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Computational Complexity of the Vertex-to-Point Conflict-Free
Chromatic Art Gallery Problem∗

Chuzo IWAMOTO†a), Member and Tatsuaki IBUSUKI††, Nonmember

SUMMARY The art gallery problem is to find a set of guards who to-
gether can observe every point of the interior of a polygon P. We study
a chromatic variant of the problem, where each guard is assigned one of
k distinct colors. A chromatic guarding is said to be conflict-free if at least
one of the colors seen by every point in P is unique (i.e., each point in P
is seen by some guard whose color appears exactly once among the guards
visible to that point). In this paper, we consider vertex-to-point guarding,
where the guards are placed on vertices of P, and they observe every point
of the interior of P. The vertex-to-point conflict-free chromatic art gallery
problem is to find a colored-guard set such that (i) guards are placed on P’s
vertices, and (ii) any point in P can see a guard of a unique color among all
the visible guards. In this paper, it is shown that determining whether there
exists a conflict-free chromatic vertex-guard set for a polygon with holes is
NP-hard when the number of colors is k = 2.
key words: chromatic art gallery problem, polygons, visibility, NP-hard

1. Introduction

The art gallery problem is to determine the minimum num-
ber of guards who can observe the interior of a gallery.
Chvátal [4] proved that �n/3� guards are always sufficient
and sometimes necessary for observing the interior of an
n-vertex simple polygon. This �n/3�-bound is replaced by
�n/4� if the instance is restricted to a simple orthogonal
polygon [9].

Another perspective to the art gallery problem is to
study the complexity of locating the minimum number of
guards in a polygon. The NP-hardness and APX-hardness of
this problem were shown by Lee and Lin [13] and by Eiden-
benz et al. [5], respectively. Furthermore, Schuchardt and
Hecker [17] proved that this problem remains NP-hard even
if we restrict our attention to simple orthogonal polygons.
Even guarding the vertices of a simple orthogonal polygon
was shown to be NP-hard [12].

In this paper, we consider vertex-to-point guarding,
where the guards are placed on vertices of a polygon P, and
they observe every point inside P. We study a chromatic ver-
sion of the art gallery problem, where each guard is assigned
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Fig. 1 (a) Conflict-free chromatic guarding. The dark gray area is seen
by one red guard and two blue guards, where red is the unique color among
the three guards. Each of the two light gray areas is seen by one red guard
and one blue guard. (b) Strong chromatic guarding. The dark gray area is
seen by three guards having three different colors.

one of k distinct colors. There are two chromatic variants,
which are called conflict-free chromatic guarding and strong
chromatic guarding [10] (see Fig. 1). A chromatic guarding
is said to be conflict-free if at least one of the guards seen
by every point in P has a unique color [1]. It is strong if no
two guards with the same color have overlapping visibility
regions [6].

The vertex-to-point conflict-free chromatic art gallery
problem is to find a colored-guard set such that (i) guards are
placed on P’s vertices, and (ii) any point inside P can see a
guard of a unique color among all the visible guards. In this
paper, it is shown that determining whether there exists a
conflict-free chromatic vertex-guard set which together ob-
serve every point in a given polygon with holes is NP-hard
when the number of colors is k = 2.

The chromatic art gallery problem was motivated by
the following application [2], [7]. Consider the problem of
navigating a robot inside a polygon, where the robot com-
municates with radio beacons. The robot must be able to
communicate with a radio beacon of a unique frequency in
order to prevent interference. This motivates a chromatic
version of the art gallery problem, where a guard corre-
sponds to a radio beacon, and colors correspond to different
frequencies.

The computational complexity of the chromatic art
gallery problem was firstly investigated in [7]; the point-to-
point strong chromatic art gallery problem was shown to be
NP-hard for general polygons with holes. Recently, the cur-
rent authors proved that the point-to-point strong chromatic
art gallery problem with r-visibility is NP-hard for orthog-
onal polygons with holes [11]. Here, two points are said to
be r-visible if the smallest axis-aligned rectangle containing
them lies entirely within the polygon.

Çağırıcı et al. studied the vertex-to-vertex conflict-
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free chromatic guarding problem [2]; they proved the NP-
hardness of the problem when the number of colors is k = 2.
However, they mentioned that their proof does not imply
the NP-hardness for the vertex-to-point case. Hence, the
computational complexity of the vertex-to-point conflict-
free chromatic guarding problem remained open. In the cur-
rent paper, we solve this open problem.

Several results on the lower and upper bounds of the
minimum number of colors can be found in [1], [6], [10] for
general and orthogonal polygons under standard and orthog-
onal visibility conditions.

2. Definitions and Results

The definitions of a polygon and a polygon with holes are
mostly from [14], [16]. A polygon is defined by a finite set of
segments such that every segment endpoint is shared by ex-
actly two segments and no subset of segments has the same
property. The segments and their endpoints are called the
edges and vertices of the polygon, respectively.

A polygon with holes is a polygonal domain de-
fined by a polygon P enclosing several other polygons
H1,H2, . . . ,Hh, the holes. None of the boundaries of P,
H1,H2, . . . ,Hh may intersect, and each of the holes is empty.
P is said to bound a multiply-connected region with h holes:
the region of the plane interior to or on the boundary of P,
but exterior to or on the boundary of H1,H2, . . . ,Hh.

Two points v and u in a polygon P are said to be visible
(or v sees u) if the line segment connecting them lies entirely
within P. Here, the line segment may contain points on the
boundary of P, but it must not across any hole of the poly-
gon. An area is said to be observed by a point v if every
point in the area is visible from v.

In this paper, we assume that each vertex of any poly-
gon has integral coordinates. An instance of the vertex-
to-point conflict-free chromatic art gallery problem for
polygons with holes is (P,H1,H2, . . . ,Hh; k), where P is
a polygon with holes H1,H2, . . . ,Hh, and k is the num-
ber of colors. The problem asks whether there exists a
conflict-free k-chromatic vertex-guard set which together
observe every point in the polygonal domain defined by
(P,H1,H2, . . . ,Hh).

Theorem 1: The vertex-to-point conflict-free chromatic art
gallery problem for polygons with holes is NP-hard when
the number of colors is two.

3. NP-Completeness

3.1 3SAT Problem

The definition of 3SAT is mostly from [8], [15]. Let U =
{x1, x2, . . . , xn} be a set of Boolean variables. Boolean vari-
ables take on values 0 (false) and 1 (true). If x is a variable
in U, then x and x are literals over U. The value of x is
1 (true) if and only if x is 0 (false). A clause over U is a
set of literals over U, such as {x1, x3, x4}. A clause is satis-
fied by a truth assignment if and only if at least one of its

Fig. 2 Planar graph G = (V, E1) corresponding to Clause-Linked Planar
3SAT C = {c1, c2, c3}, where c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, and c3 =

{x2, x3, x4}.

members is true under that assignment.
An instance of Planar 3SAT is a collection C =

{c1, c2, . . . , cm} of clauses over U such that (i) |c j| = 3 for
each c j ∈ C and (ii) the graph G = (V, E), defined by
V = U ∪ C and E = {(xi, c j) | xi ∈ c j ∈ C or xi ∈ c j ∈ C},
is planar. Planar 3SAT asks whether there exists some truth
assignment for U that simultaneously satisfies all the clauses
in C.

If E is replaced with

E1 = E ∪ {(c j, c j+1) | 1 ≤ j ≤ m − 1},
then the problem is called Clause-Linked Planar 3SAT.
This problem is NP-complete, since Variable-Clause-
Linked Planar 3SAT was shown to be NP-complete in [15],
where the edge set E2 is defined as

E2 = E ∪ {(xi, xi+1) | 1 ≤ i ≤ n − 1} ∪ {(xn, c1)}
∪{(c j, c j+1) | 1 ≤ j ≤ m − 1} ∪ {(cm, x1)}.

Note that Clause-Linked Planar 3SAT in this paper is de-
fined by a chain connecting c1, c2, . . . , cm of length m − 1,
while Variable-Clause-Linked Planar 3SAT in [15] is de-
fined by a cycle of length m + n.

For example, U = {x1, x2, x3, x4}, C = {c1, c2, c3}, and
c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x2, x3, x4} pro-
vide an instance of Clause-Linked Planar 3SAT. Figure 2
is a planar embedding of the graph corresponding to this in-
stance. For this instance, the answer is “yes,” since there is
a truth assignment (x1, x2, x3, x4) = (1, 1, 0, 1) satisfying all
clauses.

3.2 Bowl-Shaped Gadgets and Pocket Gadgets

In this section, we explain a bowl-shaped gadget (see
Fig. 3 (a)) and a pocket gadget (see Fig. 3 (a)), introduced in
[2].

A bowl-shaped gadget is a 20-vertex chain, which has
the following two properties: (i) If a guard is placed on ver-
tex p1 or p2 (see Fig. 3 (b)), then it can see all the vertices of
{a1, a2, . . . , a9}∪{c1, c2, . . . , c9}. (ii) Suppose that no guard is
placed on p1 or p2 (see Fig. 3 (c)). Then, in order to observe
vertices a1, a2, . . . , a9, both a red guard and a blue guard
must be placed on two of the vertices in {a1, a2, . . . , a9}.
Similarly, both a red guard and a blue guard must be placed
on {c1, c2, . . . , c9}. Those four guards see vertices p1 and
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Fig. 3 (a) A bowl-shaped gadget [2]. (b) A guard on p1 or p2 can see all
the vertices of {a1, a2, . . . , a9} ∪ {c1, c2, . . . , c9}. (c) If no guards are placed
on vertices of {p1, p2}, then there exists no conflict-free 2-color guard-set.
Thus, a guard must be placed on at least one of p1 and p2 (see (b)). (d) is a
simplified illustration of (a), where two vertices p1 and p2 are called door
vertices of the bowl.

p2 simultaneously (see Fig. 3 (c)). From the properties (i)
and (ii), one can see that, in any conflict-free 2-coloring of
a bowl-shaped gadget, there is a guard placed on p1 or p2

(or both) (see Fig. 3 (b)). In the following, we use a simpli-
fied illustration shown in Fig. 3 (d) as a bowl-shaped gadget.
Vertices p1 and p2 are called door vertices of the bowl. The
distance between p1 and p2 is assumed to be so tiny that
there is no accidental visibility between a vertex inside the
bowl and a vertex outside of the bowl.

In Fig. 4 (a), the green area surrounded by a 10-vertex
chain from a1 to a2 is called a pocket gadget. Vertices d1 and
d2 can see all the 10 vertices of the pocket, but neither a1

nor a2 does so. If a pair of red and blue guards are placed
on door vertices of bowls (see Fig. 4 (b)), then they can see
the inside of the pocket in the conflict-free condition. On
the other hand, Fig. 4 (c) is an illegal 2-coloring because of
the following reason. In order to guard the inside of the
pocket in the conflict-free condition, we need a single blue
guard on the 10-vertex chain. However, the 10-vertex chain
contains no single vertex which can see every point of the
inside of the pocket. Figure 4 (d) is a simplified illustration
of Fig. 4 (a).

3.3 Transformation from an Instance of Clause-Linked
Planar 3SAT to a Polygon with Holes

We present a polynomial-time transformation from an arbi-
trary instance of clause-linked planar 3SAT C to a polygon
with holes such that C is satisfiable if and only if there is
a conflict-free 2-chromatic vertex-guard set which together
observe every point in the polygon.

Each variable xi ∈ {x1, x2, . . . , xn} is transformed into
the variable gadget as illustrated in Fig. 5. In the gadget,
there are three bowl-shaped gadgets b1 and b2, b3 and one

Fig. 4 (a) The green area surrounded by a 10-vertex chain from a1 to a2

is called a pocket-gadget [2]. (b) A pair of red and blue guards on door ver-
tices of bowls can see the inside of the pocket in the conflict-free condition.
(c) is an illegal 2-coloring. (d) is a simplified illustration of (a).

Fig. 5 (a) Variable gadget. (b) Conflict-free guarding when xi = 0.
(c) Conflict-free guarding when xi = 1. (c) is obtained from (b) by switch-
ing red and blue guards.

pocket gadget. From the reasons given in Sect. 3.2, a pair
of red and blue guards must be placed on two of the door
vertices of bowls b2, b3 (see Figs. 5 (b) and 5 (c)). A door
vertex of bowl b1 emits a beam of red or blue light upward.
A red and blue beams in Figs. 5 (b) and 5 (c) correspond to
the assignment xi = 0 and xi = 1, respectively.

In Fig. 5 (b), a dark gray area is observed by two red
guards and one blue guard, and a light gray area is observed
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Fig. 6 (a) Left-turn gadget when xi = 0. (b) Area s is observed by a red guard. (c) A red guard and a
pair of red and blue guards are placed on b5 and b6, b7, respectively. (d) is a simplified illustration of a
left-turn gadget. A left-turn gadget when xi = 1 is obtained from (c) by switching red and blue guards.

Fig. 7 (a) Right-turn gadget when xi = 0. (b) Simplified illustration.

by one red guard and one blue guard. Note that Fig. 5 (c) is
obtained from Fig. 5 (b) by switching red and blue guards.
In Figs. 6–8 and 9 (a), we present figures only for xi = 0.

Figure 6 is a left-turn gadget. (a) Suppose that bowl b1

emits a beam of red light (see Fig. 6 (a)). Since the dark
gray area is observed by two red guards and one blue guard,
area s must be observed by a red guard (see Fig. 6 (b)).
(b) Now, area t is observed by a red guard of b4, and t is also
seen by door vertices of b5 and b6, b7. (c) In order to satisfy
the conflict-free condition, we must place a red guard on b5

and a pair of red and blue guards on b6 and b7, respectively.
(d) is a simplified illustration of a left-turn gadget.

Figure 7 is a right-turn gadget. Bowl b8 emitting a red
beam is used so that a pair of bowls (see b9, b10) and a pocket

are located on the left and right sides of the beam, respec-
tively. (Bowls b11 and b12 in Fig. 8 (a) are used for the same
purpose.) Figure 8 is a branching gadget. If bowl b1 emits a
red beam, then b11 and b12 also emit red beams.

Figure 9 is a NOR gadget. If xi1 = xi2 = 0 (see
Fig. 9 (a)), then the NOR gadget will emit a blue beam
(= value 1) upward. By switching red and blue guards in
Fig. 9 (a), one can see that the NOR gadget outputs 0 if
xi1 = xi2 = 1. (Figure 9 (b) is explained later; the case
xi1 � xi2 will have to be treated carefully.)

A NOT gadget (see Fig. 10 (a)) is obtained by connect-
ing a branching gadget and a NOR gadget. In the NOT gad-
get, the input is xi = 0 if and only if the output is xi = 1.
An OR gadget (see Fig. 10 (b)) is obtained by connecting a
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Fig. 8 (a) Branching gadget when xi = 0. (b) is a simplified illustration.

Fig. 9 NOR gadget. (a) If xi1 = xi2 = 0, this gadget outputs value 1 upward. By switching red and
blue guards, one can see that the gadget outputs 0 if xi1 = xi2 = 1. (b) When xi1 � xi2 , the gadget can
output 0 (see the body text for details).

NOR gadget and a NOT gadget. Note that, if xi1 = xi2 = 0,
the OR gadget outputs 0. By switching red and blue guards,
one can see that the OR gadget outputs 1 if xi1 = xi2 = 1.
(The case xi1 � xi2 is explained later.)

A clause gadget c j = {xi1 , xi2 , xi3 } (see Fig. 11) contains
three OR gadgets. If xi1 = xi2 = xi3 = 0, the clause gadget
outputs value c j = 0. By switching red and blue guards,
one can see that the clause gadget outputs c j = 1 if xi1 =

xi2 = xi3 = 1. (The remaining cases are explained in the

next paragraph.)
Consider a NOR gadget when xi1 � xi2 (see Fig. 9 (b)).

In this case, there exists a conflict-free 2-chromatic guard set
(see red and blue guards in Fig. 9 (b)) so that the clause gad-
get emits a red beam (= value 0) upward. Namely, the NOR
gadget can output 0 when xi1 � xi2 . Thus, in Fig. 10 (b), the
OR gadget can output 1 when xi1 � xi2 . Hence, in Fig. 11,
a clause gadget can output c j = 1 if at least one of xi1 , xi2 ,
and xi3 is 1. In summary, if (xi1 , xi2 , xi3 ) = (0, 0, 0) (resp.
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Fig. 10 (a) NOT gadget. The input is xi = 0 if and only if the output
is xi = 1. (b) OR gadget. If xi1 = xi2 = 0, the OR gadget outputs 0. By
switching red and blue guards, one can see that the OR gadget outputs 1 if
xi1 = xi2 = 1. When xi1 � xi2 , the OR gadget can output 1 (see the body
text for details).

Fig. 11 Clause gadget c j = {xi1 , xi2 , xi3 }. If xi1 = xi2 = xi3 = 0, then the
clause gadget outputs c j = 0. By switching red and blue guards, one can
see that the clause gadget outputs c j = 1 when xi1 = xi2 = xi3 = 1. On the
other hand, if at least one of xi1 , xi2 , and xi3 is 1, then the clause gadget can
output c j = 1.

(1, 1, 1)) then the clause gadget must output c j = 0 (resp.
c j = 1) (see the previous paragraph), and if (xi1 , xi2 , xi3 ) �
{(0, 0, 0), (1, 1, 1)} then the clause gadget can output c j = 1.
(In Fig. 13, if (x1, x2, x3, x4) = (1, 1, 0, 1), there exists a
conflict-free 2-chromatic guard set so that all of c1, c2, and
c3 output 1. Here, (1, 1, 0, 1) satisfies the 3SAT instance
given in the caption.)

Figure 12 is an XNOR gadget, which connects clause
gadgets c j and c j+1 for every j ∈ {0, 1, . . . ,m − 1} (see also

Fig. 12 XNOR gadget. This gadget connects clause gadgets c j and c j+1.
(a) is an invalid placement of red and blue guards. (b,c) If clauses c j and
c j+1 have value 1 (resp. value 0), then area u j can be observed by a blue
guard (resp. red guard).

Fig. 13). Figure 12 (a) is an invalid placement of red and
blue guards, since we cannot place neither a red guard nor a
blue guard on a door vertex of bowl b13 in order to observe
area u j. On the other hand, if both clauses c j and c j+1 have
value 1 (resp. value 0), then area uj can be observed by a
blue guard (resp. red guard) (see Figs. 12 (b,c)).

Consider a Clause-Linked Planar 3SAT C =

{c1, c2, c3}, where c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, and
c3 = {x2, x3, x4}. Figure 2 is a planar embedding of the
graph G, which corresponds to C. (It is known that there is a
linear-time algorithm for generating a planar embedding of
a planar graph [3]. Therefore, any instance of planar 3SAT
can be transformed to an embedding of the corresponding
graph in polynomial time.)

Figure 13 is a sketch of a polygon P with holes trans-
formed from Clause-Linked Planar 3SAT C. Here, poly-
gon P can be obtained from G by replacing vertices with
gadgets of Figs. 5, 11 and by replacing edges with gadgets
of Figs. 6–8, 10, 12. In Fig. 13, c0 = {x0, x0, x0} is a dummy
clause, where x0 is a dummy variable.

The transformation from Clause-Linked Planar
3SAT C to polygon P can be done in polynomial time. This
is because the size of polygon P (see Fig. 13) is linearly
bounded by the size of planar graph G (see Fig. 2). More
precisely, a bowl-shape gadget in Fig. 3 contains 20 vertices,
and a pocket-gadget in Fig. 4 is a 10-vertex chain. The re-
maining gadgets of Figs. 5–12 contains a constant number
of bowl-shaped gadgets and pocket gadgets. Since each ver-
tex of any gadget is assumed to have integral coordinates,
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Fig. 13 Sketch of polygon P with holes transformed from U = {x1, x2, x3, x4} and C = {c1, c2, c3},
where c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, and c3 = {x2, x3, x4}. In this figure, c0 = {x0, x0, x0} is a
dummy clause, where x0 is a dummy variable. The polygon with holes constructed according to this
figure can be guarded by red and blue guards in the conflict-free condition. From the positions of red
and blue guards, one can see that (x1, x2, x3, x4) = (1, 1, 0, 1) satisfies all the clauses.

the transformation from Clause-Linked Planar 3SAT C to
the planar layout of polygon P can be done in polynomial
time.

Lemma 1: The instance C of 3SAT is satisfiable if and only
if there exists a conflict-free 2-chromatic vertex-guard set for
the polygon P with holes.
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Proof. (⇒) Suppose that the instance C of 3SAT is
satisfiable. In Fig. 13, clause gadget c0 can emit a blue beam
upward, since the dummy clause c0 = {x0, x0, x0} is satisfied
if the dummy variable x0 = 1. Then, area u0 can be observed
by a blue guard if c1 is satisfied. Suppose that c0 and c1 are
satisfied. Then, area u1 can be observed by a blue guard if c2

is satisfied. By continuing this observation, one can see that
all areas u0, u1, . . . , um−1 can be observed by blue guards if
all of c1, c2, . . . , cm are satisfied.

(⇐) Suppose that the instance C of 3SAT is not satis-
fiable. Consider an arbitrary assignment (b1, b2, . . . , bn) ∈
{0, 1}n for (x1, x2, . . . , xn). Since C is not satisfiable, there
exists at least one clause c j = {xh1 , xh2 , xh3 } such that xh1 =

xh2 = xh3 = 0 when the assignment is (b1, b2, . . . , bn).
Here, each of xh1 , xh2 , and xh3 is a positive or negative lit-
eral. Furthermore, for the same assignment (b1, b2, . . . , bn),
there exists at least one clause ck = {xl1 , xl2 , xl3 } such that
xl1 = xl2 = xl3 = 1 because of the following reason: Assume
for contradiction that there is no ck = {xl1 , xl2 , xl3 } such that
xl1 = xl2 = xl3 = 1. Then, every clause contains at least
one literal x whose value is 0. Now, consider the “inverted”
assignment (b1, b2, . . . , bn). For the inverted assignment, ev-
ery clause contains at least one literal of value x = 1. This
implies that C is satisfiable, a contradiction.

Therefore, in any unsatisfiable instance C of 3SAT,
there are two clauses c j = {xh1 , xh2 , xh3 } and ck = {xl1 , xl2 , xl3 }
such that xh1 = xh2 = xh3 = 0 and xl1 = xl2 = xl3 = 1
for every assignment (b1, b2, . . . , bn) ∈ {0, 1}n. If j < k,
there exists an integer j′ ∈ { j, j + 1, . . . , k − 1} such that the
area u j′ is observed by neither a blue guard nor a red guard
(see Fig. 12 (a)). The case k < j is similar. This completes
the proof of Lemma 1. �

4. Conclusion

In this paper, we studied a chromatic variant of the art
gallery problem under the conflict-free conditions. It was
shown that the vertex-to-point conflict-free chromatic art
gallery problem for polygons with holes is NP-hard when
the number of colors is two. Proving the NP-hardness of the
problem under the point-to-point condition remains an open
problem.
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