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Calculation Solitaire is NP-Complete

Chuzo IWAMOTO'®, Member and Tatsuya IDE', Nonmember

SUMMARY  Calculation is a solitaire card game with a standard 52-
card deck. Initially, cards A, 2,3, and 4 of any suit are laid out as four
foundations. The remaining 48 cards are piled up as the stock, and there
are four empty tableau piles. The purpose of the game is to move all cards
of the stock to foundations. The foundation starting with A is to be built up
in sequence from an ace to a king. The other foundations are similarly built
up, but by twos, threes, and fours from 2, 3, and 4 until a king is reached.
Here, a card of rank i may be used as a card of rank i+13j for j € {0, 1,2, 3}.
During the game, the player moves (i) the top card of the stock either onto
a foundation or to the top of a tableau pile, or (ii) the top card of a tableau
pile onto a foundation. We prove that the generalized version of Calculation
Solitaire is NP-complete.
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1. Introduction

Calculation is a solitaire card game with a standard 52-card
deck [1]. Here, cards A and J,Q,K are regarded as cards of
rank 1 and 11,12, 13, respectively. Initially, cards A, 2, 3,
and 4 of any suit are laid out as four foundations (see Fig. 1).
The remaining 48 cards are piled up as the stock, and there
are four empty tableau piles. The purpose of the game is
to move all cards of the stock to foundations (see Fig.3).
The foundation starting with A (called the A-foundation) is
to be built up in sequence from an ace to a king. The other
foundations are similarly built up, but by twos, threes, and
fours from 2, 3, and 4, until a king is reached. Here, a card of
rank i may be used as a card of rank i+ 13 for j € {0, 1, 2, 3}.
During the game (see Fig. 2), the player moves (i) the top
card of the stock either onto a foundation or to the top of
a tableau pile, or (ii) the top card of a tableau pile onto a
foundation.

In Fig. 2, the top card 4 of the stock can be moved onto
the 2-foundation. If the second card 3 of the stock is moved
to a tableau pile, then the third card 8 can be moved to the 4-
foundation. Similarly, cards 5 and Q in the stock are moved
to a tableau pile and the 4-foundation, respectively. Then,
the card 3 in a tableau pile can be moved to the 4-foundation.

In this paper, we consider the generalized version of
Calculation Solitaire. The generalized (s X k)-card deck in-
cludes s suits, and each suit includes k ranks, where k is
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a prime number. The instance of the Generalized Calcula-
tion Solitaire Problem is a mid-play configuration consisting
of s foundations, at most s tableau piles, and a stock (see
Fig.6). The problem is to decide whether the player can
move all cards of the stock and tableau piles to foundations.

Theorem 1: The Generalized Calculation Solitaire Prob-
lem is NP-complete.
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It is not difficult to show that the problem belongs to
NP, since the player moves at most s(k — 1) cards from the
stock to foundations directly or by way of tableau piles.

There has been a lot of papers on the computational
complexities of solitaire games. For example, FreeCell [5],
Klondike [6], and Spider Solitaire [7] are known to be NP-
complete. Recently, Arena and lanni proved the NP-
completeness of Scorpion Solitaire [2].

2. Reduction from 3SAT to Generalized Calculation

The definition of 3SAT is mostly from [4]. Let U =
{x1,x2,...,x,} be a set of Boolean variables. Boolean vari-
ables take on values O (false) and 1 (true). If x is a variable
in U, then x and x are literals over U. The value of X is
1 (true) if and only if x is O (false). A clause over U is a
set of literals over U, such as {x7, x3, x4}. It represents the
disjunction of those literals and is satisfied by a truth as-
signment if and only if at least one of its members is true
under that assignment. An instance of 3SAT is a collection
C = {c1,¢2,...,cn} of clauses over U such that |c;| = 3 for
each c; € C. The 3SAT problem asks whether there exists
some truth assignment for U that simultaneously satisfies all
the clauses in C. This problem is known to be NP-complete.
Without loss of generality, we can assume that the number n
of variables is even.

We present a polynomial-time transformation from an
arbitrary instance C of 3SAT to a mid-play configuration of
Calculation such that C is satisfiable if and only if all cards
of the stock and tableau piles can be moved to foundations.

First of all, the 1-foundation starts with a sequence
of cards 1,2,...,5 (see Fig.4), and the 2-foundation is
a single card 2. The stock starts with a sequence of
cards 7,9,...,2i+5,...,2n+ 5.

Consider variable x; for each i = 1,2,...,n. Suppose
that the 1-foundation is currently a sequence of cards of
rank 1,2,...,2i + 3, and the top of the stock is a card 2i + 5
(see Fig.4). Variable x; is transformed to two tableau piles,
which start with two gray cards 2i + 4 with labels x; = 1
and x; = 0, followed by blue and red cards with labels x;
and X;, respectively. The number of blue (resp. red) cards
is g if literal x; (resp. X;) appears ¢ times in C. (In Fig. 6,
two gray cards 6 are followed by one blue card 14 and two
red cards 26,38 because literals x; and x| appear once and
twice in C, respectively.)

In Fig. 4, one of the two gray cards 2i+4 is moved onto
the top card 2i + 3 of the 1-foundation. Then, card 2i + 5
of the stock can be moved to the 1-foundation. (In Fig. 6,
one of the two gray cards 6 is moved onto card 5 of the 1-
foundation. Then, card 7 of the stock can be moved to the 1-
foundation.) Repeating this procedure fori = 1,2,...,n, we
can assign either 1 or O to each variable x; € {x1, x2, ..., X,}.

The 2-foundation will be used and explained later.
Consider the 3rd through (n + 2)-th foundations of Fig.4.
A white card 2i + 4 has already been placed on card i + 2
of the (i + 2)-foundation for each i € {1,2,...,n}. Thanks
to those foundations, a gray card 2i + 4 may not move to
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an unintended foundation. (The number [ of layers of those
foundations will be fixed later.)

Figure 5(a) is a clause gadget for ¢; = {x;, x;,, Xi,},
where each of x;,, x;,, and x;, is a positive or negative literal.
Each clause c; is transformed to six foundations and three
tableau piles. The six foundations start with cards n+ 6 — 3
through n + 6 + 2 (see also cards 7,8,...,12 whenn = 4
and j = 1 in Fig. 6). Three cards n + 6j — 3, n + 6j — 1, and
n+6;j+ 1 will be followed by cards 2n+12j—-6,2n+12j-2,
and 2n + 12j+ 2 with labels x;,, x;,, and x;,, respectively. (In
Fig. 6, cards 7,9,11 will be followed by cards 14,18,22 with
labels x;, x3, x3, since ¢; = {x1, X2, x3}.)

Consider literal x;, in ¢; (see card n+6j—3 in Fig. 5 (a)).
Note that the card 2n+ 12 j— 6 with label x;, has not yet been
placed on the (n+6j—3)-foundation. (i) That card 2n+12;-6
is placed under the tableau card with label x;, = 1 if x; is
a positive literal. (See Fig.6. Blue card 14 with positive
literal x; is placed under gray card 6 with label x; = 1,
wheren = 4, j = 1, and 2n+12j—-6 = 14.) (ii) That card 2n+
12j — 6 is placed under the tableau card with label x;, =
0 if x;, is a negative literal. (See Fig.6. Red cards 26,38
with negative literal x| are placed under gray card 6 with
label x; = 0, wheren =4, j = 2,3, and 2n+12j-6 = 26,38.
Note that literal x; appears in ¢;, ¢3.)

Consider three tableau piles of Fig. 5 (a), where gray
cards 3n+ 18m+4j,3n+18m+4j+1,and 3n+ 18m+4j+2
are placed in the top layer (see gray cards 70,71,72 when
n =4, m=3,and j = 1 in Fig.6). The second layer of
the tableau piles are green cards 3n + 18— 9,3n + 18 — 3,
and 3n + 18 + 3 of label ¢;, which may possibly move to
the corresponding foundations (see green cards 21,27,33 in
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Fig. 6

Calculation transformed from 3SAT whenn =4, m = 3, and s = 2 + n + 6m = 24. The set of

clauses is C = {cy, c2, c3}, where ¢ = {x1, X2, X3}, c2 = {X71, %2, X4}, and ¢3 = {X7, x3, x4}.

Figs. 6 and 7). The third layer of the tableau piles are three
cards of the same rank 3n + 18m + 4 + 3 (see three gray
cards of rank 73 in Fig. 6). In this paragraph, we used cards
of ranks 3n + 18m + 4 through 3n + 18m + 4 + 3. This is
because we had already used a card of rank 3n + 18 + 3 in
the (n+6j+ 1)-foundation (see Fig. 5 (a)). Thus, cards in the

corresponding tableau must start with rank 3n+ 18m+4j for
je{l,2,...,m}sothat 3n+ 18m + 4 when j = 1 is greater
than 3n + 18 + 3 when j = m.

Suppose that the top of the 1-foundation is a card 3n +
18m +4(j— 1) + 3 (see Fig. 5 (a)). Then, we can move three
gray cards 3n+18m+4 j, 3n+18m+4j+1, and 3n+18m+4 j+2
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Fig.7  The target card 4 with label T is moved onto the 2-foundation if and only if 3SAT C is satisfi-

able.

from tableau piles to the 1-foundation in that order. If at
least one of the three green cards 3n+18j-9,3n+18j-3, and
3n+18j+3 is moved from a tableau pile to the corresponding
foundation, then we can move a card 3n + 18m + 4j + 3 to
the 1-foundation (see card 73 in the 1-foundation of Fig. 7).
We repeat this procedure for j = 1,2,...,m.

Figure 5(b) is a tableau pile, consisting of card 3n +
22m + 4 and the target card 4 with label T (see cards 82 and
4 in Fig. 6). Consider the case j = m in Fig. 5 (a). If one of
the three cards 3n+18m+4j+3 (= 3n+22m+3) is moved to
the 1-foundation, then card 3n+22m+4 of Fig. 5 (b) can also
be moved to the 1-foundation. Finally, the target card 4 can
be moved to the 2-foundation (see cards 82 and 4 in Fig. 7).

Now we fix the value / in Fig. 4 so that [ satisfies (n +
2)l > 2n + 12m + 2. (In Fig. 7, see cards 48 and 46, where
48 = (n+2) > 46 = 2n + 12m + 2 when [ = 8.) Thanks to
those [ layers, blue and red cards in Fig. 6 may not move to
unintended foundations.

The number s of suits is fixed to be s = 2+ n + 6m (see
24 foundations of Fig.6). The number k of ranks is fixed
to be the minimum prime number p > 3n + 22m + 4. (In
Fig.6,k = p = 83 > 3n + 22m + 4 = 82.) From Bertrand-
Chebyshev theorem [3], for any integer n > 4, there always
exists a prime number p withn < p < 2n.

Figure 6 is the mid-play configuration of Calcula-
tion transformed from 3SAT C = {cy, ¢, c3}, where ¢ =
{x1, %2, x3}, c2 = {¥1,%, %}, and ¢z = {x1,x3,x0}. In
Fig. 6, we can move eight cards 6,7; 8,9; 10,11; 12,13 from
tableau piles and the stock to the 1-foundation, which corre-
sponds to a truth assignment (x;, x2, X3, x4) € {0, 1}*.

In Fig.7, three blue cards and three red cards can
be moved from tableau piles to the 7th through 24th
foundations (see cards 14; 18,30; 22,42; 34). Also,
cards 14,15,...,69 of the stock can be moved to the 1-

foundation.

Consider 3 X 3 cards with label ¢ in tableau piles (in
Fig. 6, see cards 70,71,72; 21,27,33; and 73,73,73). As
shown in Fig.7, we can move (i) cards 70,71,72 to the
1-foundation, (ii) cards 21,27,33 to the 7th through 11th
foundations, and (iii) one of the three cards 73 to the 1-
foundation. After repeating this procedure for every c; €
{c1,c2,c3}, we can move the card 82 to the 1-foundation.
Finally, we can move the target card 4 to the 2-foundation.

Once the target card 4 with label T is placed on the 2-
foundation (see Fig. 7), gray cards 6,8,10,12 can be moved
to the 2-foundation. The remaining red, blue, and green
cards in tableau piles can be moved to the 7th through 24th
foundations (see cards 26,38,46 and 39,57,69). The re-
maining part of the stock contains all cards for the 2nd
through 24th foundations, where the six gray cards 73, 73,
77,77, 81, 81 are excluded from the stock of Fig. 7.

In Fig. 6, we use only every other foundation among
the 7th through 24th foundations. This is because we want
blue and red cards to be of even rank, and green cards to
be of odd rank. (In Figs.6 and 7, the 7,9,...,23rd foun-
dations have cards 14,18,...,46 in the second layer, and
cards 21,27,...,69 in the third layer.) Since every green
card in the tableau has odd rank, it cannot be moved to the
second layer of the 7,9, ..., 23rd foundations.

From this construction, the instance C of 3SAT is sat-
isfiable if and only if all cards in the stock and tableau piles
can be moved to foundations. From Figs. 6 and 7, one can
see that (x1, x2, x3, x4) = (1,0, 1, 0) satisfies all clauses of C.
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