
1364
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

PAPER Special Section on Information and Communication System Security

Policy-Based Method for Applying OAuth 2.0-Based Security
Profiles

Takashi NORIMATSU†,††a), Yuichi NAKAMURA†, Nonmembers, and Toshihiro YAMAUCHI††, Member

SUMMARY Two problems occur when an authorization server is uti-
lized for a use case where a different security profile needs to be applied
to a unique client request for accessing a distinct type of an API, such as
open banking. A security profile can be applied to a client request by using
the settings of an authorization server and client. However, this method can
only apply the same security profile to all client requests. Therefore, mul-
tiple authorization servers or isolated environments, such as realms of an
authorization server, are needed to apply a different security profile. How-
ever, this increases managerial costs for the authorization server adminis-
tration. Moreover, new settings and logic need to be added to an autho-
rization server if the existing client settings are inadequate for applying a
security profile, which requires modification of an authorization server’s
source code. We aims to propose the policy-based method that resolves
these problems. The proposed method does not completely rely on the set-
tings of a client and can determine an applied security profile using a policy
and the context of the client’s request. Therefore, only one authorization
server or isolated environment, such as a realm of an authorization server,
is required to support multiple different security profiles. Additionally, the
proposed method can implement a security profile as a pluggable software
module. Thus, the source code of the authorization server need not be mod-
ified. The proposed method and Financial-grade application programming
interface (FAPI) security profiles were implemented in Keycloak, which is
an open-source identity and access management solution, and evaluation
scenarios were executed. The results of the evaluation confirmed that the
proposed method resolves these problems. The implementation has been
contributed to Keycloak, making the proposed method and FAPI security
profiles publicly available.
key words: OAuth 2.0, security profile, financial-grade API (FAPI) security
profile, open banking

1. Introduction

OAuth 2.0 is a widely used web-based authorization proto-
col [1] that is used in a wide range of use cases. One such
use case is open banking, where a financial institution pro-
vides its financial services via application programming in-
terfaces (APIs) and an application built by a third-party de-
veloper accesses them on behalf of a user of the financial
institution.

OAuth 2.0 defines multiple protocol flows and flexi-
bility in the usage is left. This flexibility, however, often
introduces security holes if it is used incorrectly. For exam-
ple, OAuth 2.0 recommends including a ”state” parameter
in an authorization request, which means that using OAuth

Manuscript received October 13, 2022.
Manuscript revised March 21, 2023.
Manuscript publicized June 20, 2023.
†The authors are with Hitachi, Ltd., Tokyo, 100–8280 Japan.
††The authors are with Okayama University, Okayama-shi,

700–8530 Japan.
a) E-mail: takashi.norimatsu.ws@hitachi.com

DOI: 10.1587/transinf.2022ICP0004

2.0 without the ”state” parameter can be allowed. However,
a cross-site request forgery attack might succeed if using
OAuth 2.0 without the ”state” parameter (Sect. 4.4.1.8 of
[2]).

To prevent introduction of security vulnerabilities, de-
tailed methods for using OAuth 2.0 securely have been de-
veloped, which are called security profiles. A security pro-
file consists of the requirements that a client request to an
authorization server must satisfy. Applying a security pro-
file means that an authorization server judges if a client
request satisfies requirements of the security profile. The
authorization server returns a normal response if the re-
quest satisfies the requirements; otherwise, the authorization
server returns an error response.

There is a method called the settings-based method to
apply a security profile. This method can only apply one
security profile to a client request because all requests from
the same client are processed in the same way based on these
settings.

The settings-based method utilizes settings of an au-
thorization server and client. Some settings are defined by
OAuth 2.0 related specifications [3], [4], while others are de-
fined by an authorization server product. An authorization
server manages its settings and those of the clients. When a
client sends a request to an authorization server, it processes
the request and returns its response based on the server and
client settings. The setting-based method makes the autho-
rization sever to set appropriate values for these settings to
check if a client request satisfies the requirements of the se-
curity profile.

However, the settings-based method increases manage-
rial costs for an authorization server administrator when an
authorization server needs to support several security pro-
files and apply a different security profile to a different client
request. The authorization server administrator needs to cre-
ate and manage an authorization server per security profile
because only one security profile can be applied using the
settings-based method. If an authorization server supports
multi-tenant capability, the authorization server administra-
tor needs to create and manage a tenant for each security
profile. The authorization server administrator also needs to
register the same clients and their users in all authorization
servers or tenants and manage these duplicated clients and
users.

Further, regardless of the use case, if the existing set-
tings are inadequate for applying a security profile, new set-
tings and logic need to be added to an authorization server,

Copyright c⃝ 2023 The Institute of Electronics, Information and Communication Engineers



NORIMATSU et al.: POLICY-BASED METHOD FOR APPLYING OAUTH 2.0-BASED SECURITY PROFILES
1365

Fig. 1 The authorization code flow of OAuth 2.0

which generally requires source code modifications. How-
ever, this may make it impossible to apply the security pro-
file because source code cannot be modified if an autho-
rization server administrator uses proprietary software of an
authorization server. Conversely, the source code can be
modified if the authorization server administrator uses open-
source software. Moreover, modifying the source code may
impair a server’s functionalities, resulting in errors and qual-
ity degradation.

To avoid setting up and managing a lot of setting items
for multiple purposes, a policy can be generally used. For
example, a policy was used for access control with OAuth
2.0 in [5]. Some products of an authorization server used a
policy for multiple purposes. Keycloak 15 [6], ForgeRock
AM 7.1 [7], Okta Classic Engine 2022.03 [8], and Auth0 [9]
uses a policy for access control on resource servers’ re-
sources. However, the policy used in them was not intended
to be used for applying security profiles.

We aimed to propose a new method using a policy (the
policy-based method) for applying a security profile to pre-
vent these problems. The proposed policy-based method re-
ceives a client request and evaluates a policy to check if the
request meets its conditions for applying a security profile.
If the result of the evaluation is positive, the security profile
is applied to the request.

The proposed policy-based method is applied to the
authorization code flow of OAuth 2.0 that is utilized for
use cases where a third-party application accesses APIs like
open banking, as shown in Fig. 1.

When a third-party application (called a ”client” in
OAuth 2.0) accesses an API that operates a resource of a
user (called a ”resource owner” in OAuth 2.0) on behalf of
the user, the application creates an authorization request and
sends it to an authorization server by redirecting the user’s
browser (”1. Authorization Request” in Fig. 1).

After authenticating the user (”User Authentication”
in Fig. 1) and obtaining the consent from the user for the

application to access the API that operates the user’s re-
source on behalf of the user (”User Consent” in Fig. 1), the
authorization server generates an authorization code, cre-
ates an authorization response that includes the authoriza-
tion code, and sends it to the application by redirecting the
user’s browser (”2. Authorization Response” in Fig. 1).

After receiving the authorization response, the applica-
tion sends a token request including the authorization code
to the authorization server (”3. Token Request” in Fig. 1).

After receiving the token request, the authorization
server generates an access token proving that the user agrees
to accessing the API that operates the user’s resource by the
application and sends a token response including the access
token to the application (”4. Token Response” in Fig. 1).

After receiving the token response, the application ac-
cesses the API using the access token (”API Access” in
Fig. 1).

The policy-based method can support multiple security
profiles in a single authorization server or tenant. It does not
completely rely on client settings and can determine which
security profile is applied to a client request based on its
content. Therefore, it can apply a different security profile
to a different client request based on its content.

The policy-based method need not modify the autho-
rization server’s source code for applying a security profile.
It allows an authorization server administrator to implement
a security profile and a condition that determines if the se-
curity profile is applied or not in a pluggable manner.

Herein, the policy-based method was implemented in
Keycloak and evaluated to prove that this method can pre-
vent the aforementioned problems [10]. Keycloak is a
widely used identity and access control open-source soft-
ware for authentication and authorization purposes [11],
[12].

By using the proposed method, some standardized se-
curity profiles were implemented without modifying Key-
cloak’s body source code. Financial-grade API Security
Profile 1.0 Baseline (FAPI1-baseline) [13], Financial-grade
API Security Profile 1.0 Advanced (FAPI1-advanced) [14],
and Financial-grade API Client Initiated Backchannel Au-
thentication Profile (FAPI-CIBA) [15] were implemented.
These security profiles were standardized by OpenID Foun-
dation (OIDF) and used in several in-service open bank-
ing applications. For example, the security profiles of UK
Open Banking [16], Australia Consumer Data Right [17],
and Open Banking Brazil [18] use them as a basis for their
security profiles.

A client was simulated to confirm that the method re-
solved the problem of increasing managerial costs for an au-
thorization server administrator. Client requests were sent to
Keycloak with scope parameter values that indicated differ-
ent type of APIs the client needed for access. Additionally,
it was confirmed that the policy-based method can change a
security profile based on the scope parameter value. There-
fore, only a single realm or authorization server was re-
quired to support multiple security profiles, which reduces
the managerial costs for an authorization server administra-



1366
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

tor.
In addition, Keycloak, along with the policy-based

method for UK Open Banking and Open Banking Brazil,
was used to estimate and clarify how the managerial costs
for an authorization server administrator can be reduced us-
ing the proposed policy-based method.

As an additional objective of the policy-based method,
it was implemented with product level quality that can be
used in the real world. The proposed implementation was
contributed to Keycloak, reviewed by Keycloak maintainers,
and merged into the Keycloak upstream repository. There-
fore, this proposed implementation is now publicly available
for use.

The preliminary version of this study described the
policy-based method for Keycloak only and clarified how
the managerial costs for an authorization server administra-
tor were reduced by using this method [19]. This study gen-
eralized the policy-based method for a general authorization
server and analyzed the evaluation result, proving that the
policy-based method can apply a different security profile to
a different client request based on its content by using Key-
cloak.

2. Problems

Two problems were discovered if an authorization server
was used to apply a security profile with the settings-based
method in a use case that had the following three character-
istics (such as open banking):

• Characteristic 1: an authorization server needs to sup-
port several security profiles and apply a different se-
curity profile to a different request from the same client
for accessing an API that requires a different security
level.

Financial institutions provide several types of APIs (e.g., ac-
count information and payment initiation in UK Open Bank-
ing) [20]. Each type of API requires a different security level
depending on its service. Therefore, a different security pro-
file is applied to a client request for accessing an API that
requires a different security level.

UK Open Banking is a use case that supports sev-
eral security profiles, including FAPI1-advanced and FAPI-
CIBA.

Open Banking Brazil supports several security profiles
and has also defined its own security profile called ”Open
Banking Brazil Financial-grade API Security Profile 1.0
(OB-BR FAPI)”, which is based on FAPI1-advance. OB-
BR FAPI optionally uses FAPI-CIBA. When authenticating
a user, OB-BR FAPI requires an authentication method with
a level of assurance of at least two if a client request wants
to access Read-Only APIs. The security profile requires an
authentication method with a level of assurance of at least
three if a client request wants to access Read-Write APIs
(Sect. 5.2.2.4 of [18]). Therefore, four variants of OB-BR
FAPI (Read-Only APIs, Read-Write APIs, FAPI-CIBA +
Read-Only APIs, FAPI-CIBA + Read-Write API) can be

used in Open Banking Brazil.

• Characteristic 2: an authorization server needs to man-
age many clients.

UK Open Banking is a use case that needs to manage many
clients. There are 231 third party providers (clients in OAuth
2.0) registered in UK Open Banking [21].

Open Banking Brazil is also a use case that needs
to manage many clients. There are 94 data transmit-
ters/recipients (clients in OAuth 2.0) [22] and 54 payment
initiation service providers (clients in OAuth 2.0) [23] reg-
istered in Open Banking Brazil.

• Characteristic 3: an authorization server needs to sup-
port an authorization code flow (Fig. 1) and apply the
same security profile to authorization and token re-
quests that belong to the same authorization code flow.

UK Open Banking, Australia Consumer Data Right, and
Open Banking Brazil are use cases that require an autho-
rization code flow.

An authorization code flow consists of authorization
and token requests/responses. Therefore, an authorization
server needs to apply the same security profile to a token
request that corresponds to the authorization request if it ap-
plies a security profile to an authorization request.

The following two problems occur if an authorization
server applies a security profile using the settings-based
method in a use case that has these three characteristics.

• Problem 1: the extent of operations increases for an
authorization server to manage entities, such as clients
and users.

An authorization server administrator needs to create and
manage an authorization server per security profile because
only one security profile can be applied.

Some authorization servers support a logically isolated
environment. For example, Keycloak [24] and ForgeRock
Access Management (AM) [25] call this a realm. Okta [26]
and Auth0 [27] call it a tenant, and Amazon Cognito [28]
calls it a user pool. In this paper, the term ”realm” is used
to represent the environment. A realm is fully isolated from
other realms and has its own configuration, set of clients,
and their users. This allows a single installation of an autho-
rization server to be used for multiple purposes.

Nevertheless, multiple authorization servers or realms
need to be created and managed, and the duplicated clients
and users need to be registered and managed in all authoriza-
tion servers or realms. If the client or user settings are mod-
ified in one authorization server or realm, then they need to
be modified in other authorization servers or realms. How-
ever, this increases managerial costs for an authorization
server administrator.

Generally, an authorization server product has many
client settings. For example, Keycloak 15 has 110 [29],
ForgeRock AM 7.1 has 65 [30], PingFederate 11 has
55 [31], Auth0 has 44 [32], and Okta Classic Engine
2022.03 has 19 [33]. If Keycloak 15 is used in UK Open



NORIMATSU et al.: POLICY-BASED METHOD FOR APPLYING OAUTH 2.0-BASED SECURITY PROFILES
1367

Banking, the number of managed client settings would be
25,410 (number of clients (231) × number of client settings
(110)). Similarly, if Keycloak 15 is used in Open Bank-
ing Brazil, the number of managed client settings would be
15,950 (number of clients (145) × number of client settings
(110)).

If Keycloak 15 is used in UK Open Banking, the num-
ber of managed client settings would be 50,820 (number
of security profiles (2 variants, FAPI1-advanced and FAPI-
CIBA) × number of clients (231) × number of client settings
(110)). Similarly, if Keycloak 15 is used in Open Bank-
ing Brazil, the number of managed client settings would be
63,800 (number of security profiles (4 variants of OB-BR) ×
number of clients (145) × number of client settings (110)).
In addition, the increase in number of operations increases
the risk of operational mistakes, which often can cause se-
curity incidents.

• Problem 2: an authorization server’s source code needs
to be modified to add new settings and logic to apply
the security profile if existing settings are inadequate.

Modifying an authorization server’s source code is generally
impossible if it uses proprietary software. An authorization
server administrator can try to modify the source code if
open-source software but this may impair server function-
alities and cause errors and quality degradation.

3. Policy-Based Method for Applying a Security Profile

A new policy-based method was designed to resolve the
problems that arise if the settings-based method is used for
applying a security profile.

3.1 Design Principles

The design principles of the policy-based method are as the
following four:

• Design principle 1: logic about security profiles can be
independent of client settings to remove the necessity
of configuring every client to apply a security profile.

This design principle contributes to resolving problem 1.
The extent of managerial operations for clients decreases
upon removing the necessity of configuring every client for
applying a security profile.

• Design principle 2: a security profile applied to a client
request can be changed dynamically to support multi-
ple security profiles in a single realm.

This design principle contributes to resolving problem 1. An
authorization server only needs to manage one realm by sup-
porting multiple security profiles in a single realm. There-
fore, the extent of managerial operations decreases for enti-
ties included in the realm, such as clients and their users.

• Design principle 3: the policy-based method consists
of the following two separated parts, which can be im-
plemented as pluggable software modules:

– Policy: holding a reference to a security profile
and determining if the security profile is applied.

– Profile: applying a security profile.

This design principle contributes to resolving problem 2, al-
lowing an authorization server administrator to implement a
security profile without modifying an authorization server’s
source code.

• Design principle 4: the policy-based method can rec-
ognize which authorization and token requests belong
to the same authorization code flow.

This design principle considers characteristic 3.

3.2 Logical Components

The proposed method applied attribute based access control
(ABAC) because all entities that it interacts with can be rep-
resented as entities of ABAC. As you can see in Fig. 2, a
client, authorization and token endpoints, and the proposed
method can be represented as a subject, policy enforcement
points (PEP), and policy decision point (PDP) in ABAC re-
spectively.

The policy-based method was designed to include six
logical components according to the design principles: the
handler, flow context, policy, condition, profile, and execu-
tor, as shown in Fig. 2.

A handler is a component that receives an authoriza-
tion request (”1. Authorization Request” of Fig. 1), evalu-
ates policies of the policy-based method, applies profiles of
the policy-based method, and saves the context of the re-
quest to the flow context. It also receives a token request
(”3. Token Request” of Fig. 1), retrieves the context of the
authorization request, evaluates policies of the policy-based
method, and applies profiles of the policy-based method.
The handler follows design principle 4.

A flow context is a component that holds the context of
an authorization request. The context can be retrieved by an
authorization code (”2. Authorization Response” of Fig. 1)
included in a token request. Therefore, an authorization re-
quest is bound with a token request by an authorization code.
When an authorization server receives a token request with
an authorization code, the context of its corresponding au-
thorization request can be retrieved using the authorization
code. The flow context follows design principle 4.

A condition is a component that includes part of the
logic to determine if a profile of the policy-based method
applies to a client request. By following design principle 2,
the condition can use the context data of the request (e.g.,
the parameters included in the request and HTTP headers)
to determine if a profile of the policy-based method can be
applied to the request. Therefore, it can change the security
profile based on the content of the request. There are three
possible results from the condition evaluation: Vote.YES,
Vote.NO, and Vote.ABSTAIN. Vote.YES indicates that a
profile of the policy-based method was applied to a client
request. Vote.NO indicates that a profile of the policy-based



1368
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

Fig. 2 Class diagram of components of the policy-based method

method was not applied to a client request. Vote.ABSTAIN
indicates that a condition’s evaluation was skipped. By fol-
lowing design principle 3, the condition is implemented as
pluggable software module.

A policy is a component that includes all logic needed
to determine if a profile of the policy-based method is ap-
plied to a client request. A policy of the policy-based
method consists of multiple conditions. The policy of the
policy-based method applies a security profile to the request
if the evaluation result of the condition does not include
Vote.NO and includes at least one Vote.YES and zero or sev-
eral Vote.ABSTAIN. The policy of the policy-based method
follows design principle 3.

An executor is a component that includes the logic
needed to apply part of a security profile. Generally, an
executor ascertains if a request satisfies one of the require-
ments of a security profile. The process of the policy-based
method is terminated if the request does not satisfy the ex-
ecutor. The logic does not completely depend on client set-
tings by following design principle 1. The executor is imple-
mented as a pluggable software module by following design
principle 3.

A profile is a component that includes the logic needed
to apply a security profile. A profile of the policy-based
method consists of multiple executors. Generally, a pro-
file of the policy-based method ascertains if a client request
satisfies all requirements of a security profile. If the re-
quest does not satisfy all the requirements, the process of
the policy-based method is terminated and an error response
is returned to the client. The profile of the policy-based
method follows design principle 3.

For example, the situation is considered where two pro-
files of the policy-based method include two executors, and
two policies of the policy-based method include two con-
ditions and one reference to a profile of the policy-based

Fig. 3 Activity diagram of the policy-based method

method, as shown in Fig. 3.
The handler sequentially evaluates two policies of the

policy-based method when it receives an authorization re-
quest from a client. The handler applies a profile of the
policy-based method if the results of the condition eval-
uation do not include Vote.NO, and include at least one
Vote.YES and zero or several Vote.ABSTAIN. The handler
then implements executors of the profile of the policy-based
method. The handler saves a context of the authorization
request using an authorization code as a key if all the ex-
ecutors’ executions are successfully completed. This key is
used to retrieve the saved context later and returns a normal
response to the client.

The handler retrieves the context of the authorization
request using an authorization code in the token request as
a key when the handler receives a token request from the
client. Then, the handler performs the same process as when
it received the authorization request. The handler evaluates
two policies of the policy-based method sequentially by us-
ing the context of the authorization request and receives the
evaluation results the same way it received the authorization
request. Therefore, the handler executes the same profile of
the policy-based method as when it received the authoriza-
tion request, which means that the handler applies the same



NORIMATSU et al.: POLICY-BASED METHOD FOR APPLYING OAUTH 2.0-BASED SECURITY PROFILES
1369

security profile to the authorization and token requests that
belong to the same authorization code flow.

4. Implementation

As mentioned earlier, the policy-based method and security
profiles were implemented in Keycloak.

4.1 Objective

An additional objective of this study was to show that the
implementation had product level quality and can be used
in the real world. To achieve this objective, the proposed
implementation would need to be accepted by Keycloak’s
maintainers and merged into the Keycloak upstream reposi-
tory.

Adding our implementation would increase the size of
Keycloak’s body source code, which is not preferable from
the perspective of Keycloak’s maintainers. This is because
the maintenance cost of Keycloak would increase, which
would make it difficult to maintain the high quality survive
provided by Keycloak. Therefore, the policy-based method
needed to be implemented considering this aspect.

4.2 Implementation of the Policy-Based Method

A profile and policy of the policy-based method were imple-
mented as independent software components by following
design principle 3. If the profile and policy of the policy-
based method were combined into one software component,
the profile of the policy-based method would be duplicated
if multiple policies of the policy-based method referred the
same profile of the policy-based method, which would lead
to redundant source code.

A condition and executor can be implemented as a
plug-in (called a provider) by following design principle 3,
which is achieved using a service provider interface (SPI)
defined by Java’s language specification. A factory pattern
was used to instantiate the provider, as shown in Fig. 4. If
the whole policy-based method was implemented in Key-
cloak, new source code would need to be added to Key-
cloak’s body source code when a new security profile is sup-
ported by Keycloak. Therefore, the size of Keycloak’s body
source code will increase whenever a new security profile is
supported by Keycloak.

A new security profile can be supported for SPI by im-
plementing executors and conditions as plug-ins. Therefore,
new source code need not be added to Keycloak’s body
source code when a new security profile is supported by
Keycloak. Additionally, the size of Keycloak’s body source
code will not increase whenever a new security profile is
supported by Keycloak.

The policy-based method does not depend on any spec-
ifications or features of a specific authorization server prod-
uct. Therefore, an authorization server product other than
Keycloak can implement the policy-based method. Accord-
ing to design principle 3, conditions and executors should

Fig. 4 Class diagram of implementation of the policy-based method

be pluggable. SPI can be used if an authorization server
product is implemented in Java.

4.3 Implementation of Security Profiles

The policy-based method implemented executors used by
three security profiles: ”fapi-1-baseline” for FAPI1-baseline
(Table 1), ”fapi-1-advanced” for FAPI1-advanced (Table 2),
and ”fapi-ciba” for FAPI-CIBA (Table 3). Subsequently,
the three security profiles were implemented using the ex-
ecutors, which showed that a security profile can be imple-
mented in a pluggable manner. Therefore, the policy-based
method can resolve problem 2.

Finally, several conditions were implemented that can
be used to determine which security profile was applied to a
client request (Table 4). One of the implemented conditions
was ”client-scopes”, which checks the OAuth 2.0’s scope
parameter value of a client request. The scope parameter can
be used to determine the type of API that a client wants to
access. Therefore, this ”client-scopes” condition was used
in the evaluation.

4.4 Implementation of User Interfaces (UIs) for
Administering the Policy-Based Method

The proposed policy-based method has not only its APIs,
command line interfaces (CLIs) but also UIs for a system
administrator. By using the UIs, the system administrator
can apply the policy-based method to the actual cases in real
environment with less costs compared with using the APIs
or CLIs directly.

There are two types of UIs: one for profiles of the
policy-based method and the other for policies of the
policy-based method. As a default, the UI for profiles of



1370
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

Table 1 Executors of the profile of the policy-based method ”fapi-1-
baseline” for FAPI1-baseline

Type Description
secure-session Requires a client to include ”nonce” parameter

defined in OIDC or ”state” parameter defined
in OAuth 2.0 in its request.

pkce-enforcer Requires a client to follow Proof Key for Code
Exchange [29] operation with secure algorithm,
such as S256.

secure-client- Requires a client to use a secure client
authenticator authentication method.
secure-client-uris Requires a client to register universal

resource identifiers (URIs) in a secure manner.
consent-required Requires a client to obtain consent

from a user to access an API.
full-scope-disabled Requires a client to use only pre-registered

values for ”scope” parameter.

Table 2 Executors of the profile of the policy-based method ”fapi-1-
advanced” for FAPI1-advanced

Type Description
secure-session Requires a client to include ”nonce” parameter

defined in OIDC or ”state” parameter defined
in OAuth 2.0 in its request.

secure-client- Requires a client to use a secure client
authenticator authentication method.
secure-client-uris Requires a client to register universal

resource identifiers (URIs) in a secure manner.
consent-required Requires a client to obtain consent

from a user to access an API.
full-scope-disabled Requires a client to use only pre-registered

values for ”scope” parameter.
confidential-client Requires a client to be a confidential client

defined in OAuth 2.0.
secure-request- Requires a client to use a request object
object in its authorization request.
secure-response- Requires a client to send its authorization
type request with code id token or

code id token token in its response type.
secure-signature- Requires a client to use secure signature
algorithm algorithms.
secure-signature- Requires a client to use secure signature
algorithm-signed- algorithms for the client authentication
jwt using JWT.
holder-of-key- Requires a client to use a Holder-of-Key token
enforcer instead of a bearer token.

Table 3 Executors of the profile of the policy-based method ”fapi-ciba”
for FAPI-CIBA

Type Description
secure-ciba-req- Requires a client to send a signed
sig-algorithmn authentication request.
secure-ciba-session Requires a client to include

”binding message” in its request.
secure-ciba-signed- Requires a client to use secure signature
authn-req algorithms.

the policy-based method (Fig. 5) shows three profiles of
the policy-based method: FAPI1-baseline (fapi-1-baseline),
FAPI1-advanced (fapi-1-advance), and FAPI-CIBA (fapi-
ciba). These are built-in profiles of the policy-based method;
therefore, authorization server administrator does not need
to create profiles of the policy-based method by themselves.

As a default, the UI for the policies of the policy-

Table 4 Conditions for a policy of the policy-based method

Type Description
client-scopes Checks if a client request includes a ”scope”

parameter whose value includes a pre-registered
value.

client-roles Checks if a pre-registered role is assigned
to a client.

client-access- Checks if a client is a pre-registered type defined
type in OAuth 2.0 (confidential, public, bearer-only).
any-client Accepts any client request.

Fig. 5 Keycloak’s UI for profiles of the policy-based method

Fig. 6 Keycloak’s UI for policies of the policy-based method

Fig. 7 Keycloak’s UI for policy of the policy-based method

based method (Fig. 6) shows no policies of the policy-based
method; therefore, an authorization server administrator
needs to create policies of the policy-based method by their
own. However, conditions in Table 4 have been created
in advance; therefore, an authorization server administrator
can use these conditions to create their own policies of the
policy-based method. For example, if an authorization ad-
ministrator want to apply FAPI1-baseline to a client request



NORIMATSU et al.: POLICY-BASED METHOD FOR APPLYING OAUTH 2.0-BASED SECURITY PROFILES
1371

with OAuth 2.0’s scope parameter including a specific value,
they only need to create a policy including client-scopes
condition in Table 4 on the UI for policy of the policy-based
method (Fig. 7).

By using the built-in profiles of the policy-based
method and conditions, an authorization server administra-
tor can setup and apply the policy-based method to a system
in real environments on the UIs for profiles and policies of
the policy-based method.

5. Evaluation

As mentioned in Sect. 4.3, the implemented policy-based
method can resolve problem 2. Two evaluation scenar-
ios were executed to confirm that the implemented policy-
based method considered the three characteristics of the
open banking use case and resolved problem 1. Then, the
managerial costs were estimated for clients when Keycloak
was used in open banking use cases to clarify how manage-
rial costs for an authorization server administrator could be
reduced with the policy-based method.

The first scenario was used to confirm that the imple-
mented policy-based method can apply the same security
profile to authorization and token requests that belong the
same authorization code flow, which means that the policy-
based method considered characteristic 3. The second sce-
nario was used to confirm that the implemented policy-
based method can apply a different security profile to a
unique client request based on the request’s context, which
means that the policy-based method considered characteris-
tics 1 and 2 and resolved problem 1. Finally, the managerial
costs were estimated for clients if Keycloak 15 was used for
UK Open Banking and Open Banking Brazil.

5.1 Setup

The proposed implementation was accepted and merged into
Keycloak 15.

Keycloak can run on Windows and Linux operating
systems using a Java virtual machine. In this study, Key-
cloak was run on Windows (Windows 10 Pro edition, 21H2
version, 19044.1706 build) with OpenJDK (11.0.14.1 ver-
sion, Microsoft-31205 build, 11.0.14.1+1-LTS runtime en-
vironment). Keycloak supports two modes: production and
development. Even though our implementation can work
on both modes, Keycloak was run in development mode be-
cause the production mode required many strict settings that
were not needed for the evaluation.

Before executing evaluation scenarios, the following
setup was performed:

1. Creating a realm.

• Realm name: OpenBanking

2. Adding a user.

• Username: john

3. Adding scopes for two different types of APIs that a

Fig. 8 JSON representations of policies of the policy-based method

client accesses.

• Scope name: read account api
• Scope name: bank transfer api

4. Adding policies of the policy-based method for two
different types of APIs that a client accesses using
JavaScript Object Notation (JSON), as shown in Fig. 8.

This JSON representation included a policy of the
policy-based method named ”fapi-1-baseline-policy”
(lines 2-10), whose evaluation is positive only if the
OAuth 2.0’s scope parameter value of a request in-
cludes ”read account api” (lines 5-9). It then applies
a profile of the policy-based method for the FAPI1-
baseline named ”fapi-1-baseline” (line 10), a policy
of the policy-based method named ”fapi-1-advanced-
policy” (lines 11-19), whose evaluation is positive only
if the OAuth 2.0’s scope parameter value of a request
includes ”bank transfer api” (lines 14-18), and a pro-
file of the policy-based method for FAPI1-advanced
named ”fapi-1-advanced” (line 19).

5. Adding a client with the following settings.

• Client ID: fintech-app
• Client Protocol: openid-connect
• Consent Required: ON
• Access Type: Confidential
• Valid Redirect URIs: https://fintech-app.example

.com/cb
• Optional Client Scopes - Available Client Scopes:

read account api, bank transfer api

Keycloak uses these settings to recognize that the
”fintech-app” client may send an authorization request
with these scope parameter values.

5.2 Executing Evaluation Scenarios

The following five types of evidence were used for the eval-
uation to confirm that the policy-based method worked as
expected: an authorization request, authorization response,
token request, token response, and Keycloak’s log.



1372
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

Contents and formats of an authorization request, au-
thorization response, token request, and token response
were defined using OAuth 2.0’s specifications. Authoriza-
tion and token responses have two types of response: normal
and error.

The Keycloak log contains three types of log entries
about the policy-based method: the policy of the policy-
based method, condition, and profile/executor of the policy-
based method. A log entry about policy of the policy-based
method has two types of sub log entries: starting evalua-
tion of a policy of the policy-based method (labeled as POL-
ICY OPERATION) and finishing evaluation of a policy of
the policy-based method. The finishing evaluation shows
two different results of the evaluation: applying a policy of
the policy-based method (labeled as POLICY APPLIED)
and not applying a policy of the policy-based method (la-
beled as POLICY UNSATISFIED). A log entry about con-
dition has two types of sub log entries: the starting eval-
uation of a condition (labeled as CONDITION OPERA-
TION) and finishing evaluation of a condition. The fin-
ishing evaluation shows two different results of the evalu-
ation: satisfying a condition (labeled as CONDITION SAT-
ISFIED) and not satisfying a condition (labeled as CON-
DITION NEGATIVE). Log entries about a profile and ex-
ecutor of the policy-based method were combined into one
log entry, which included the type of executor and name of
the profile of the policy-based method to which it belonged.
The log entry about a profile and executor of the policy-
based method has two types of sub log entries: the starting
execution of an executor (labeled as EXECUTOR) and fin-
ishing execution of an executor. The finishing execution was
not outputted if the execution of the executor was success-
fully completed. If the execution of the executor fails, it is
outputted with an EXECUTOR EXCEPTION label, which
means that a client request did not satisfy a requirement of
the security profile. Other log entries for debugging were
outputted other than these log entries.

The Chrome browser developer tool was used to send
an authorization request and receive an authorization re-
sponse. cURL was used to send a token request and re-
sponse.

5.2.1 Scenario 1: Applying the Same Security Profile to
Authorization and Token Requests of the Same Au-
thorization Code Flow

The aim of this scenario is to confirm that the policy-based
method considers characteristic 3 of the open banking use
case. To achieve the aim, it was determined if the policy-
based method could apply the same security profile to autho-
rization and token requests of the same authorization code
flow by executing the evaluation scenario shown in Fig. 9.

First, the following authorization request was sent,
which satisfies all requirements of the FAPI1-baseline:

http://localhost:8080

/realms/OpenBanking/protocol/openid-connect/auth?

client_id=fintech-app&

Fig. 9 Evaluation scenario 1 and its expected result

redirect_uri=https://fintech-app.example.com/cb&

state=a8159cbf-2e98-4438-803c-f52acb1b6d6e&

response_type=code&

scope=read_account_api&

code_challenge_method=S256&

code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM

This request included the ”read account api” scope param-
eter value.

It was expected that the authorization code would be
successfully returned by applying the FAPI1-baseline. If
Keycloak operated as expected, it would return a normal re-
sponse and output the following log entries when it receives
an authorization request:

1. A policy of the policy-based method named ”fapi1-
baseline-policy” would be evaluated (labeled as POL-
ICY OPERATION) and applied as the result of the
evaluation (labeled as POLICY APPLIED).

2. A profile of the policy-based method named ”fapi-
1-baseline” would be executed and no log entry la-
beled as EXECUTOR EXCEPTION would be out-
putted, which indicates that the client request satisfied
all requirements of the FAPI1-baseline.

3. A policy of the policy-based method named ”fapi1-
advanced-policy” would be evaluated (labeled as POL-
ICY OPERATION) and not applied as the result of the
evaluation (labeled as POLICY UNSATISFIED).

Upon receiving the request, Keycloak outputted the fol-
lowing log entries on the console, which have been redacted
for readability:

1:2022-03-26 12:54:13,396 TRACE
[org.keycloak.services.clientpolicy.DefaultClientPolicyManager]
(executor-thread-0) POLICY OPERATION ::
policy name = fapi-1-baseline-policy

... skip
2:2022-03-26 12:54:13,404 TRACE
[org.keycloak.services.clientpolicy.DefaultClientPolicyManager]
(executor-thread-0) POLICY APPLIED ::
policy name = fapi-1-baseline-policy

... skip
3:2022-03-26 12:54:13,426 TRACE
[org.keycloak.services.clientpolicy.DefaultClientPolicyManager]
(executor-thread-0) EXECUTION ::
policy name = fapi-1-baseline-policy,
profile name = fapi-1-baseline, executor name = class
org.keycloak.services.clientpolicy.executor.



NORIMATSU et al.: POLICY-BASED METHOD FOR APPLYING OAUTH 2.0-BASED SECURITY PROFILES
1373

SecureSessionEnforceExecutor,
provider id = secure-session

... skip
4:2022-03-26 12:54:13,431 TRACE
[org.keycloak.services.clientpolicy.DefaultClientPolicyManager]
(executor-thread-0) POLICY OPERATION ::
policy name = fapi-1-advanced-policy

... skip
5:2022-03-26 12:54:13,443 TRACE
[org.keycloak.services.clientpolicy.DefaultClientPolicyManager]
(executor-thread-0) POLICY UNSATISFIED ::
policy name = fapi-1-advanced-policy

Line 1 shows that Keycloak started evaluating the
policy of the policy-based method for the FAPI1-baseline
named ”fapi-1-baseline-policy” and created step 4 of
Sect. 5.1. Line 2 shows that Keycloak concluded that the
policy of the policy-based method evaluation for FAPI1-
baseline was positive. Therefore, Keycloak applied the
FAPI1-baseline to the request. Lines 1 and 2 of the log en-
tries matched number 1 of the expected log entries.

Line 3 shows that Keycloak started applying the
FAPI1-baseline to the authorization request. Subsequently,
no log entries labeled as EXECUTOR EXCEPTION were
outputted when applying the FAPI1-baseline. Therefore, the
log entry matched number 2 of the expected log entries.

Line 4 shows that Keycloak started evaluating the pol-
icy of the policy-based method for the FAPI1-advanced
named ”fapi-1-advanced-policy” created in step 4 of
Sect. 5.1. Line 5 shows that Keycloak concluded that the
policy of the policy-based method evaluation for FAPI1-
advanced was negative. Therefore, Keycloak did not apply
FAPI1-advanced to the request. Lines 4 and 5 of the log
entries matched number 3 of the expected log entries.

According to the log entities, Keycloak operated as ex-
pected when it received the authorization request.

Next, Keycloak returned a page requiring user authenti-
cation and authorization, which is covered by the user added
in step 2 of Sect. 5.1. Subsequently, the following successful
authorization response was received as expected:

302 Redirect

https://fintech-app.example.com/cb?

state=a8159cbf-2e98-4438-803c-f52acb1b6d6e&

session_state=d9e45ee8-e772-4c3f-9c17-4f92edc3b650&

code=ac9c62f5-2def-457f-9fdc-31c4722c8eca.12913f04-300b-4bb8

-a766-f2532c83ab73.6f3908b8-17f6-4281-89f7-28efaaae689e

The following token request does not satisfy the
FAPI1-baseline because it used the ”client secret basic”
client authentication method defined in Sect. 9 of OpenID
Connect specification [35], which is not allowed by the
FAPI1-baseline requirement 4 in Sect. 5.2.2 of [13]:

curl --location --request POST ’http://localhost:8080/realms/

OpenBanking/protocol/openid-connect/token’

--header ’Authorization: Basic ZmludGVjaC1hcHA6dWVPUExrdkc0R3lua

GFiS0pVcE1FcG95REUzSE14REI=’

--header ’Content-Type: application/x-www-form-urlencoded’

--data-urlencode ’code=ac9c62f5-2def-457f-9fdc-31c4722c8eca.

12913f04-300b-4bb8-a766-f2532c83ab73.6f3908b8-17f6-4281-89f7-

28efaaae689e’

--data-urlencode ’grant_type=authorization_code’

--data-urlencode ’client_id=fintech-app’

--data-urlencode ’redirect_uri=https://fintech-app.example.com/cb’

--data-urlencode ’code_verifier=dBjftJeZ4CVP-mB92K27uhbUJU1p1r_

wW1gFWFOEjXk’

An ”Authorization” header was calculated using a

client secret that was generated randomly when the client
was added to Keycloak. Therefore, the header value needed
to be re-calculated to reproduce the evaluation.

A code parameter value, which is randomly generated
by Keycloak per authorization request, must be included in
the authorization response. Therefore, the code parameter
value in an authorization response needs to be used for a
token request to reproduce the evaluation.

The error response was expected to be returned by
applying the FAPI1-baseline. If Keycloak operates as ex-
pected, it would return an error response and output the fol-
lowing log entries when it receives an authorization request:

4. A policy of the policy-based method named ”fapi1-
baseline-policy” would be evaluated (labeled as POL-
ICY OPERATION) and applied as the result of the
evaluation (labeled as POLICY APPLIED).

5. A profile of the policy-based method named ”fapi-1-
baseline” would be executed and a log entry (labeled as
EXECUTOR EXCEPTION) would be outputted when
an executor named ”secure-client-authenticator” (Table
1) was executed, which means that a client request did
not satisfy all requirements of the FAPI1-baseline.

Keycloak outputted the following log entries on the
console after receiving the request, which have been
redacted for readability:

1:2022-03-26 12:55:13,314 TRACE
[org.keycloak.services.clientpolicy.DefaultClientPolicyManager]
(executor-thread-1) POLICY OPERATION ::
policy name = fapi-1-baseline-policy

... skip
2:2022-03-26 12:55:13,320 TRACE
[org.keycloak.services.clientpolicy.DefaultClientPolicyManager]
(executor-thread-1) POLICY APPLIED ::
policy name = fapi-1-baseline-policy

... Skip
3:2022-03-26 12:55:13,324 TRACE
[org.keycloak.services.clientpolicy.DefaultClientPolicyManager]
(executor-thread-1) EXECUTOR EXCEPTION :: executor name = class
org.keycloak.services.clientpolicy.executor.
SecureClientAuthenticatorExecutor,
provider id = secure-client-authenticator,
error = invalid_request,
error detail = Configured client authentication method not
allowed for client

Line 1 shows that Keycloak started evaluating the
policy of the policy-based method for the FAPI1-baseline
named ”fapi-1-baseline-policy” that was created in step 4
of Sect. 5.1. Line 2 shows that Keycloak concluded that
the policy of the policy-based method evaluation for the
FAPI1-baseline was positive. Therefore, Keycloak applied
the FAPI1-baseline to the request. Lines 1 and 2 of the log
entries matched number 4 of the expected log entries.

Line 3 shows that Keycloak concluded that the to-
ken request did not satisfy all the FAPI1-baseline require-
ments when executing the executor named ”secure-client-
authenticator” (Table 1). Thus, Keycloak returned an error
response. The log entry matched number 5 of the expected
log entries.

According to the log entities, Keycloak operated as ex-
pected when it received the token request.

Finally, an error was received as a token response in-
cluding its reason, as expected.



1374
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

Fig. 10 Evaluation scenario 2 and its expected result

400 Bad Request

{ "error": "invalid_grant",

"error_description": "Configured client authentication method

not allowed for client" }

According to the responses and logs, the policy-based
method applied the same security profile (FAPI1-baseline)
to the authorization and token requests of the same autho-
rization flow as expected by following design principle 4.
This indicates that the policy-based method considered char-
acteristic 3 of the open banking use case.

5.2.2 Scenario 2: Applying a Different Security Profile
Based on the Scope Parameter Value that Indicates
a Type of API

The aim of this scenario is to confirm that the policy-based
method can resolve problem 1 because only a single realm
is needed to support multiple realms. To achieve the aim, it
was determined if the policy-based method could be applied
to a different security profile for an authorization request that
included a different scope parameter value. This was done
by executing an evaluation scenario to prove that the policy-
based method supported multiple security profiles in a single
realm, as shown in Fig. 10.

First, the following authorization request was sent that
did not satisfy the FAPI1-advanced security profile because
it did not include ether the ”request” or ”request uri” param-
eter, which must be included in the request according to the
FAPI1-advanced requirement 1 in Sect. 5.2.2 of [14].

http://localhost:8080

/realms/OpenBanking/protocol/openid-connect/auth?

client_id=fintech-app&

redirect_uri=https://fintech-app.example.com/cb&

state=a8159cbf-2e98-4438-803c-f52acb1b6d6e&

response_type=code&

scope=bank_transfer_api&

code_challenge_method=S256&

code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM

The request included the ”bank transfer api” scope parame-
ter value.

An error response was expected to be returned by ap-
plying FAPI1-advanced. If Keycloak operated as expected,
it would return an error response and output the following
log entries when it receives an authorization request:

1. A policy of the policy-based method named ”fapi1-
baseline-policy” would be evaluated (labeled as POL-
ICY OPERATION) and not applied as the result of the
evaluation (labeled as POLICY UNSATISFIED).

2. A policy of the policy-based method named ”fapi1-
advanced-policy” would be evaluated (labeled as POL-
ICY OPERATION) and applied as the result of the
evaluation (labeled as POLICY APPLIED).

3. A profile of the policy-based method named ”fapi-1-
advanced” would be executed and a log entry (labeled
as EXECUTOR EXCEPTION) would be outputted
when an executor named ”secure-request-object” (Ta-
ble 2) was executed, which means that the client
request did not satisfy all requirements of FAPI1-
advanced.

On receiving the request, Keycloak outputted the fol-
lowing log entries on the console, which have been redacted
for readability:

1:2022-03-26 14:16:03,414 TRACE
[org.keycloak.services.clientpolicy.DefaultClientPolicyManager]
(executor-thread-0) POLICY OPERATION ::
policy name = fapi-1-baseline-policy

... skip
2:2022-03-26 14:16:03,431 TRACE
[org.keycloak.services.clientpolicy.DefaultClientPolicyManager]
(executor-thread-0) POLICY UNSATISFIED ::
policy name = fapi-1-baseline-policy

... Skip
3:2022-03-26 14:16:03,431 TRACE
[org.keycloak.services.clientpolicy.DefaultClientPolicyManager]
(executor-thread-0) POLICY OPERATION ::
policy name = fapi-1-advanced-policy

... skip
4:2022-03-26 14:16:03,435 TRACE
[org.keycloak.services.clientpolicy.DefaultClientPolicyManager]
(executor-thread-0) POLICY APPLIED ::
policy name = fapi-1-advanced-policy

... Skip
5:2022-03-26 14:16:03,479 TRACE
[org.keycloak.services.clientpolicy.DefaultClientPolicyManager]
(executor-thread-0) EXECUTOR EXCEPTION :: executor name = class
org.keycloak.services.clientpolicy.executor.
SecureRequestObjectExecutor,
provider id = secure-request-object, error = invalid_request,
error detail = Missing parameter: ’request’ or ’request_uri’

Line 1 shows that Keycloak started evaluating the pol-
icy of the policy-based method for the FAPI1-baseline ”fapi-
1-baseline-policy” created in step 4 of Sect. 5.1. Line 2
shows that Keycloak concluded that the policy of the policy-
based method evaluation for the FAPI1-baseline was nega-
tive. Therefore, Keycloak did not apply the FAPI1-baseline
to the request. Lines 1 and 2 of the log entries matched
number 1 of the expected log entries.

Line 3 shows that Keycloak started evaluating the
policy of the policy-based method for the FAPI1-baseline
named ”fapi-1-advanced-policy” created in step 4 of
Sect. 5.1. Line 4 shows that Keycloak concluded that the
policy of the policy-based method evaluation for FAPI1-
advanced was positive. Therefore, Keycloak applied FAPI1-
advanced to the request. Lines 3 and 4 of the log entries
matched number 2 of the expected log entries.

Line 5 shows that Keycloak concluded that the token
request did not satisfy all the FAPI1-advanced requirements
when executing the executor named ”secure-request-object”
(Table 2). Therefore, Keycloak returned an error response.
The log entry matched number 3 of the expected log entries.



NORIMATSU et al.: POLICY-BASED METHOD FOR APPLYING OAUTH 2.0-BASED SECURITY PROFILES
1375

According to the log entities, Keycloak operated as ex-
pected when it received the authorization request.

Finally, an error was received as an authorization re-
sponse including its reason, as expected.

302 Redirect

https://fintech-app.example.com/cb?

error=invalid_request&

error_description=Missing+parameterˆ%ˆ3A+ˆ%ˆ27requestˆ%ˆ27+or+

ˆ%ˆ27request_uriˆ%ˆ27&state=a8159cbf-2e98-4438-803c-f52acb1b6d6e

According to the responses and logs, the policy-
based method applied the different security profile (FAPI1-
advanced) to the request based on the scope parameter value
(”bank transfer api”) in a single realm, as expected by fol-
lowing design principles 1 and 2. This indicates that the
policy-based method can resolve problem 1 because only a
single realm was needed to support multiple realms.

5.3 Estimating Managerial Costs

Keycloak 15 was used for UK Open Banking and Open
Banking Brazil to estimate and clarify how managerial costs
for an authorization server administrator can be reduced us-
ing the policy-based method that resolves problem 1.

If Keycloak is initialized as an authorization server for
UK Open Banking, the number of managed client settings
using the settings-based method would be 50,820 (number
of security profiles (2) × number of clients (231) × number
of client settings (110)). The number of managed client set-
tings using the policy-based method is 25,410 (number of
clients (231) × number of client settings (110)) because the
policy-based method can support multiple security profiles
in a single realm.

If a new security profile is added, the number of man-
aged client settings for the settings-based method would be
25,410 (number of clients (231) × number of client settings
(110)) because a new realm would need to be created for
the new security profile. Conversely, the number of man-
aged client settings would be 0 when using the policy-based
method.

If the supported security profile is modified, the num-
ber of managed client settings using the settings-based
method would be 25,410 (number of clients (231) × num-
ber of client settings (110)) because every client would need
to be re-configured for the modified security profile. Con-
versely, the number of managed client settings would be 0
using the policy-based method.

If Keycloak is initialized as an authorization server for
Open Banking Brazil, the number of managed client settings
for the settings-based method would be 67,760 (number of
security profiles (4) × number of clients (154) × number
of client settings (110)). However, the number of managed
client settings for the policy-based method would be 25,410
(number of clients (231) × number of client settings (110))
because the policy-based method can support multiple secu-
rity profiles in a single realm.

If a new security profile is added, the number of man-
aged client settings for the settings-based method would be

16,940 (number of clients (154) × number of client settings
(110)) because a new realm would need to be created for the
new security profile. Conversely, the number of managed
client settings would be 0 for the policy-based method.

If the supported security profile is modified, the num-
ber of managed client settings for the settings-based method
would be 16,940 (number of clients (154) × number of client
settings (110)) because every client would need to be re-
configured for the modified security profile. However, the
number of managed client settings would be 0 for the policy-
based method.

5.4 Discussion

According to the results of the evaluation of scenario 1, the
policy-based method can apply the same security profile to
authorization and token requests of the same authorization
code flow.

According to the result of the evaluation of scenario 2,
the policy-based method can apply different security profiles
to a different request from a client based on its scope value,
indicating the type of API that the client wanted to access.
Thus, the policy-based method can support multiple security
profiles in a single realm.

Therefore, it was concluded that the policy-based
method considered the characteristics of an open banking
use case and resolved the problems of increasing manage-
rial costs for an authorization server administrator when the
settings-based method is used for applying a security profile.

According to the results, the policy-based method de-
creases managerial costs in relation to the client settings-
based method.

The policy-based method can be utilized not only in
use cases like open baking but also in zero trust architectures
(ZTAs) [36]. If an organization’s internal network adopts a
ZTA and an access token in OAuth 2.0 is used by a client to
access an organization’s resource, the process of issuing the
access token needs to be secured by applying a security pro-
file like FAPI because any communication is not trusted in
the network. Therefore, the same problems in open banking
may occur in the network that adopts ZTA if there are many
clients and many security profiles need to be used in the net-
work. The policy-based method can resolve the problems in
ZTA.

6. Related Work

The proposed method needs to judge if a security profile is
applied or not after receiving a client request. This can be
considered access control. In access control, a server needs
to judge if the request is allowed or not after receiving a re-
quest to access a resource. Therefore, access control meth-
ods were investigated to find the most appropriate one to
apply to the proposed method.

ABAC is general model so that it can represent wide
range of access control. ABAC was formalized in
[37](2005). It was also proved that the formalized ABAC



1376
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

model can represent Mandatory Access Control (MAC) and
Discretionary Access Control (DAC) models in [37](2005).
The minimum requirements of ABAC for representing
MAC, DAC, and Role Based Access Control (RBAC) was
derived and formalized in [38].

ABAC can represent access control based on an access
token in OAuth 2.0 [1]. In OAuth 2.0, a client accesses a
resource owner’s resource with an access token showing the
fact that the resource owner granted access to its resource to
the client, so the client, the resource owner’s resource, and
the access token can be represented as a subject, an object,
and an environment in ABAC respectively. When receiving
the access request, the resource server holding the resource
can judges whether the access request to the resource is ac-
cepted by itself or by querying an authorization server to de-
termine the active state of the access token and to determine
the meta-information about this token by OAuth 2.0 Token
Introspection [39], so the resource server and the authoriza-
tion server can be represented as PDP. Finally, the resource
server returns a normal response or an error response to the
client, so the resource server can be considered as a PEP.

ABAC was applied to systems using OAuth 2.0. ABAC
was applied to OAuth 2.0 based authorization in distributed
financial systems [40], where a client was represented as
a subject in ABAC and a resource owner’s resource was
represented as an object in ABAC. ABAC was applied to
OAuth 2.0 based Internet of Things (IoT) virtualization plat-
form [41], where a user or service was represented as a sub-
ject in ABAC and a REST resource of the Master-Controller
API was represented as an object in ABAC. OAuth 2.0 with
ABAC was used for the collaborative sharing of equipment
at construction sites [42], where a user device was repre-
sented as a subject in ABAC and a service was represented
as an object in ABAC.

The proposed method applies ABAC because all enti-
ties that the proposed method interacts with can be repre-
sented as entities of ABAC. The proposed method needs to
use contents of a client request to determine whether a secu-
rity profile is applied or not. The contents of a client request
can be represented as environment attributes in ABAC. A
client can be represented as a subject in ABAC. Authoriza-
tion and token endpoints that receive requests from a client
can be represented as objects in ABAC and PEP. The pro-
posed method can work as PDP.

The policies used in ABAC were categorized into
logic-based and enumerated policies, as in [43]. While the
policy machine described in [44] was mentioned as an enu-
merated policy, Label Based Access Control was newly pro-
posed as a simple type of policy machine in [43]. An enu-
merated policy has an advantage against a logic-based pol-
icy regarding the amount of computation required to apply
the policy. However, the capability of an enumerated pol-
icy to represent a policy is limited. Therefore, the proposed
method applied a logic-based policy.

Hierarchical Group and ABAC introduces hierarchies
of objects and subject groups to avoid setting the same at-
tribute values to many objects or subjects and was proposed

and formalized in [45] using Kleene K3 as logic to support
a ternary value for its policy language. There was a case
where a policy of the proposed method was not evaluated,
so the proposed method applied a ternary value.

A logic-based policy problem regarding policy review
was suggested in [43]. Policy review involves clarifying
which attribute values return a positive result. Policy review
in a logic-based policy using propositional logic is similar
to the satisfiability problem in propositional logic, which is
NP-complete. However, policy review in a logic-based pol-
icy using first-order logic is similar to the satisfiability prob-
lem in first-order logic, which is undecidable. Therefore, it
is difficult to complete a policy review if a logic-based pol-
icy is used. This issue is recognized but not treated in this
study.

The study of policy conflict is discussed in [46], [47]
and defined as the situation where one policy accepts ev-
ery request while another policy rejects all requests. Thus,
policies do not work properly. Policy anomaly is defined
in [47] as the situation where all policies accept or reject
every request. Multiple policies are redundant if policy
anomaly occurs. A method of constructing policies with-
out policy conflict and anomaly was proposed in [47] by
using the Fine-grained Integration Algebra (FIA) [48]. FIA
is defined in [48] as an algebra for combining multiple tri-
nary logic policies that demonstrate no policy conflicts or
anomalies for policies of Extensible Access Control Markup
Language (XACML) [49], which is an actual implementa-
tion of ABAC as an open standard specification. Conflict
and anomaly of rules that comprise a policy are described
in [50]. However, it does not describe how to find them
generally. A policy conflict problem that occurs due to the
nature of a logic-based policy was mentioned in [51]. A
general idea of resolving policy conflict by using ”metapoli-
cies” was also suggested in [51]. The need for detecting and
resolving policy conflict and anomaly is recognized but not
treated in this study.

Some products of an authorization server can imple-
ment the policy-based method for multiple purposes. Key-
cloak 15 [6], ForgeRock AM 7.1 [7], Okta Classic Engine
2022.03 [8], and Auth0 [9] support the policy-based method
for access control on resource servers’ resources. Key-
cloak 15 and ForgeRock AM 7.1 use User Managed Access
2.0 [52], [53] but also have their own mechanisms for access
control, which can work as a PDP. ForgeRock AM 7.1 [54]
also supports XACML [49]. ForgeRock AM 7.1 [55] and
Okta Classic Engine 2022.03 [8] support the policy-based
method for access control on pages hosted by a client that
a user accesses through a browser. Amazon Cognito sup-
ports the policy-based method for access control on AWS
resources [56]. Keycloak 15 [57] and PingFederate 11 [58]
support the policy-based method for registering and modify-
ing a client using dynamic client registration [4]. PingFeder-
ate 11 [59] implemented the policy-based method for deter-
mining which type of authentication methods should be ap-
plied dynamically. However, they were not used for apply-
ing security profiles. Conversely, the policy-based method



NORIMATSU et al.: POLICY-BASED METHOD FOR APPLYING OAUTH 2.0-BASED SECURITY PROFILES
1377

was proposed for applying security profiles.

7. Conclusion

This study proposed a policy-based method for open bank-
ing security profiles to solve the problems of increasing
managerial costs and the need to modify source code on
an authorization server. When the settings-based method
is used for applying a security profile when an authoriza-
tion server is used in an open banking use case where many
clients need to be managed and a different security profile
needs to be applied to different types of APIs.

The proposed policy-based method was implemented
to Keycloak with FAPI security profiles to confirm that these
problems could be prevented. Evaluation scenarios were
executed using the implementation that confirmed that the
policy-based method resolved the problems.

This implementation of the policy-based method and
security profiles (FAPI1-baseline, FAPI1-advanced and
FAPI-CIBA) were contributed to Keycloak. Before the con-
tribution, it was confirmed that the implementation passed
the conformance tests of the OpenID Conformance Suite
provided by the OIDF [60]. Subsequently, the implemen-
tation was added to the Keycloak upstream repository, re-
viewed by Keycloak maintainers, and merged into Key-
cloak’s main branch in Keycloak [61]. Keycloak 15 or later
includes this contribution, which is publicly available for
use. Evidence of this contribution to Keycloak is described
in Appendix.

Keycloak 15 was certified by OIDF as an OpenID
Provider supporting FAPI 1.0 Advanced [62], FAPI-
CIBA [63], Open Banking Brazil FAPI 1.0 [64], and Aus-
tralia Consumer Data Right [65] security profiles by utiliz-
ing the contributed policy-based method, FAPI 1.0 Baseline,
FAPI 1.0 Advanced, and FAPI-CIBA security profiles [66].

In the future, other security profiles, such as FAPI
2.0 [67], will be implemented using the policy-based
method and contributed to Keycloak.

Acknowledgments

We would like to express our gratitude to Stian Thorg-
ersen, a project lead at Keycloak, Marek Posolda from the
Keycloak development team, FAPI-SIG’s members, and the
Keycloak community. Their encouragement to have further
discussion provided us with advice about our client policies
implementation.

A part of this research was supported by JSPS Grants-
in-Aid for Scientific Research (JP19H05579).

References

[1] D. Hardt, “RFC 6749 The OAuth 2.0 authorization framework,”
IETF, https://datatracker.ietf.org/doc/html/rfc6749, Oct. 2012.

[2] T. Lodderstedt, M. McGloin, and P. Hunt, “RFC 6819
OAuth 2.0 threat model and security considerations,” IETF,
https://datatracker.ietf.org/doc/html/rfc6819, Jan. 2013.

[3] M. Jones, N. Sakimura, and J. Bradley, “RFC 8414 OAuth 2.0 autho-
rization server metadata,” IETF, https://datatracker.ietf.org/doc/html/
rfc8414, June 2018.

[4] J. Richer, M. Jones, J. Bradley, M. Machulak, and P. Hunt,
“RFC 7591 OAuth 2.0 dynamic client registration protocol,” IETF,
https://datatracker.ietf.org/doc/html/rfc7591, July 2015.

[5] F. Fernández, Á. Alonso, L. Marco, and J. Salvachúa, “A model to
enable application-scoped access control as a service for IoT using
OAuth 2.0,” Proc. 2017 20th Conference on Innovations in Clouds,
Internet and Networks (ICIN), pp.322–324, 2017.

[6] “Policy,” Keycloak 15 Authorization Services Guide, https://www.
keycloak.org/docs/15.0/authorization services/index.html#policy, June
14. 2022.

[7] “How to manage UMA policies,” ForgeRock AM 7.1 User-Managed
Access (UMA) 2.0 Guide, https://backstage.forgerock.com/
docs/am/7.1/uma-guide/managing-uma-policies.html, June 14. 2022.

[8] “What are policies,” okta Developer, https://developer.okta.com/docs/
concepts/policies/, June 14. 2022.

[9] “Authorization policies,” auth0 docs, https://auth0.com/docs/manage-
users/access-control/authorization-policies, June 14. 2022.

[10] “Keycloak,” Keycloak.org, https://www.keycloak.org/, accessed
June 14. 2022.

[11] Boleslaw Dawidowicz, “Keycloak proposal for submission to
CNCF,” Cloud Native Computing Foundation, https://github.com/cncf/
toc/pull/405, accessed June 14. 2022.

[12] Y, Nakamura, and K. Enomoto, “Authentication and authorization
based on OSS for secure system interoperation,” https://www.hitachi.
com/rev/archive/2020/r2020 05/05a04/index.html, accessed: 16/12/
2021.

[13] N. Sakimura, J. Bradley, and E. Jay, “Financial-grade API se-
curity profile 1.0 - Part 1: Baseline,” The OpenID Foundation,
https://openid.net/specs/openid-financial-api-part-1-1 0-final.html,
accessed March 20. 2022.

[14] N. Sakimura, J. Bradley, and E. Jay, “Financial-grade API se-
curity profile 1.0 - Part 2: Advanced,” The OpenID Founda-
tion, https://openid.net/specs/openid-financial-api-part-2-1 0.html,
accessed March 20. 2022.

[15] D. Tonge, J. Heenan, T. Lodderstedt, and B. Campbell, “Financial-
grade API: Client Initiated Backchannel authentication profile,” The
OpenID Foundation, https://openid.net/specs/openid-financial-api-
ciba-ID1.html, accessed March 20. 2022.

[16] “Open banking security profiles,” The Open Banking Implemen-
tation Entity, https://standards.openbanking.org.uk/security-profiles,
accessed March 20. 2022.

[17] “Consumer data right security profile,” Australian Competition and
Consumer Commission,https://consumerdatastandardsaustralia.github.
io/standards/#security-profile, accessed March 20. 2022.

[18] Open Banking Brasil GT Security, “Open Finance Brasil
financial-grade API security profile 1.0 implementers draft 3,”
The Open Banking Brasil Initial Structure, https://openbanking-
brasil.github.io/specs-seguranca/open-banking-brasil-financial-api-
-1 ID3.html, accessed March 20. 2022.

[19] T. Norimatsu, Y. Nakamura, and T. Yamauchi, “Flexible method for
supporting OAuth 2.0 based security profiles in Keycloak,” Open
Identity Summit 2022 (OID 2022), Lect. Notes Informatics (LNI),
vol.P-325, pp.87–98, 2022, DOI: 10.18420/OID2022 07.

[20] “Open banking read-write API profile - v3.1.10,” The Open Banking
Implementation Entity, https://openbankinguk.github.io/read-write-
api-site3/v3.1.10/profiles/read-write-data-api-profile.html, accessed
Aug. 2. 2022.

[21] “Regulated providers,” The Open Banking Implementation
Entity, https://www.openbanking.org.uk/regulated-providers/?query-
=directories&filter-search=&filter-provider-type=third-party-provid-
ers&filter-sort=0, accessed Aug. 2. 2022.

[22] “Quem participa - Instituicao transmissora / receptora de dados,”
The Open Banking Brasil, https://openbankingbrasil.org.br/quem-
participa/?marca=&modalidade=DADOS, accessed Aug. 2. 2022.

http://dx.doi.org/10.17487/RFC6749
http://dx.doi.org/10.17487/RFC6749
http://dx.doi.org/10.17487/RFC6819
http://dx.doi.org/10.17487/RFC6819
http://dx.doi.org/10.17487/RFC6819
http://dx.doi.org/10.17487/RFC8414
http://dx.doi.org/10.17487/RFC8414
http://dx.doi.org/10.17487/RFC8414
http://dx.doi.org/10.17487/RFC7591
http://dx.doi.org/10.17487/RFC7591
http://dx.doi.org/10.17487/RFC7591
http://dx.doi.org/10.1109/ICIN.2017.7899433
http://dx.doi.org/10.1109/ICIN.2017.7899433
http://dx.doi.org/10.1109/ICIN.2017.7899433
http://dx.doi.org/10.1109/ICIN.2017.7899433
http://dx.doi.org/10.18420/OID2022_07
http://dx.doi.org/10.18420/OID2022_07
http://dx.doi.org/10.18420/OID2022_07
http://dx.doi.org/10.18420/OID2022_07


1378
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

[23] “Quem participa - Instituicao detentora de conta,” The Open Bank-
ing Brasil, https://openbankingbrasil.org.br/quem-participa/?marca=
&modalidade=CONTA, accessed Aug. 2. 2022.

[24] “Core concepts and terms,” Keycloak 15 Server Administration
Guide, https://www.keycloak.org/docs/15.0/server admin/index.html
#core-concepts-and-terms, accessed June 14. 2022.

[25] “Glossary,” ForgeRock AM 7.1 Setup Guide, https://backstage.
forgerock.com/docs/am/7.1/setup-guide/openam-glossary.html#
openam-glossary, accessed June 14. 2022.

[26] “Multi-tenant solutions,” okta Developer, https://developer.okta.com/
docs/concepts/multi-tenancy/, accessed June 14. 2022.

[27] “Create tenants,” auth0 docs, https://auth0.com/docs/get-started/
auth0-overview/create-tenants, accessed June 14. 2022.

[28] “What is Amazon Cognito?,” Amazon Cognito Developer Guide,
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-
amazon-cognito.html, accessed June 14. 2022.

[29] “OIDC Clients,” Keycloak 15 Server Administration Guide,
https://www.keycloak.org/docs/15.0/server admin/index.html# oidc-
clients, accessed June 14. 2022.

[30] “Client registration,” ForgeRock AM 7.1 OAuth 2.0 Guide,
https://backstage.forgerock.com/docs/am/7.1/oauth2-guide/oauth2-
register-client.html, June 14. 2022.

[31] “Configuring OAuth clients,” PingFederate Server 11 Administra-
tor’s Reference Guide, https://docs.pingidentity.com/bundle/pingfed-
erate-110/page/roj1564002966901.html, June 14. 2022.

[32] “Application settings,” auth0 docs, https://auth0.com/docs/get-
started/applications/application-settings, June 14. 2022.

[33] “Add OAuth 2.0 client application,” okta Developer, https://developer.
okta.com/docs/reference/api/apps/#add-oauth-2-0-client-application,
June 14. 2022.

[34] N. Sakimura, J. Bradley, and N. Agarwal, “RFC 7636 Proof
key for code exchange by OAuth public clients,” IETF,
https://datatracker.ietf.org/doc/html/rfc7636, Sept. 2015.

[35] N. Sakimura, J. Bradley, M.B. Jones, B. de Medeiros, and C.
Mortimore, “OpenID Connect Core 1.0 incorporating errata set 1,”
The OpenID Foundation, https://openid.net/specs/openid-connect-
core-1 0.html, accessed March 20. 2022.

[36] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “NIST special
publication 800-207 zero trust architecture,” National Institute of
Standards and Technology, 2022.

[37] E. Yuan and J. Tong, “Attributed based access control (ABAC) for
web services,” Proc. IEEE International Conference on Web Ser-
vices (ICWS)., vol.856, pp.561–569, 2005.

[38] X. Jin, R. Krishnan, and R. Sandhu, “A unified attribute-based access
control model covering DAC, MAC and RBAC,” DBSec’12: Proc.
26th Annual IFIP WG 11.3 conference on Data and Applications
Security and Privacy, pp.41–55, 2012.

[39] J. Richer, “RFC 7662 OAuth 2.0 token introspection,” IETF,
https://datatracker.ietf.org/doc/html/rfc7662, Oct. 2015.

[40] A.S. Li, R. Safavi-Naini, and P.W.L. Fong, “A capability-based dis-
tributed authorization system to enforce context-aware permission
sequences,” SACMAT ’22: Proc. 27th ACM on Symposium on Ac-
cess Control Models and Technologies, New York, NY, USA, ACM,
pp.195–206, June 2022, DOI: 10.1145/3532105.3535014

[41] P. Gonzalez-Gil, A.F. Skarmeta, and J.A. Martinez, “The security
framework of Fed4IoT,” CCIoT ’20: Proc. Workshop on Cloud Con-
tinuum Services for Smart IoT Systems, pp.1–6, Nov. 2020, DOI:
10.1145/3417310.3431396

[42] U. Bodin, A. Christoffersson, A. Chiquito, J. Rodahl, and K. Synnes,
“Application-scoped access control for the construction industry,”
Proc. 2021 26th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), pp.1–8, 2021, DOI:
10.1109/ETFA45728.2021.9613645

[43] P. Biswas, R. Sandhu, and R. Krishnan, “Label-based access control:
An ABAC model with enumerated authorization policy,” Proc. 2016
ACM International Workshop on Attribute Based Access Control,
pp.1–12, March 2016.

[44] D. Ferraiolo, V. Atluri, and S. Gavrila, “The Policy Machine: A
novel architecture and framework for access control policy specifi-
cation and enforcement,” J. Syst. Archit., vol.57, no.4, pp.412–424,
April 2011.

[45] D. Servos and S.L. Osborn, “HGABAC: Towards a formal model of
hierarchical attribute-based access control,” Foundations and Prac-
tice of Security, Springer, pp.187–204, 2014.

[46] E.C. Lupu and M. Sloman, “Conflicts in policy-based distributed
systems management,” IEEE Trans. Softw. Eng., vol.25, no.6,
pp.852–869, Nov.-Dec. 1999.

[47] M. Yahiaoui, A. Zinedine, and M. Harti, “Deconflicting policies in
attribute-based access control systems,” 2018 IEEE 5th International
Congress on Information Science and Technology (CiSt), 21-27 Oct.
2018.

[48] P. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo, “An algebra for
fine grained integration of XACML policies,” SAC MAT 09: Proc.
14th ACM symposium on Access control models and technologies,
2 New York, NY, USA, ACM, pp.63–72, June 2009.

[49] E. Rissanen et al., “Xtensible Access Control Markup Language
(XACML) Version 3.0 Plus Errata 01,” OASIS Standard, 2012.

[50] K. Vijayalakshmi and V. Jayalakshmi, “Identifying considerable
anomalies and conflicts in ABAC security policies,” 2021 5th Inter-
national Conference on Intelligent Computing and Control Systems
(ICICCS), 6-8 May 2021.

[51] V.C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller,
and K. Scarfone, “Guide to attribute based access control (ABAC)
definition and considerations,” NIST Special Publication, 800:162,
2014.

[52] E. Maler, M. Machulak, and J. Richer, “User-Managed Access
(UMA) 2.0 grant for OAuth 2.0 Authorization,” Kantara Initia-
tive, https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-
2.0.html, accessed March 22. 2022.

[53] E. Maler, M. Machulak, and J. Richer, “Federated authoriza-
tion for User-Managed Access (UMA) 2.0,” Kantara Initia-
tive, https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-
2.0.
html, accessed March 22. 2022.

[54] “Importing and exporting policies,” ForgeRock AM 7.1 Au-
thorization Guide, https://backstage.forgerock.com/docs/am/7.1/
authorization-guide/import-export-policy.html, June 14. 2022.

[55] “About authorization and policy decisions,” ForgeRock AM 7.1
Authorization Guide, https://backstage.forgerock.com/docs/am/7.1/
authorization-guide/what-is-authz-decision.html, June 14. 2022.

[56] “Using attributes for access control as a form of attribute-
based access control,” Amazon Cognito Developer Guide, https://
docs.aws.amazon.com/cognito/latest/developerguide/attributes-for-
access-control.html, June 14. 2022.

[57] “5.8. Client registration policies,” Keycloak 15 Securing Appli-
cations and Services Guide, https://www.keycloak.org/docs/15.0/
securing apps/index.html# client registration policies, June 14. 2022.

[58] “Configuring a response type constraints instance,” PingFederate
Server 11 Administrator’s Reference Guide, https://docs.pingidentity.
com/bundle/pingfederate-110/page/msr1564002992437.html, June
14. 2022.

[59] “Authentication policies,” PingFederate Server 11 Administrator’s
Reference Guide, https://docs.pingidentity.com/bundle/pingfederate-
110/page/jul1564002986701.html, June 14. 2022.

[60] “OpenID conformance suite,” OpenID Foundation, https://openid.net/
certification/about-conformance-suite, accessed June 14. 2022.

[61] “Client policies and financial-grade API (FAPI) Support,” Key-
cloak.org, https://www.keycloak.org/docs/latest/release notes/index.
html#client-policies-and-financial-grade-api-fapi-support, accessed
June 14. 2022.

[62] “Certified Financial-grade API (FAPI) OpenID Providers -
Financial-grade API (FAPI) 1.0 Final - FAPI 1 Advanced Final
(Generic),” OpenID Foundation, https://openid.net/certification/#
FAPI OPs, accessed June 14. 2022.

http://dx.doi.org/10.17487/RFC7636
http://dx.doi.org/10.17487/RFC7636
http://dx.doi.org/10.17487/RFC7636
http://dx.doi.org/10.6028/NIST.SP.800-207
http://dx.doi.org/10.6028/NIST.SP.800-207
http://dx.doi.org/10.6028/NIST.SP.800-207
http://dx.doi.org/10.1109/ICWS.2005.25
http://dx.doi.org/10.1109/ICWS.2005.25
http://dx.doi.org/10.1109/ICWS.2005.25
http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://dx.doi.org/10.1007/978-3-642-31540-4_4
http://dx.doi.org/10.17487/RFC7662
http://dx.doi.org/10.17487/RFC7662
http://dx.doi.org/10.1145/3532105.3535014
http://dx.doi.org/10.1145/3532105.3535014
http://dx.doi.org/10.1145/3532105.3535014
http://dx.doi.org/10.1145/3532105.3535014
http://dx.doi.org/10.1145/3532105.3535014
http://dx.doi.org/10.1145/3417310.3431396
http://dx.doi.org/10.1145/3417310.3431396
http://dx.doi.org/10.1145/3417310.3431396
http://dx.doi.org/10.1145/3417310.3431396
http://dx.doi.org/10.1109/ETFA45728.2021.9613645
http://dx.doi.org/10.1109/ETFA45728.2021.9613645
http://dx.doi.org/10.1109/ETFA45728.2021.9613645
http://dx.doi.org/10.1109/ETFA45728.2021.9613645
http://dx.doi.org/10.1109/ETFA45728.2021.9613645
http://dx.doi.org/10.1145/2875491.2875498
http://dx.doi.org/10.1145/2875491.2875498
http://dx.doi.org/10.1145/2875491.2875498
http://dx.doi.org/10.1145/2875491.2875498
http://dx.doi.org/10.1016/j.sysarc.2010.04.005
http://dx.doi.org/10.1016/j.sysarc.2010.04.005
http://dx.doi.org/10.1016/j.sysarc.2010.04.005
http://dx.doi.org/10.1016/j.sysarc.2010.04.005
http://dx.doi.org/10.1007/978-3-319-17040-4_12
http://dx.doi.org/10.1007/978-3-319-17040-4_12
http://dx.doi.org/10.1007/978-3-319-17040-4_12
http://dx.doi.org/10.1109/32.824414
http://dx.doi.org/10.1109/32.824414
http://dx.doi.org/10.1109/32.824414
http://dx.doi.org/10.1109/CIST.2018.8596576
http://dx.doi.org/10.1109/CIST.2018.8596576
http://dx.doi.org/10.1109/CIST.2018.8596576
http://dx.doi.org/10.1109/CIST.2018.8596576
http://dx.doi.org/10.1145/1542207.1542218
http://dx.doi.org/10.1145/1542207.1542218
http://dx.doi.org/10.1145/1542207.1542218
http://dx.doi.org/10.1145/1542207.1542218
http://dx.doi.org/10.1109/ICICCS51141.2021.9432162
http://dx.doi.org/10.1109/ICICCS51141.2021.9432162
http://dx.doi.org/10.1109/ICICCS51141.2021.9432162
http://dx.doi.org/10.1109/ICICCS51141.2021.9432162
http://dx.doi.org/10.6028/NIST.SP.800-162
http://dx.doi.org/10.6028/NIST.SP.800-162
http://dx.doi.org/10.6028/NIST.SP.800-162
http://dx.doi.org/10.6028/NIST.SP.800-162


NORIMATSU et al.: POLICY-BASED METHOD FOR APPLYING OAUTH 2.0-BASED SECURITY PROFILES
1379

[63] “Certified Financial-grade API Client Initiated Backchannel Au-
thentication Profile (FAPI-CIBA) OpenID Providers,” OpenID
Foundation, https://openid.net/certification/#FAPI-CIBA OPs, ac-
cessed June 14. 2022.

[64] “Certified Financial-grade API (FAPI) OpenID Providers -
Financial-grade API (FAPI) 1.0 Final - Brazil Open Bank-
ing (Based on FAPI 1 Advanced Final),” OpenID Foundation,
https://openid.net/certification/#FAPI OPs, accessed June 14. 2022.

[65] “Certified Financial-grade API (FAPI) OpenID Providers -
Financial-grade API (FAPI) 1.0 Final - Australia CDR (Based on
FAPI 1 Advanced Final),” OpenID Foundation, https://openid.net/
certification/#FAPI OPs, accessed June 14. 2022.

[66] M. Posolda, “Keycloak certified as FAPI and Brazil Open Banking
provider,” Keycloak.org, https://www.keycloak.org/2022/01/fapi,
accessed June 14. 2022.

[67] D. Fett, “FAPI 2.0: A high-security profile for OAuth and OpenID
connect,” Proc. Open Identity Summit 2021, pp.71–81, 2021.

Appendix: Evidence of our Contribution to Keycloak

The following list includes the pull-requests sent by us for
the policy-based method and security profile implementa-
tion and merger to Keycloak.

https://github.com/keycloak/keycloak/pull/7104, 7232,
7278, 7364, 7391, 7395, 7410, 7419, 7423, 7501, 7503,
7592, 7594, 7598, 7601, 7615, 7628, 7629, 7659, 7664,
7679, 7680, 7682, 7698, 7699, 7723, 7727, 7732, 7735,
7780, 7907, 7910, 7914, 7915, 7953, 8002, 8003, 8004,
8005, 8006, 8010, 8016, 8017, 8028, 8070, 8083, 8103,
8144, 8223, 8237, 8238, 8239, 8240, 8241, 8242, 8252,
8277, 8278, 8283, 8284, 8285, 8293, 8294, 8295, 8302,
8308, 8309, 8597, 9490, 9526, 9527

The following list includes the acknowledgement of
our contribution to Keycloak’s release notes from the Key-
cloak community:

• Keycloak version 12: FAPI RW support and initial sup-
port to Client policies
https://www.keycloak.org/docs/latest/release notes/in-
dex.html#fapi-rw-support-and-initial-support-to-client-
-policies
• Keycloak version 13: OpenID Connect Client Initiated

Backchannel Authentication (CIBA)
https://www.keycloak.org/docs/latest/release notes/in-
dex.html#openid-connect-client-initiated-backchannel-
-authentication-ciba
• Keycloak version 14: Client Policies and Financial-

grade API (FAPI) Support
https://www.keycloak.org/docs/latest/release notes/in-
dex.html#client-policies-and-financial-grade-api-fapi-
-support
• Keycloak version 15: Financial-grade API (FAPI) Im-

provements, FAPI CIBA and Open Banking Brasil
https://www.keycloak.org/docs/latest/release notes/in-
dex.html#financial-grade-api-fapi-improvements-fapi-
-ciba-and-open-banking-brasil

Takashi Norimatsu received his B.S. de-
gree in science from National Institution for
Academic Degrees and Quality Enhancement
of Higher Education in 2000, and M.S. degree
in mathematical engineering from University of
Tsukuba in 2001. He has been working for
Hitachi, Ltd. since 2001, and is also studying
at Okayama University to obtain a Ph.D. degree.
He is a member of IPSJ.

Yuichi Nakamura received his B.S. and
M.S. degrees in physics from University of
Tokyo in 1999 and 2001, M.S. degree in com-
puter science from The George Washington Uni-
versity in 2006, and Ph.D. degree in computer
science from Okayama University in 2016. He
worked for Hitachi Solutions over 2001–2015
and has been working for Hitachi, Ltd. since
2016. He is a member of IPSJ.

Toshihiro Yamauchi received B.E., M.E.
and Ph.D. degrees in computer science from
Kyushu University, Japan in 1998, 2000 and
2002, respectively. In 2001, he became a Re-
search Fellow of the Japan Society for the Pro-
motion of Science. In 2002, he became a Re-
search Associate in Faculty of Information Sci-
ence and Electrical Engineering at Kyushu Uni-
versity. He has served as associate professor of
Graduate School of Natural Science and Tech-
nology at Okayama University since 2005, and

has been serving as professor of Graduate School of Natural Science and
Technology at Okayama University since 2021. His research interests in-
clude operating systems and computer security. He is a member of IPSJ,
IEICE, ACM, USENIX, and IEEE.


