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On the Unmixedness Problems of Colored Pushdown Automata∗
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SUMMARY Recently, we introduced a new automata model, so-called
colored finite automata (CFAs) whose accepting states are multi-colored
(i.e., not conventional black-and-white acceptance) in order to classify their
input strings into two or more languages, and solved the specific complex-
ity problems concerning color-unmixedness of nondeterministic CFA. That
is, so-called UV, UP, and UE problems are shown to be NLOG-complete,
P, and NP-complete, respectively. In this paper, we apply the concept of
colored accepting mechanism to pushdown automata and show that the
corresponding versions of the above-mentioned complexity problems are
all undecidable. We also investigate the case of unambiguous pushdown
automata and show that one of the problems turns out to be permanent true
(the others remain undecidable).
key words: pushdown automata, undecidability, ambiguity

1. Introduction

Finite Automaton is a fundamental and indispensable model
of computation in numerous fields of modern computer sci-
ence. Until now, a huge number of its variants have been
proposed and investigated [1]–[9].

In the previous paper [10], we introduced a new gener-
alized variant of finite automaton, called colored finite au-
tomaton (CFA), whose accepting states are multi-colored in
order to classify their input strings into two or more lan-
guages. Although the original purpose of CFA was to find a
specific finite automaton whose transition diagram is iso-
morphic to the generalized de Bruijn graph [11], it turns
out that coloring of accepting states of nondeterministic au-
tomaton brings us a new perspective of nondeterministic
computation.

Especially, when the coloring is not mixed i.e., the set
of languages accepted with each color is mutually disjoint,
each language accepted in the same color has conceptional
coherency by itself and clear distinction to the others. For-
tunately, the unmixedness of a given nondeterministic CFA
can be checked efficiently, i.e., in a polynomial time. There-
fore, CFA has practical potential to be used in applied areas
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of finite automaton. For example, colored regular expres-
sions are introduced and their application to existing regular
expression engines is proposed in [12].

In this paper, we apply this concept of accepting state
coloring to the next level of Chomsky hierarchy, i.e., the
context-free language class or equivalently the family of
pushdown automata, and investigate the usefulness of col-
ored pushdown automata and the computational complexity
of their unmixedness problems. This is the answer to one of
the open problems posed in [10].

This paper is organized as follows. Section 2 first re-
calls the definitions of CFA and gives a practical example
of the coloring concept of finite automaton. We next give
the definitions of colored pushdown automaton (CPDA) for
the first time and gives an intriguing example of the col-
oring concept of pushdown automaton. Section 3 intro-
duces the three computational problems concerning color-
unmixedness of CPDA in the same way as CFA. These prob-
lems turn out to be undecidable at all, which is a sharp con-
trast with CFA cases. From this fact, Sect. 4 considers un-
ambiguous pushdown automaton, i.e., a restricted automa-
ton whose number of accepting paths is at most one. As
a result, one of such restricted problems becomes trivially
decidable and the others remain undecidable. Lastly, Sect. 5
summarizes the results and suggests a future direction of the
research on CPDA.

2. Definitions and Examples

2.1 Colored Finite Automata

We first recall the definitions concerning colored finite au-
tomaton and give an example of the application of colored
acceptance to ordinary finite automata.

Definition 1: [10] Let Li be a language over some alpha-
bet Σ for i = 1, . . . , k, k ≥ 1. (1) k-tuple (L1, L2, · · · , Lk)
of languages is called colored language (vector) of k col-
ors over Σ. (2) If a language L is expressed with
the direct sum∗∗

∑k
i=1 Li of these languages, L is called

distinctly colored language of k colors over Σ.

Definition 2: A nondeterministic colored finite automaton
(with ε transition), abbreviated NCFA, is a 5-tuple M =

(Q,Σ, δ, q0,
∑k

i=1 Fi), where
∗∗For sets X and Y, direct sum X + Y is the union X ∪ Y sat-

isfying the disjointness X ∩ Y = ∅. Thus, the direct sum
∑k

i=1 Li

above is defined only if each Li is mutually disjoint.
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1. Q is a finite set of states,
2. Σ is a finite set of input symbols,
3. δ is the transition function from Q × (Σ ∪ {ε}) to 2Q,
4. q0 ∈ Q is the initial state,
5.
∑k

i=1 Fi ⊆ Q is the set of colored accepting states,
where Fi is the set of accepting states with ith color.

We denote by δ̂(q, x) the set of reachable states when M
starts from state q and finishes after it reads the input string
x. If δ̂(q, x)∩ Fi � ∅, we say that M accepts x with ith color.

Li(M)


= {x ∈ Σ∗ ∣∣∣ δ̂(q0, x) ∩ Fi � ∅}†

is called the language accepted by M with ith color and

L(M)


=
⋃k

i=1 Li(M)

is called the (unified) language accepted by M. Especially,
if it holds that

L(M) =
∑k

i=1 Li(M),

we say that L(M) is unmixed and that M color-distinctly
accepts L(M). Note that when M is deterministic or k = 1,
it is inherently unmixed.

We denote as ε-Closure(q) the set of states which are
reachable from state p through ε transitions. For p, q ∈ Q,
let ε-Closure(p, q)



= {(p′, q′) | p′ ∈ ε-Closure(p), q′ ∈

ε-Closure(q)}.
Definition 3: Let M = (Q,Σ, δ, q0,

∑k
i=1 Fi) be an NCFA.

A 5-tuple M′ = (Q′,Σ, δ′, q′0, F
′) is called direct product

automaton of M itself, where

Q′ = {ε-Closure(p, q) | (p, q) ∈ Q2},
δ′(σ, a) = {ε-Closure(p′, q′) | p′ ∈ δ(p, a), q′ ∈ δ(q, a),

(p, q) ∈ σ} for each σ ∈ Q′, a ∈ Σ,
q′0 = ε-Closure(q0, q0), and
F′ = {σ ∈ Q′ | (p, q) ∈ σ, p ∈ Fi1 , q ∈ Fi2 , i1 � i2,

i1, i2 ∈ {1, 2, . . . , k} for some (p, q) ∈ σ}.
The definition of direct product automata above is

slightly complicated than the original one [10] since we al-
low ε-transitions for colored finite automaton in Definition
2.

It is easily seen that |Q′| ≤ |Q|2 and M′ is constructed
from M in polynomial time.

Definition 4: Let M = (Q,Σ, δ, q0,
∑k

i=1 Fi) be an NCFA.
The undirected graph G = (V, E) obtained from the direct
product automaton M′ of M such that
⎧⎪⎪⎪⎨⎪⎪⎪⎩
• V = Q
• E = {(p, q) ∈ Q × Q | ∃x ∈ Σ∗[(p, q) ∈ δ̂′(q′0, x)]}
= {(p, q) ∈ Q × Q | ∃x ∈ Σ∗[p, q ∈ δ̂(q0, x)]}

is called simultaneously reachable graph†† of M and de-
noted Gsr(M).

†X 

= Y means that X is defined as Y.

††The same concept appears also in [14].

Fig. 1 ε−NFA Md accepting decimal numbers [2]

Fig. 2 The direct product automaton M′d of Fig. 1

Fig. 3 The simultaneously reachable graph Gsr(Md) of Fig. 1

Example 1: Fig. 1 is an example of ordinary (non-colored)
nondeterministic finite automaton Md appeared in a familiar
textbook [2]. Md accepts decimal numbers each of which
(1) may have positive or negative sign, (2) may not have
integer part or fractional part of digits but must have either
part, and (3) must have a decimal point. After constructing
the product automaton M′d from Md as shown in Fig. 2, we
get the simultaneously reachable graph Gsr(Md) of Md as
shown in Fig. 3.

From Fig. 3, we can select three independent vertices
v0, v4, and v5 which correspond to the states q0, q4, and q5

of Md, respectively. If we color them with three differ-
ent colors R, G, and B, respectively, then the correspond-
ing languages LR(Md), LG(Md), and LB(Md) are unmixed
each other, where LR(Md) = {ε}, LG(Md) is the set of integer
numbers having at least one digits without decimal points,
and LB(Md) = L(Md).

Definition 5: [10] Unmixedness verification problem of
nondeterministic colored finite automaton (abbreviated UV)
is defined as follows.{

Instance : An NCFA M = (Q,Σ, δ, q0,
∑k

i=1 Fi),
Question :

⋃k
i=1 Li(M) =

∑k
i=1 Li(M)?



TAKAHASHI and ITO: ON THE UNMIXEDNESS PROBLEMS OF COLORED PUSHDOWN AUTOMATA
305

Definition 6: [10] Unmixed partitioning problem of non-
deterministic finite automaton (abbreviated UP) is defined
as follows.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Instance : An NFA M = (Q,Σ, δ, q0, F) and
a positive integer k,

Question : Is there an unmixed NCFA N = (Q,Σ, δ,
q0,
∑k

i=1 Fi) such that F =
∑k

i=1 Fi ?

Definition 7: [10] Unmixed extension problem of nonde-
terministic finite automaton (abbreviated UE) is defined as
follows.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Instance : An NFA M = (Q,Σ, δ, q0, F0) and
a non-negative integer k,

Question : Is there an unmixed NCFA N = (Q,Σ, δ,
q0,
∑k

i=0 Fi) ?

In the case of NCFA, the computational complexities of the
above three decision problems are NLOG-complete, P, and
NP-complete, respectively [10].

2.2 Colored Pushdown Automata

The following is the definition of colored pushdown automa-
ton that is a natural colored extension of usual pushdown
automaton, abbreviated PDA [1]–[4], [6], [15].

Definition 8: A nondeterministic colored pushdown au-
tomaton, abbreviated NCPDA, is a 6-tuple M = (Q,Σ,Γ, δ,
q0,
∑k

i=1 Fi), where
∑k

i=1 Fi ⊆ Q is a set of colored accepting
states and Fi is a set of accepting states with ith color. The
others are the same as normal NPDA.

In addition, a computational configuration (q, w, γ), a
transition relation � between computational configurations,
and its transitive closure �∗ are defined in the same way as
normal NPDA. Li(M)



= {x ∈ Σ∗ | (q0, x, ε) �∗ (q, ε, ε), q ∈

Fi} is called the language accepted by M with ith color. Note
that there exist two-fold conditions for M to accept a given
input string such that (1) it must be in an accepting state and
(2) the stack must be empty. The case of acceptance with
only the condition (1), so-called acceptance by final state,
will be described in the end of Sect. 4. L(M)



=
⋃k

i=1 Li(M)
is called the (unified) language accepted by M. Especially,
if it holds that L(M) =

∑k
i=1 Li(M), we say that L(M) is

unmixed and the M is color-distinctly accepts L(M).
Similarly, the CPDA version of simultaneously reach-

able graph is defined as follows.

Definition 9: Let M = (Q,Σ,Γ, δ, q0,
∑k

i=1 Fi) be an
NCPDA. The undirected graph G = (V, E) obtained from
M such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

• V = Q
• E = {(p, q)∈Q × Q | ∃x ∈ Σ∗[(q0, x, ε) �∗ (p, ε, ε)

and (q0, x, ε) �∗ (q, ε, ε)]}
is called simultaneously reachable graph of M and denoted
Gsr(M).

Fig. 4 The grammatical transition diagram of NCPDA Mp

Fig. 5 The simultaneously reachable graph Gsr(Mp) of NCPDA Mp

Example 2: Fig. 4 shows the grammatical transition dia-
gram of NCPDA Mp = ({q0, q1, . . . , q7}, {a, b}, {q́2, q́5}, δ,
q0, {q3}+ {q6}+ {q7}), which is a multi-colored NPDA corre-
sponding to the (unambiguous) grammar S → aS a | bS b | ε
that generates the language Lpal = {wwR | w ∈ {a, b}∗} of
palindromes. In the figure, “/ i©” and “ i©/” denote push and
pop operations of stack symbol q́i, respectively.

By letting the languages accepted in the accepting
states q3, q6, and q7 be denoted LR(Mp), LG(Mp), and
LB(Mp), respectively, it holds that

LR(Mp) = aLpala,

LG(Mp) = bLpalb,

LB(Mp) = {ε}, and

L(Mp) = Σi=R,G,BLi(Mp) = Lpal,

so Mp is color-distinctly accepts Lpal.

By further inquiries, it is seen that the individual
languages accepted in the formerly nonaccepting states
q0, q1, q2, q4, and q5 are L0(Mp) = {ε}, L1(Mp) = {a},
L2(Mp) = aLpal, L4(Mp) = {b}, and L5(Mp) = bLpal, respec-
tively. From these identifications, we get the simultaneously
reachable graph Gsr(Mp) of Mp as shown in Fig. 5. If Mp

undesirably halts in q1 or q2 which are Y-colored in the fig-
ure, we can see that symbol a is missing at the end of input
string. Similarly, the case of halting in q4 or q5 which are
C-colored in the figure tells us the missing of b.

3. The Unmixedness Problems of NCPDAs

In the same way as CFA, the UV, UP, and UE problems of
NCPDA are defined as follows. Note that instance of the
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UV problem is an NCPDA, while instances of the UP and
UE problems are NPDAs.

Definition 10: Unmixedness verification problem of
NCPDA (abbreviated UV) is defined as follows.
{

Instance : An NCPDA M = (Q,Σ,Γ, δ, q0,
∑k

i=1 Fi),
Question :

⋃k
i=1 Li(M) =

∑k
i=1 Li(M)?

Definition 11: Unmixed partitioning problem of NPDA
(abbreviated UP) is defined as follows.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Instance : NPDA M = (Q,Σ,Γ, δ, q0, F) and
a positive integer k,

Question : Is there an unmixed NCPDA N= (Q,Σ,Γ, δ,
q0,
∑k

i=1 Fi) such that F =
∑k

i=1 Fi?

Definition 12: Unmixed extension problem of NPDA (ab-
breviated UE) is defined as follows.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Instance : An NPDA M = (Q,Σ,Γ, δ, q0, F0) and
a non-negative integer k,

Question : Is there an unmixed NCPDA N= (Q,Σ,Γ, δ,
q0,
∑k

i=0 Fi)?

Theorem 1: (1) UV, (2) UP (k = 2), and (3) UE (k = 1)
problems of NCPDA are all undecidable.

(Proof) We reduce the emptiness problem of Turing ma-
chines, which is known to be undecidable, to each problem.
Let M be a Turing machine and Σ,Γ, p0, F denote the set
of input symbols, tape alphabet, initial state, and accepting
states of M, respectively. The set

L〈M〉 = {w1#w2
R#w3#w4

R# · · · #wm(or wm
R)# |

w1 ∈ p0Σ
∗, wm ∈ Γ∗FΓ∗, wi �M wi+1

(1 ≤ i ≤ m − 1)}
of the valid accepting configuration sequences of a Turing
machine M is expressed by the intersection of the languages

L(M1) = {w1#w2
R# · · · #wm(or wm

R)# |
w1 ∈ p0Σ

∗, wm ∈ Γ∗FΓ∗, w2i−1 �M w2i

(1 ≤ i ≤ �m/2�)}
and

L(M2) = {w1#w2
R# · · · #wm(or wm

R)# |
w1 ∈ p0Σ

∗, wm ∈ Γ∗FΓ∗, w2i �M w2i+1

(1 ≤ i ≤ �m/2� − 1)}
accepted by the two deterministic PDAs M1 and M2, re-
spectively, and it holds that L(M) = {x ∈ Σ∗ | p0x =
w1, w1#w2

R# · · · #wm(or wm
R)# ∈ L〈M〉} = ∅ ⇔ L〈M〉 =

∅ ⇔ L(M1) ∩ L(M2) = ∅ [3]. Note that if m is even (odd)
then 2�m/2� = m (m− 1) and 2(�m/2� − 1)+ 1 = m− 1 (m).

An NPDA M′ is constructed from the deterministic
PDAs M1 and M2 as follows (see Fig. 6):

(i) we make a ε transition with a push operation of a new
stack symbol Z0 from the initial state qi of M′ to each

Fig. 6 A conceptual diagram of the proof of Theorem 1

initial states of M1 and M2, and
(ii) change the all accepting states of M1 to nonaccepting

states and make ε transitions with pop operations of
Z0 from them to a new accepting state qe1 of M′. In
the same way, the lower M2 part is modified to make ε
transitions to another accepting state qe2.

Note that in the parts M1 and M2, no input can be re-
garded as accepted by M′ due to the existence of Z0 in the
stack. From the construction above, we prove each undecid-
ability as follows.

(1): For the two-colored NCPDA N which is changed
from PDA M′ with FR = {qe1}, FG = {qe2}, it holds that N is
unmixed⇔ LR(N) ∩ LG(N) = ∅ ⇔ L(M) = ∅.

(2): The claim that an unmixed NCPDA N can be ob-
tained by splitting the set of accepting states F = {qe1, qe2}
of M′ into two sets is true⇔ LR(N)∩LG(N) = ∅ ⇔ L(M) =
∅.

(3): The NPDA M′′ with F0 = {qi, qe2} and qe1 ∈ Q −
F0 can be changed to a two-colored unmixed PDA N′ by
adding another colored accepting set F1 = {qe1} ⇔ L0(N′)∩
L1(N′) = ({ε} ∪ LG(N)) ∩ LR(N) = LG(N) ∩ LR(N) = ∅ ⇔
L(M) = ∅. �

4. The Unmixedness Problems of UnAmbiguous NCP-
DAs

As shown in the previous section, unlike the case of colored
finite automata, all the unmixedness problems are undecid-
able. In this section, we investigate the computational com-
plexity of the problems of constrained NCPDA and NPDA,
which are the inputs to the unmixedness problems.

Definition 13: We say that an NPDA is unambiguous if the
following holds. If there exist accepting paths P1 � P2

such that P1 : (q0, x, ε) �∗ (q f1 , ε, ε) and P2 : (q0, y, ε) �∗
(q f2 , ε, ε), for some q f1 , q f2 ∈ F, then x � y.

Fact 1: [15] The transformation methods [1]–[3] used to
show the equivalence of context-free grammars and NPDAs
preserve their unambiguity.

We propose the two different concepts of ambiguity of
NCPDA as follows.

Definition 14: (1) We say that an NCPDA is unambiguous
in the strong sense if the following holds. If there exist ac-
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cepting paths P1 � P2 such that P1 : (q0, x, ε) �∗ (q f1 , ε, ε)
and P2 : (q0, y, ε) �∗ (q f2 , ε, ε), for some q f1 , q f2 ∈

⋃k
i=0 Fi,

then x � y.
(2) We say that an NCPDA is unambiguous in the

weak sense if the following holds. If there exist accepting
paths P1 � P2 such that P1 : (q0, x, ε) �∗ (q f1 , ε, ε) and
P2 : (q0, y, ε) �∗ (q f2 , ε, ε), for some q f1 , q f2 ∈ Fi and for
some i(1 ≤ i ≤ k), then x � y.

The unambiguity in the strong sense of NCPDA is equal to
the normal unambiguity when it is regarded as NPDA, ig-
noring color difference between its accepting states. On the
other hand, in the case of the unambiguity in the weak sense,
there may be two or more accepting paths (with different
colors) when regarded as a normal NPDA.

Theorem 2: (1) UP instance (M, |F|) for any unambigu-
ous NPDA M is always true.

(2) UE problem of unambiguous NPDA is undecidable.
(3) UV problem of unambiguous NCPDA is (3-1) unde-

cidable in the weak sense and (3-2) always true in the
strong sense.

(Proof) (1): Suppose contrarily that some UP instance
(M, |F|) is false, i.e., an NCPDA N converted from M with
Σk

i=1Fi = F, Fi = {q fi } and F = {q f1 , . . . , q fk } is mixed,
which means that for some i1, i2(1 ≤ i1, i2 ≤ k), i1 � i2,
Li1 (N) ∩ Li2 (N) � ∅, i.e., for some input x, there are two
distinct accepting paths P1 : (q0, x, ε) �∗ (q f1 , ε, ε) and
P2 : (q0, x, ε) �∗(q f2 , ε, ε) of M on x, which contradicts the
unambiguity of M.

(2): The NPDA M′′ used in the proof of the part (3) of
Theorem 1 to show the undecidability of the UE problems is
natively unambiguous. This is because the nondeterministic
transitions of M′′ come out only at qi, but the transition to
the M1 side never reaches the accepting state qe2.

(3-1): For the NCPDA N used in the proof of the part
(1) of Theorem 1 to show the undecidability of the UV
problem, there is exactly one accepting path (qi, x, ε) �∗
(qe1, ε, ε) for each x ∈ LR(N) and exactly one accepting path
(qi, y, ε) �∗(qe2, ε, ε) for each x ∈ LG(N). Thus, N is unam-
biguous in the weak sense.

(3-2): Suppose contrarily that some NCPDA N which
is unambiguous in the strong sense is mixed, which means
that for some colors i1, i2(1 ≤ i1, i2 ≤ k), i1 � i2, Li1 (N) ∩
Li2 (N) � ∅, i.e., for some input x, there are two different
accepting paths of N on x, which means that N taken as a
non-colored NPDA is ambiguous. �

As announced in Sect. 2, we consider here the case of
acceptance by final state only. The proofs of the theorems
influenced by this change of accepting condition are those of
UE problems (the part (3) of Theorem 1 and the part (2) of
Theorem 2). Since we must conclude that a PDA accepts an
input string even when it enters an accepting state without
empty stack, one can yield as many colored languages as
possible (at most the number of internal states of M1 and
M2) if we leave the construction of NPDA M′′ in the proof
of Theorem 1 as it is.

To prevent such a situation, we modify the construction
of M′′ to the following.

(i) we change the two ε transitions with push operations of
Z0 from the initial state qi to pure ε transitions (without
stack operations), and

(ii) change the transitions with pop operations of Z0 from
the formerly accepting states of M1 and M2 to ‘$’-
reading transitions (without stack operations),

where a newly introduced symbol $ � Σ makes the lan-
guages accepted at states qe1 and qe2 do not intersect with
the languages accepted at the other states. As elements of
the set F0 of original accepting states of M′′, we select all
the states in M1 and M2 in addition to qe2 and qi. From these
settings, we have qe1 as the only possible element of the set
F1 of extendable another-colored accepting states.

The set F0 constructed in this way cannot be used for
the proof of part (2) of Theorem 2 because the NPDA hav-
ing such an F0 as its accepting states may be ambiguous,
i.e., there may exist two accepting paths on the same input
string from the initial state qi to some two accepting states in
M1 and M2, respectively. To prevent such an ambiguity, we
exclude the states in M1 part from F0 which are classified to
be simultaneously reachable with states in M2. Those simul-
taneously reachable states cannot be selected as members of
F1 because it causes a mixedness of the two colors. For
states in M1 which are classified not to be simultaneously
reachable with states in M2, we must have them remain in
F0. Even if there exist states in M1 which cannot be de-
termined whether or not they are simultaneously reachable
with states in M2 but we know that they behave the same
way as qe1, then we can conclude that the part (2) of Theo-
rem 2 holds in the case of final state acceptance.

5. Summary and Discussions

Table 1 summarizes the results obtained in this paper, where
“U” and “T” stand for undecidability and trivial decidabil-
ity (permanent truth), respectively. Compared to colored fi-
nite automata, unconstrained colored PDAs exhibit the ex-
treme difficulty (general impossibility) to check if they are
unmixed or make them unmixed ones. On the other hand,
when they are known as unambiguous ones, different situa-
tions emerge as seen in the second row. In fact, the unmixed-
ness of the colored PDA Mp in Example 2 is not an acci-
dent but a direct consequence of its unambiguity. It is well-
known, however, that the ambiguity itself is undecidable.
Thus, we need to impose a stronger restriction upon PDAs,
such as visibly (also called input-driven) PDA [16], [17], to
make the unmixedness problems of colored PDAs have fea-
sible solutions.

Table 1 decidabilities of the unmixedness problems of NCPDA

N(C)PDA UV UP UE
general U U U

unambiguous weak: U T U
strong: T
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