss at the
pre-training stage. Furthermore, more semantic information
is available at this output.

4. Experiments

4.1 Dataset

As mentioned in Sect. 2.2, we need to use a relatively large
amount (more than 100 hours) of public data for pre-training
and fine-tuning our model, and for experimental comparison
with previous work and other models. Then, we need to
use a small amount (less than 100 hours) of domain data
for transfer learning to simulate the deployment of our ASR
system.

During the pre-training and fine-tuning training steps,
we used the Librispeech speech dataset, which is an open-
source corpus including 960 hours of training data of spoken
English with a sampling rate of 16 kHz. In the transfer-
learning step, we used a domain dataset containing about
32 hours of spoken English. This is a spoken English cor-
pus collected for the purpose of developing an ASR system
for police equipment. The speakers were adult North Amer-
ican police officers, and the recording environments were on

the street and in the office, so the audio includes some street
noise and office background noises. It was collected in the
near field by Streamax Technology staff. The distance be-
tween the lips and the microphone was approximately 30 to
50 cm. The sampling rate was 16 kHz. This dataset consists
of some control commands for the embedded equipment,
such as:

S tart recording

and some conversations during street patrols and rests in the
office, such as:

Get out o f the car and put your hands up now.

The Streamax dataset was split into two parts. The train-
ing dataset included 30 hours data (including 12, 446 utter-
ances). We used 2 hours data (including 844 utterances)
named Streamax as the test dataset.

4.2 Evaluation Measures

Some evaluation measures were used to evaluate the perfor-
mances of the ASR models in our experiments. We used
CER to evaluate the accuracy of the ASR models, the num-
ber of parameters to evaluate the size of the model, and the
memory occupation in the hard disk of model files to eval-
uate the size of the decoding graph. Finally, to evaluate the
speech processing time, we used real-time factor (RTF) and
CPU occupancy to evaluate the performance of the ASR
models when the models were deployed in an embedded
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device. Lower values of these factors indicate higher per-
formance.

4.3 Details of Training Conditions

The Adam optimizer was used throughout our experiment.
In the pre-training step, we adopted an initial learning rate
of 0.0005 and trained the model with 64 NVIDIA TITAN
RTX GPUs. The learning rate scheduler is a polynomial de-
cay policy. Next, to obtain good initial parameters to speed
up the convergence, we did a speculative job. We first con-
ducted the supervised CTC training with a configuration that
was provided by the wav2vec2.0 framework: all 960 hours
of the labeled Librispeech training dataset, an initial learn-
ing rate 0.0001, and a tri-stage learning rate scheduler. This
trick enabled us to get an initial model with a CER 20% on
a test-clean dataset. Then, in the fine-tuning step, we used a
single GPU with batch size 4. We cropped utterances whose
duration was out of the range of 0.5 s to 30 s. As intro-
duced in Sect. 2.2, we used an initial learning rate 0.00005,
a cosine annealing scheduler, and the learning rate incentive
policy mentioned in Eq. (1).

4.4 Evaluation of E2E Model

Our model takes 1-dimensional waveform as input. Both
pre-training and fine-tuning are trained on all 960 hours of
training data of the Librispeech corpus. For better com-
parison, we first trained the wav2vec2.0-small model in our
training environment. The final model parameter was 94.4
M, and the CER on the Librispeech test-clean dataset was
2.89%. Then, we trained all models in this experiment us-
ing the same greedy search decoder used with the reference
model.

Let us now compare the customized models of ResNet-
18 and MobileNet-v3 backbone, both classical models used
on embedded devices. Both models use 128-dimensional
fBank features with Int8 quantization. All models compute
CTC error with letter level. We tried two feature extractors:
a multiple-layer full convolutional feature extractor named
CNN-extractor, which has the same structure as wav2vec2.0
but without group normalization and layer normalization,
and our proposed feature extractor, LW-extractor. The
FPN feature encoding module tried a multiple-layer resid-
ual CNN named Res-encoder and our LW-encoder. Table
2 summarizes the number of parameters and the CERs of
various models using the greedy search decoder. In this ex-
periment, compared to the ResNet-18 model, the MobileNet-
V3 model converged more easily and achieved better accu-
racy with only 0.54 M parameters. We have shown that the
MobileNet-v3 network using only the CNN backbone has
excellent potential for deployment on mobile devices.

Then, we tried a combination of CNN-extractor and
Res-encoder and achieved the CER 6.64% with 39.87 M
parameters, which is acceptable compared with previous
work [14], [31]. We then tested the pair CNN-extractor +
LW-encoder, which reduced the number of parameters to

Table 2 Number of parameters [M] and CERs [%] of various models
using greedy search. ResNet-18 and MobileNet-v3 handle quantified fBank
features. Other models take waveforms as an input source. Transfer learn-
ing is implemented based on our LW-extractor + LW-encoder mode.

params
Librispeech Streamax

test-clean (conversation)
wav2v2c2.0-small 94.4 M 2.89 −
ResNet-18 3.61 M 57.3 −
MobileNet-V3 0.54 M 15.45 −
CNN-ext. + Res-enc. 39.87 M 6.64 −
CNN-ext. + LW-enc. 5.19 M 11.39 −
LW-ext. + LW-enc. 0.79 M 13.57 20.04
Transfer Learning − − 8.52

5.19 M while CER increased by 4.75%. Finally, the pro-
posed LW-extractor + LW-encoder model achieved a rela-
tively good performance that best met our expectations in
our experiment, with a number of only 0.79 M parameters
and a CER of 13.57%. Note that the parameter includes the
entire model: feature extractor, encoder, and projector. Fi-
nally, we used the domain dataset to implement the transfer-
learning step of our proposed model and obtained a CER
8.52% on the Streamax test dataset. Although we did not
reach our goal of reducing the CER below 5% on the do-
main dataset, we were able to reduce the CER by 11.52%
compared to the previous model. This shows that transfer
training can significantly improve the ASR system’s abil-
ity to recognize speech in a specific domain and ensure its
accuracy after deployment. The next section describes ex-
periments in which the decoder was optimized to reduce the
CER further.

4.5 Comparison of Decoding Methods

In this experiment, we trained language models using all
transcripts of our domain training dataset. Table3 lists the
memory size of the graph file in the hard disk and the CER
on Streamax test dataset using the various decoders.

We first decoded using a WFST decoder. A letter-level
T, a word-to-letters L, and a 3-gram word-level G compose
the TLG decoding graph by a sequence of operations of a
finite state transducer. The process is shown in Eq. (6).

T LG = T ◦ min(det(L ◦G)) (6)

The symbol ◦ represents the “compose” operation, det
is “determine,” and min is “minimize.” The second line of
Table 3 shows. As far as accuracy is concerned, WFST de-
coder achieved good performance, with the best CER 3.99%
in our experiments. However, as we had predicted, the graph
size of 662 MB was too large to deploy on embedded de-
vices.

We then evaluated the improved prefix beam search al-
gorithm. Because the beam search decoder dynamically ex-
pands the search path, the lexicon and the original LM are
the main parts of the decoding graph. Therefore, in this ex-
periment, we have considered the file size of the N-gram
LM and word-to-letter lexicon. All LM were trained with
the KenLM [32] toolkit and compressed to binary format.
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Table 3 Graph file size [MB] and CERs[%] on Streamax dataset using
various decoders. The Graph size is the memory size in the hard disk of the
LM file.

Graph size CER
greedy search − 8.52
WFST decoding 662 MB 3.99
prefix beam search
+ 4-gram PD character LM 1.59 MB 7.79
+ 4-gram character LM 1.47 MB 5.13
+ lexicon trie pruning 1.47 + 0.77 MB 5.02
+ 4-gram initialism LM 1.47 + 0.77 + 0.57 MB 4.86
flashlight lexicon decoder
+ 3-gram word LM 143.95 + 0.77 MB 10.76

Table 4 CPU usage and RTF when our ASR system ran on the embed-
ded device. ResNet-18 is the performance when using the 128-dimensional
fBank features, the ResNet18 encoder, and the beam search algorithm men-
tioned in Sects. 2.1 and 4.4. LW-ext. + LW-enc. is the proposed E2E ASR
model.

CPU RTF
ResNet-18 25% 0.69
LW-ext. + LW-enc. (proposed) 16% 0.23

The lexicon used in our experiment contained 89, 123 words
with a file size of 0.77 MB. We compared the results using
4-gram char-level LM and 4-gram PD char-level LM. Using
PD LM achieves worse accuracy. This indicates that when
lacking text data, the PD method is not enough to model
the inter-word and between-words relationship at the same
time. We then superimposed the prefix-dependent lexicon
trie pruning trick on 4-gram char LM to further improve the
accuracy; CER dropped by 0.11% when we did this. Fi-
nally, we added the 4-gram initialism LM. After combining
the char-level LM, lexicon pruning, and initialism LM, we
obtained the best result (CER 4.86%) of our experiment. Al-
though it was 0.87% higher than the CER using the WFST
decoder, the total size of the decoding graph was 2.81 MB
and only four-thousandths of the former. Finally, we com-
pared the lexicon decoder in the fairsq’s library [33] used in
wav2vec2.0. We built a 3-gram word LM. Regardless of the
file size of the LM or CER, our decoder performed better
than it in this task.

4.6 Evaluation on Embedded Device

We also deployed our ASR system on an embedded device
developed by Streamax Technology Co., Ltd. This device,
which has a configured Android OS and an ARMv7 CPU
with four cores, is mentioned in Sect. 2.1. As shown in Table
4, our model achieved significantly reduced CPU usage and
RTF. Note that the test was conducted when no other appli-
cations were running on the device, and sufficient resources
were available to ensure the running condition of our ASR
algorithm. The improvement in CPU utilization and RTF
performance was due to the small size of the model and the
delegation of all inference processing to the NPU, which al-
lowed us to take full advantage of the hardware performance
of the embedded device.

5. Conclusion

In this paper, we have presented a lightweight E2E ASR
model that is easy to deploy for low-resource embedded de-
vices. The two main contributions of our model are as fol-
lows:

• the ASR model mainly uses convolution layers, which
enables it to be supported by most SDKs,
• the ASR model size is relatively small and consumes

low levels of resources while still guaranteeing good
accuracy and RTF.

Our model consists of three modules: the feature ex-
tractor, the encoder, and the projector. The feature extractor
can extract acoustic representations from speech waveforms
using multiple convolutional layers with a small kernel size.
In the encoder, we adopt an FPN architecture to fuse hid-
den features to make up for the shortcomings of the CNN
in capturing long-distance context information. In the train-
ing stage of the model, to achieve the best performance, we
optimize the learning rate decay strategy to squeeze the con-
vergence ability. In the decoding stage, we propose an im-
proved method for the prefix beam search algorithm: prefix-
based lexicon trie pruning and the initialism LM. This al-
lowed us to build a decoder with competitive accuracy us-
ing only a few memory resources. The proposed system has
demonstrated that ASR technologies could be effectively
implemented in more practical developments.

We have some ideas for how the lightweight E2E
ASR model could be further optimized in the future.
First, we could combine our proposed LW-extractor and a
wav2vec2.0-based transformer encoder to pre-train the fea-
ture extractor. Then, after the training, we could use just the
LW-extractor and connect our proposed LW-encoder to pre-
train the encoder. This could result in better performance
of the feature extractor. Second, we could also use the
pre-trained feature extractor and a transformer encoder pro-
vided by wav2vec2.0 as teacher models to train our modules
with knowledge distillation [34]. With such an approach,
we would benefit from the state-of-the-art performance of a
self-supervised training strategy.
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