
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023
1397

PAPER Special Section on Information and Communication System Security

Compact and Efficient Constant-Time GCD and Modular Inversion
with Short-Iteration

Yaoan JIN†a), Nonmember and Atsuko MIYAJI†b), Member

SUMMARY Theoretically secure cryptosystems, digital signatures
may not be secure after being implemented on Internet of Things (IoT)
devices and PCs because of side-channel attacks (SCA). Because RSA key
generation and ECDSA require GCD computations or modular inversions,
which are often computed using the binary Euclidean algorithm (BEA) or
binary extended Euclidean algorithm (BEEA), the SCA weaknesses of BEA
and BEEA become a serious concern. Constant-time GCD (CT-GCD) and
constant-time modular inversion (CTMI) algorithms are effective counter-
measures in such situations. Modular inversion based on Fermat’s little
theorem (FLT) can work in constant time, but it is not efficient for general
inputs. Two CTMI algorithms, named BOS and BY in this paper, were pro-
posed by Bos, Bernstein and Yang, respectively. Their algorithms are all
based on the concept of BEA. However, one iteration of BOS has compli-
cated computations, and BY requires more iterations. A small number of
iterations and simple computations during one iteration are good character-
istics of a constant-time algorithm. Based on this view, this study proposes
new short-iteration CT-GCD and CTMI algorithms over Fp borrowing a
simple concept from BEA. Our algorithms are evaluated from a theoretical
perspective. Compared with BOS, BY, and the improved version of BY,
our short-iteration algorithms are experimentally demonstrated to be faster.
key words: constant-time modular inversion (CTMI), constant-time great-
est common divisor (CT-GCD), and side channel attacks (SCA).

1. Introduction

Secure cryptosystems, digital signatures are threatened by
side channel attacks (SCA) after being implemented on
Internet of Things (IoT) devices and personal computers
(PCs). Secret information can be obtained by analyzing var-
ious physical parameters including power consumption, im-
plementation time, and electromagnetic emission during the
execution of cryptographic algorithms. The endless emer-
gence and improvement of SCA methods make such attacks
increasingly dangerous [1], [2].

The binary Euclidean algorithm (BEA) computes the
greatest common divisor (GCD). It can be used in RSA key
generation to check whether the GCD of the public key e and
φ(n) = (p−1)(q−1), where p and q are randomly generated
large primes, is equal to one. The binary extended Euclidean
algorithm (BEEA) can be used in RSA key generation and
ECDSA to compute a modular inversion. Both algorithms
are attractive because they consist of only shift and subtrac-
tion operations. However, BEA and BEEA are both threat-

Manuscript received November 8, 2022.
Manuscript revised March 22, 2023.
Manuscript publicized July 13, 2023.
†The authors are with the Graduate School of Engineering,

Osaka University, Suita-shi, 565–0871 Japan.
a) E-mail: jin@cy2sec.comm.eng.osaka-u.ac.jp
b) E-mail: miyaji@comm.eng.osaka-u.ac.jp

DOI: 10.1587/transinf.2022ICP0009

ened by SCA. Specifically, a simple power analysis (SPA),
a cache-timing attack (CTA), and a machine learning-based
profiling attack (MLPA) were conducted on BEA and BEEA
to recover secrets with a high success rate [3]–[7].

A constant-time algorithm can be applied as a counter-
measure. Modular inversion based on Fermat’s little theo-
rem (FLT) can be computed in constant time. However, it is
inefficient for general inputs and can only compute modular
inversions over prime numbers. Two constant-time modular
inversion (CTMI) algorithms based on the basic concept of
BEA were proposed by Bos [8], Bernstein and Yang [9], and
are denoted by BOS and BY, respectively. Their algorithms
can also compute constant-time GCD (CT-GCD). The num-
ber of iterations of CTMI proposed by Bernstein and Yang
was improved by Pieter Wuille in [10], which is denoted by
hdBY in this paper. However, BY (even hdBY) still requires
more iterations than BOS, and the computations during one
iteration of BOS are complicated.

In our preliminary work [11], we propose short-
iteration constant-time GCD (SICT-GCD) and CTMI (SICT-
MI) on Fp with simple computations in each iteration and a
small number of iterations. The core computations (or it-
eration formula) of SICT-GCD and SICT-MI on Fp are de-
fined in Definition 1. The iteration formula based on the
GCD computations in Lemma 2 consists of only shift and
subtraction operations. Theorem 1 shows that the iteration
formula converges to an = GCD(a0, b0) and bn = 0, where
a0, b0 ∈ Z, a0 ≥ b0 ≥ 0, and a0 or b0 is odd, with limited
iterations. Theorem 2 indicates that the necessary number
of iterations is bitlen(a0) + bitlen(b0). Based on The-
orems 1 and 2, the number of iterations of the SICT-GCD
and SICT-MI algorithms on Fp is fixed at 2 · bitlen(a0).
We show the SI-GCD and SI-MI algorithms on Fp in Al-
gorithms 6 and 7, whose computations in each branch are
balanced, and then branchless SICT-GCD and SICT-MI on
Fp in Algorithm 8. We theoretically analyze the efficiency of
the SICT-GCD and SICT-MI algorithms by comparing the
number of iterations and Fp-arithmetic. We also evaluate the
efficiency of the SICT-GCD and SICT-MI algorithms on Fp,
FLT-CTMI, BOS, BY, and hdBY through experiments.

In this study, we add the analysis of the maximum par-
allel data flow in an iteration of BOS, BY, hdBY, and our
algorithms, which is accessible in a FPGA implementation.
It shows that our algorithms are compact and only require
short-iteration. We also add the experimental comparisons
on primes recommended for use in a post-quantum non-
interactive key-exchange protocol (CSIDH) [12]. More-

Copyright c© 2023 The Institute of Electronics, Information and Communication Engineers



1398
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

over, considering that modular inversions are used in elliptic
curve affine addition formulae, we compare the efficiency of
elliptic curve affine addition formulae using different modu-
lar inversion methods.

The results show that our SICT-GCD on Fp saves
7.44%, 13.78%, 16.67%, 18.45%, 24.77%, 27.05% and
28.3% clock cycles of hdBY on 224-, 256-, 384-, 511-,
1020-, 1790- and 2048-bit GCD computations, respectively.
Our SICT-MI on Fp saves

• 17.41%, 16.08%, 18.67%, 16.55%, 16.89%, 17.53%
and 17.76% clock cycles of hdBY on 224-, 256-, 384-,
511-, 1020-, 1790- and 2048-bit modular inversions re-
spectively.
• 10.86%, 16.44%, 23.33%, 60.24%, 80.29% and

82.78% clock cycles of FLT-CTMI on 224-, 384-, 511-,
1020-, 1790- and 2048-bit modular inversions respec-
tively.
• 40.86%, 41.43%, 41.8%, 39.53%, 38.34%, 37.60%

and 37.66% clock cycles of BOS on 224-, 256-, 384-,
511-, 1020-, 1790- and 2048-bit modular inversions re-
spectively.

The remainder of this paper is organized as follows.
Related work is introduced in Sect. 2. The SICT-GCD and
SICT-MI algorithms for Fp are described in Sect. 3. In
Sect. 4, we evaluate our SICT-GCD and SICT-MI on Fp. Fi-
nally, we conclude this paper in Sect. 5.

2. Related Work

2.1 BEA and BEEA

Methods for computing modular inversions can be divided
into two categories. The first is based on Fermat’s little the-
orem (FLT), whose basic idea is a−1 = ap−2 mod p for a
prime number p (a ∈ Z and GCD(a, p) = 1, which is the
greatest common divisor of a and p). The other is based on
the extended Euclidean algorithm, Algorithm 1, whose ba-
sic concept is GCD(a, b) = GCD(b, a mod b) for a, b ∈ Z.
Note that (b − r)/c means a quotient of b − r divided by c in
Algorithm 1. The most notable feature of FLT is that it can
compute a modular inversion in constant time. By contrast,
the extended Euclidean algorithm cannot compute modular

Algorithm 1: Extended Euclidean Algorithm
Input: a, p, where GCD(a, p) = 1.
Result: y1 = a−1 mod p
Initialization:
b = p; c = a; x0 = 1; x1 = 0; y0 = 0; y1 = 1;
while c � 1 do

r = b mod c; q = (b − r)/c;
b = c; c = r;
t = x1; x1 = x0 − q · x1; x0 = t;
t = y1; y1 = y0 − q · y1; y0 = t;

end
y1 = y1 mod p;
return y1;

inversion in constant time. However, it is more efficient and
can be used to compute the greatest common divisor (GCD).

Of the variants of the Euclidean algorithm and ex-
tended Euclidean algorithm, the most frequently used vari-
ants are the binary Euclidean algorithm and binary extended
Euclidean algorithm, which are called BEA and BEEA, re-
spectively. BEA and BEEA, which consist of only shift and
subtraction operations, compute GCD and modular inver-
sion, respectively. They are attractive because shift and sub-
traction operations can more easily be implemented on both
the software and hardware. The basic concept of BEA and
BEEA is as follows:

GCD(a, b)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

GCD(|a − b|, min(a, b)), a and b are odd
GCD(a/2, b), a is even, b is odd
GCD(a, b/2), a is odd, b is even
2 ·GCD(a/2, b/2), a and b are even.

(1)

BEA computes GCD(a, b) using Eq. (1), as shown in Algo-
rithm 2. For modular inversion, the case that a and b are
even does not exist, and the first “while” loop in Algorithm 2
can be removed because GCD(a, p) = 1 when a−1 mod p
exists. BEEA computes the modular inversion of a−1 mod p
(GCD(a, p) = 1), as shown in Algorithm 3. Note that >>
indicates the right-shift operation and << indicates the left-
shift operation. A/2 mod p can be computed as A >> 1
when A is even, and (A + p) >> 1 when A is odd.

2.2 SCA of BEA and BEEA

A method for recovering the inputs of BEA (or BEEA) was
first proposed in [13]. Specifically, the inputs can be recov-
ered by inputting the complete operational flow of an exe-
cution of BEA (or BEEA) into the algorithm ([13] Fig. 7).
This is because u and v are finally updated to zero and
GCD(a, b), respectively, in Algorithms 2 and 3. With the

Algorithm 2: BEA
Input: a, b ∈ Z
Result: r = GCD(a, b)
Initialization:
u = a; v = b; r = 1;
while u and v are even do

u = u >> 1; v = v >> 1; r = r << 1;
end
while u � 0 do

while u is even do
u = u >> 1;

end
while v is even do
v = v >> 1;

end
if u ≥ v then

u = u − v;
else
v = v − u;

end
end
r = r · v;
return r



JIN and MIYAJI: COMPACT AND EFFICIENT CONSTANT-TIME GCD AND MODULAR INVERSION WITH SHORT-ITERATION
1399

Algorithm 3: BEEA
Input: a, p, where GCD(a, p) = 1
Result: C = a−1 mod p
Initialization:
u = a; v = p; A = 1; C = 0;
while u � 0 do

while u is even do
u = u >> 1; A = A/2 mod p;

end
while v is even do
v = v >> 1; C = C/2 mod p;

end
if u ≥ v then

u = u − v; A = A −C;
else
v = v − u; C = C − A;

end
end
C = C mod p;
return C

help of the complete operational flow of an execution of
BEA (or BEEA), we can inversely compute the initial val-
ues of u and v. The remaining question is how to obtain
the complete operational flow of the execution of BEA (or
BEEA).

The complete operational flow of an execution of BEA
(or BEEA) can be obtained by the SCA. There are some
“bad” characteristics in Algorithms 2 and 3, which can be
used in SCA to predict the operational flow: 1) There is at
most one shift loop of either u or v in each iteration. 2) One
subtraction operation must be performed in each iteration.
The complete operational flow of the execution of BEEA is
obtained by the simple power analysis (SPA) and used to at-
tack the ECDSA in [3]. It is pointed out that the subtraction
operational flow can be recovered from the shift operational
flow in [3]. Thus, the complete shift operational flow of the
execution of BEA (or BEEA) is sufficient to reveal the in-
puts.

In practical applications, one of the inputs to BEA (or
BEEA) is always public. Some characteristics of the in-
puts to BEA (or BEEA) can be known in advance. All
these make SCA to BEA and BEEA easier. Consider RSA
key generation in OpenSSL as an example. GCD(e, p − 1)
and GCD(e, q − 1), where e is a stable public key and
p and q are random large prime numbers with the same
bit length, are computed using BEA to check whether p
and q are generated properly. The modular inversion of
d = e−1 mod (p − 1)(q − 1) is computed to obtain the se-
cret key using BEEA. Based on the characteristics of RSA
key generation: 1) e and n = pq are public; 2) because
(p − 1)(q − 1) has almost half the same most significant bits
(MSBs) as n, the secret (p − 1)(q − 1) can be recovered by a
part of the operational flow at the beginning of the modular
inversion computation, e−1 mod (p − 1)(q − 1). Referring to
n, it is sufficient to recover some least significant bits (LSBs)
of (p − 1)(q − 1) with the operational flow at the beginning
and public input e [4], [5]. Benefiting from 1) the general
setting of e = 65537 is much smaller than (p − 1)(q − 1),

Algorithm 4: FLT-CTMI
Input: a, p, a ∈ Z, GCD(a, p) = 1 and p is a prime.
Result: C = a−1 mod p
Initialization:
C = a; k = p − 2 (

∑n−1
i=0 ki2i);

for i = n − 2; i ≥ 0; i = i − 1 do
C = C2 mod p;
if ki = 1 then

C = C × a mod p;

end
return C

p−1 and q−1; 2) 4|(p−1)(q−1), 2|(p−1) and 2|(q−1), the
partial operational flow at the beginning of BEA (or BEEA)
can be predicted in advance. Using all these characteris-
tics, SPA, cache-timing attack (CTA), and machine learning-
based profiling attack (MLPA) threaten the security of RSA
key generation [4]–[6].

For countermeasures, one can hide the secret inputs of
BEA or BEEA using appropriate masking procedures, the
security of which was reported in [14]. Another option is to
use constant-time GCD (CT-GCD) or constant-time modu-
lar inversion (CTMI).

2.3 CT-GCD and CTMI Algorithms

Modular inversion by Fermat’s little theorem, which is
shown in Algorithm 4, can be computed in constant time
because p is the same for each modular inversion, and “if
statements” are executed in the same way for any input a.
The number of iterations is fixed at bitlen(p−2)−1, where
bitlen(p−2) is the bit length of p−2. The computations in
each iteration, which depend on each bit of p−2, are identi-
cal for any input a. The efficiency of constant-time modular
inversion based on FLT, and denoted by FLT-CTMI, depends
on the Hamming weight of p − 2. The larger the Hamming
weight of p−2, the lower the efficiency of FLT-CTMI. Thus,
FLT-CTMI is inefficient for general inputs. Moreover, FLT
can compute neither GCD nor modular inversion on a com-
posite number, which is required for RSA key generation,
such as GCD(e, p − 1) and e−1 mod (p − 1)(q − 1).

Bos proposed a CTMI algorithm by improving
Kaliski’s algorithm [15] to a constant-time version, which
we call BOS [8]. The basic idea is to compute all branches
and then select the correct values from them according to
the defined signal variables. Because the sum of the bit
lengths of the inputs is reduced by one in each iteration,
BOS sets the number of iterations to 2 · bitlen(p). BOS
can compute the modular inversion, Montgomery inversion,
and GCD(a, b), where a or b is odd.

A CTMI was proposed in [16] with inserted dummy
computations. The number of iterations is the same as
that of BOS. However, inserting dummy computations into
CTMI lowers the efficiency and creates potential SCA secu-
rity issues.

Bernstein and Yang proposed a CTMI algorithm on Fp,



1400
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

Algorithm 5: BY [9]
Input: a, p, l = �(49 · bitlen(p) + 57)/17�,
pre com = 2−l mod p
Result: q = a−1 mod p
Initialization:
u = a; v = p; q = 0; r = 1; δ = 1;
for i = 0; i < l; i = i + 1 do

z = ulsb; s = signbit(−δ); δ = 1 + (1 − 2sz)δ;
u, v = (u + (1 − 2sz)zv) >> 1, v ⊕ sz(v ⊕ u);
q, r = (q ⊕ sz(q ⊕ r)) << 1, (1 − 2sz)zq + r;

end
q = sign(v) · q;
q = q · pre com mod p;
return q

Algorithm 5, which we call BY [9]. The iteration formula of
their algorithm is shown in Eq. (2), where δ ∈ Z is initialized
to one, and the input b ∈ Z should be odd.

F(δ, b, a) =

⎧⎪⎨⎪⎩ (1 − δ, a, a−b
2 ) δ > 0 and a is odd

(1 + δ, b, a+(a mod 2)b
2 ) otherwise

(δ, a, b ∈ Z, b is odd.)

(2)

The computations of their algorithm during one iteration
are simpler than BOS. Bernstein and Yang analyzed the
rate of shrinking of the transition matrix after each iteration
and proved that the necessary number of iterations of BY is
�(49d + 57)/17�(d ≥ 46), where d is the largest bit length of
the inputs. The number of iterations is significantly greater
than that of BOS. BY can compute the modular inversion,
Montgomery inversion, and GCD(a, b), where a or b is odd.
In Algorithm 5, signbit(a) returns zero when a ≥ 0 or
one when a < 0, and sign(a) returns -1 when a < 0 or
1 when a > 0. The first k iterations of BY are completely
determined by the lowest k bits of b and a. This feature sup-
ports the divide-and-conquer strategy of BY. Bernstein and
Yang also proposed a CTMI algorithm for Fpn , where Fpn is
defined as Fp[x]/( f (x)). Then any element in Fpn is repre-
sented by g(x) ∈ Fp[x]. The iteration formula is given by
Eq. (3), where f (0) � 0.

F(δ, f , g)

=

{
(1 − δ, g, (g(0) f − f (0)g)/x) δ > 0, g(0) � 0
(1 + δ, f , ( f (0)g − g(0) f )/x) otherwise.

(3)

Each branch has computations of one addition (or subtrac-
tion) on Z, one subtraction on Fpn , one shift on Fpn , and two
multiplications on Fpn . The number of iterations is fixed at
2 · max(deg( f ), deg(g)).

Pieter Wuille kept track of the convex hulls of possi-
ble (b, a) after each iteration to find the necessary number
of iterations of BY and obtained similar results [10]. He
found that the necessary number of iterations of BY for 224-,
256-, and 384-bit computations are 634, 724, and 1086, re-
spectively, whereas Bernstein and Yang showed they are
649, 741, and 1110, respectively. Moreover, Pieter Wuille
proposed a variant of BY denoted by hdBY by initializing
δ = 1/2 or using the iteration formula in Eq. (4).

F(δ, b, a) =

⎧⎪⎨⎪⎩ (2 − δ, a, a−b
2 ) δ > 0 and a is odd

(2 + δ, b, a+(a mod 2)b
2 ) otherwise.

(4)

The number of iterations of hdBY, defined by
max(2�(2455 log2(M) + 1402)/1736�, 2�(2455 log2(M) +
1676)/1736� − 1), and M ≥ 157, 0 ≤ a ≤ b ≤ M, is
smaller. The necessary number of iterations of hdBY for
224-, 256-, and 384-bit computations are 517, 590, and 885,
respectively.

3. Short-Iteration CT-GCD and CTMI

Good characteristics of a constant-time algorithm are short
iterations and simple computations during one iteration. We
combine the basic concept of BEA and Lemma 1 and pro-
pose new short-iteration GCD (SI-GCD) and modular in-
version (SI-MI) algorithms, whose computations in each
branch are balanced. We then propose CT-GCD and CTMI
algorithms, called short-iteration CT-GCD (SICT-GCD) and
short-iteration CTMI (SICT-MI), that have short iterations
and simple computations.

3.1 Our Iteration Formula

Let us start from a simple lemma of GCD. Lemma 1 implies
that the GCD of any two of a, b, and a − b, where a, b ∈ Z
and a ≥ b ≥ 0, is the same. Lemma 1 is used to demonstrate
Lemma 2.

Lemma 1. GCD(a, b) = GCD(b, a − b) = GCD(a, a − b),
where a, b ∈ Z and a ≥ b ≥ 0.

Proof. With the well-known fact that GCD(a, b) = GCD(a−
nb, b) for any n, it is clear that GCD(a, b) = GCD(a − b, b)
with n = 1 and GCD(b, a − b) = GCD(a, a − b) with n =
−1. �

Based on the basic concept of BEA in Eq. (1) and
Lemma 1, we show that GCD has the following equivalence
relations:

Lemma 2. GCD has the following equality.

GCD(a, b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
GCD((a − b)/2, b), a and b are odd
GCD(a/2, a − b), a is even and b is odd
GCD(b/2, a − b), a is odd and b is even.

a, b ∈ Z, a ≥ b ≥ 0 and a and/or b are/is odd.

Proof. • Assume that a and b are odd. GCD(a, b) =
GCD(b, a − b) by Lemma 1 and GCD(b, a − b) =
GCD(b, (a − b)/2) by the concept of BEA.
• Assume that a is even and b is odd. GCD(a, b) =

GCD(a, a − b) by Lemma 1 and GCD(a, a − b) =
GCD(a/2, a − b) by the concept of BEA.
• Assume that a is odd and b is even. GCD(a, b) =

GCD(b, a − b) by Lemma 1 and GCD(b, a − b) =
GCD(b/2, a − b) by the concept of BEA.

�



JIN and MIYAJI: COMPACT AND EFFICIENT CONSTANT-TIME GCD AND MODULAR INVERSION WITH SHORT-ITERATION
1401

Lemma 2 gives rise to the iteration formula, which is
the core computation in the proposed SICT-GCD and SICT-
MI.

Definition 1. The iteration formula (an+1, bn+1) = f (an, bn)
for an, bn ∈ Z, an ≥ bn ≥ 0 and an and/or bn are/is odd, is
defined as follows:

f (an, bn) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
Branch1 : max.min((an − bn)/2, bn), an and bn are odd
Branch2 : max.min(an/2, an − bn), an is even, bn is odd
Branch3 : max.min(bn/2, an − bn), an is odd, bn is even.

Definition 2. (a, b) = max.min(a, b), where a, b ∈ Z, is de-
fined as follows:

max.min(a, b) =

{
(a, b) when a ≥ b
(b, a) otherwise.

Lemma 3. Let an = d ∈ Z+ and bn = 0, where d is odd,
be the inputs of f in Definition 1. Then, regardless of the
number of f iterations, the outputs are the same as the in-
puts, which are an+i = d, bn+i = 0, i ≥ 1. Therefore,
f ( f · · · f ( f (an, bn))) = (an, bn).

Proof. Assume that an = d ∈ Z+ and bn = 0, where d is
odd. an+1 = d and bn+1 = 0 are computed using Branch3,
which are the same as the inputs. �

Lemma 4. The sequence {Z 	 (ai + bi) > 0} is a mono-
tonically decreasing sequence for every two steps, where a0

and b0 are the initial inputs, and ai and bi (Z 	 i > 0) are
updated by the iteration formula in Definition 1.

Proof. Every two steps can be classified into nine patterns
of (Branchi, Branchj), where i, j ∈ {1, 2, 3}, as listed in
Table 1. All patterns are proven by (1)–(7).

(1) After Branch1, ai+1+bi+1 < ai+bi holds in the Eq. (5).

(ai+1 + bi+1) − (ai + bi)

= (
ai − bi

2
+ bi) − (ai + bi)

= −ai + bi

2
< 0

(5)

(2) After Branch2 when 4bi > ai ≥ bi, ai+1 + bi+1 < ai + bi

holds in Eq. (6).

(ai+1 + bi+1) − (ai + bi)

= (
ai

2
+ ai − bi) − (ai + bi)

=
ai − 4bi

2
< 0

(6)

(3) After Branch2 when ai ≥ 4bi, ai+2 + bi+2 < ai + bi.
ai+1 = ai−bi, bi+1 = ai/2 are updated because of ai−bi−
ai/2 = (ai − 2bi)/2 > 0. ai+1 is odd because ai is even
and bi is odd. Then ai+2, bi+2 are computed by Branch1
and ai+2 + bi+2 = (3ai − 2bi)/4, when ai/2 is odd. ai+2,
bi+2 are computed by Branch3 and ai+2 + bi+2 = (3ai −

4bi)/4, when ai/2 is even. Finally, ai+2 + bi+2 < ai + bi

holds in Eq. (7).

(ai+2 + bi+2) − (ai + bi)

= −ai + 6bi

4
< 0 when ai/2 is odd.

(ai+2 + bi+2) − (ai + bi)

= −ai + 8bi

4
< 0 when ai/2 is even

(7)

(4) After Branch3, ai+1 + bi+1 ≤ ai + bi holds in Eq. (8).

(ai+1 + bi+1) − (ai + bi)

= (
bi

2
+ ai − bi) − (ai + bi)

= −3bi

2
≤ 0 (=0 when bi = 0)

(8)

(5) After (Branch1, Branch2), ai+2 + bi+2 < ai + bi holds
in Eq. (9).

(ai+2 + bi+2) − (ai + bi)

= (
ai − bi

4
+

ai − 3bi

2
) − (ai + bi)

= −ai + 11bi

4
< 0

(9)

(6) After (Branch3, Branch2), ai+2 + bi+2 < ai + bi holds
in Eq. (10).

(ai+2 + bi+2) − (ai + bi)

= (
bi

4
+

3bi − 2ai

2
) − (ai + bi)

=
3bi − 8ai

4
< 0

(10)

(7) After (Branch2, Branch2) when 2bi ≥ ai ≥ bi, ai+2 +

bi+2 < ai + bi holds in Eq. (11). Note that there is no
pattern of (Branch2, Branch2) when ai > 2bi.

(ai+2 + bi+2) − (ai + bi)

= (
ai

4
+

2bi − ai

2
) − (ai + bi)

= −5ai

4
< 0

(11)

In summary, all cases are proven as shown in Table 1. �

Theorem 1. (Convergence) After sufficient iterations of the
iteration formula defined in Definition 1, any valid inputs
a0 and b0 converge to an = d and bn = 0, where d =
GCD(a0, b0) and d is odd because a0 and/or b0 are/is odd.

Proof. By Definition 1 and Lemmas 2, 3, and 4, Theorem 1
can be proven. �

As shown in Theorem 1, after sufficient iterations of
the iteration formula, an = GCD(a0, b0) and bn = 0 are the
outputs. Then, we construct our SICT-GCD and SICT-MI
by determining the necessary number of iterations.



1402
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

Table 1 Proved case

Case Proved by
(Branch1, Branch1) (1)
(Branch1, Branch2) (5)
(Branch1, Branch3) (1) and (4)
(Branch2, Branch1) (1), (2) and (3)
(Branch2, Branch2) (7)
(Branch2, Branch3) (2), (3) and (4)
(Branch3, Branch1) (1) and (4)
(Branch3, Branch2) (6)
(Branch3, Branch3) (4)

3.2 The Number of Iterations

We have already shown our iteration formula in Definition 1,
which has simple and identical computations (a shift and a
subtraction) in each iteration. According to Theorem 2, the
iteration formula converges after bitlen(a0) + bitlen(b0)
iterations. Thus, the number of iterations are 448, 512,
and 768 for 224-, 256-, and 384-bit GCD computations and
modular inversions, respectively. Our number of iterations
is fewer than that of hdBY [10] and the same as that of
BOS [8]. The required number of iterations is not intuitive
in our iteration formula because the decrease in the total bit
length of the inputs ai and bi after Branch2 cannot be ob-
served directly.

Lemma 5. For any valid ai and bi, bitlen(ai)+bitlen(bi)
is reduced by at least one after Branch1, Branch2 (2bi ≥
ai ≥ bi) and Branch3 of the iteration formula in Defini-
tion 1.

Proof. (1) It is clear that bitlen(ai) + bitlen(bi) is re-
duced by at least one after Branch1 or Branch3 of the
iteration formula in Definition 1.

(2) Assume that even ai has x bits, odd bi has y bits, and
2bi ≥ ai ≥ bi. After Branch2 of the iteration formula,
ai+1 = ai/2 has x − 1 bits and 0 ≤ bi+1 = ai − bi ≤ bi

has y bits at most. Thus, bitlen(ai) + bitlen(bi) is
reduced by at least one after Branch2 (2bi ≥ ai ≥ bi).

�

Lemma 6. Assume that even ai has x bits, odd bi has y bits,
and ai > 2bi, x − y ≥ 1. Then bitlen(ai) + bitlen(bi) is
reduced by at least x − y + 1 bits after x − y + 1 iterations.

Proof. ai+1 and bi+1 are computed by Branch2 firstly. ai+1 =

ai−bi and bi+1 = ai/2 because ai−bi−ai/2 = (ai−2bi)/2 > 0.
When x−y = 1, an additional iteration is considered. If ai/2
is odd, then ai+2 = ai/2 with x−1 bits and bi+2 = (ai−2bi)/4
with x − 2 bits at most by Branch1. If ai/2 is even, then
ai+2 = ai/4 with x − 2 bits and bi+2 = (ai − 2bi)/2 with at
most x − 1 bits by Branch3. Subsequently, bitlen(ai) +
bitlen(bi) is reduced by x − y + 1 = 2 bits at least.

When x − y = 2, take ai+3 and bi+3 into consideration.
From the computations, bitlen(ai+3) + bitlen(bi+3) is at
most (x − 2) + (x − 3) = x + y − 3. Thus, bitlen(ai) +
bitlen(bi) is reduced by at least x − y + 1 = 3 bits after
x − y + 1 = 3 iterations.

Algorithm 6: SI-GCD
Input: a, b ∈ Z, a ≥ b ≥ 0, a or b is odd. l = 2 · bitlen(a).
Result: v = GCD(a, b)
Initialization:
u = b; v = a;
for i = 0; i < l; i = i + 1 do

t1 = v − u;
if u is even then

u = u >> 1; (v, u) = max.min(u, t1);
else

if v is odd then
t1 = t1 >> 1; (v, u) = max.min(t1, u);

else
v = v >> 1; (v, u) = max.min(v, t1);

end
end

end
return v

For x−y = 3 · · · , one can continue to calculate ai+4 and
bi+4 · · · , and find that bitlen(ai+k)+bitlen(bi+k) is at most
(x−k)+(x−k+1) = x+y−k, where x−y = k−1. Subsequently,
bitlen(ai)+bitlen(bi) is reduced by at least x− y+ 1 bits
after x − y + 1 iterations. �

Theorem 2. After bitlen(a0) + bitlen(b0) iterations of
the iteration formula defined in Definition 1, the valid inputs
(a0, b0) converge to (an = d, bn = 0), where GCD(a0, b0) =
d and d is odd.

Proof. Theorem 1 shows that the valid inputs (a0, b0) con-
verge to (an = d, bn = 0), where GCD(a0, b0) = d and
d is odd with sufficient iterations. By Lemmas 5 and 6,
bitlen(a0) + bitlen(b0) is reduced by at least one after
each iteration on average. Thus, the iteration formula con-
verges after at most bitlen(a0) + bitlen(b0) iterations. �

Using the iteration formula in Definition 1 and the re-
quired number of iterations, the SI-GCD algorithm is shown
in Algorithm 6. It is not difficult to determine the transition
matrices for ai and bi. The SI-MI algorithm is presented
according to the transition matrices in Algorithm 7. The
computations for each iteration consist of two shifts and two
subtractions in Algorithm 7. Note that all the transition ma-
trices are multiplied by two to eliminate multiplications by
1/2. Thus, we need to multiply the result by 2−l mod p,
which can be precomputed, where l is the number of itera-
tions.

Montgomery inversion, a−1 × R mod p, can be com-
puted using SI-MI, where R is generally 2bitlen(p) [17]. By
setting pre com = 2−bitlen(p) mod p, the output of Algo-
rithm 7 is a−1 × 2bitlen(p) mod p. For different choices of
R, one can change pre com and obtain a−1 × R mod p using
Algorithm 7.

For clarity, the computational flow in one iteration of
Algorithm 7 can be described as follows:

(1) Update t1 = v − u and t2 = q − r.
(2) According to the LSB of u and the LSB of v, select the
Branchi.



JIN and MIYAJI: COMPACT AND EFFICIENT CONSTANT-TIME GCD AND MODULAR INVERSION WITH SHORT-ITERATION
1403

Algorithm 7: SI-MI
Input: a, p ∈ Z, p > a > 0, GCD(a, p) = 1. l = 2 · bitlen(p).
pre com = 2−l mod p.
Result: q = a−1 mod p
Initialization:
u = a; v = p; q = 0; r = 1;
for i = 0; i < l; i = i + 1 do

t1 = v − u; t2 = q − r;
if u is odd, and v is odd then

t1 = t1 >> 1; r = r << 1;
if u > t1 then

q = r; r = t2; v = u; u = t1;
else

q = t2; r = r; v = t1; u = u;
end

else if u is odd, and v is even then
v = v >> 1; t2 = t2 << 1;
if t1 > v then

r = q; q = t2; u = v, v = t1;
else

q = q; r = t2; v = v; u = t1;
end

else
u = u >> 1; t2 = t2 << 1;
if t1 > u then

r = r; q = t2; u = u; v = t1;
else

q = r; r = t2; v = u; u = t1;
end

end
end
q = q × pre com mod p;
return q

Table 2 Data matrix of u and v.

Branch1 t1 u
Branch2 v t1
Branch3 u t1

Table 3 Data matrix of q and r.

Branch1 t2 r
Branch2 q t2
Branch3 r t2

(3) According to the selected Branchi, right shift the data
in the second column of Table 2 and left shift the data
in the third column of Table 3.

(4) According to the selected Branchi, compare the data
in the second column of Table 2 and the data in the
third column of Table 2. Then update u, v, q, and r by
the results of the comparison.

3.3 SICT-GCD and SICT-MI

Because each branch in Algorithms 6 and 7 has the same
computations, the conditional statements can be removed,
as shown in Algorithm 8. Note that this is not the only
way to remove conditional statements. For instance, t1 and
t2 can also be updated as t1 = szu ⊕ (s̄ + z̄)(v − u) and
t2 = [sz(v − u) ⊕ sz̄v ⊕ s̄zu] >> 1, using three additional
XOR operations on Fp and one less addition on Fp. SICT-
GCD can be easily obtained by removing the computations

Algorithm 8: SICT-MI
Input: a, p ∈ Z, p > a > 0, GCD(a, p) = 1. l = 2 · bitlen(p).
pre com = 2−l mod p.
Result: q = a−1 mod p
Initialization:
u = a; v = p; q = 0; r = 1;
sort1[2] = {t1, t2}; sort2[2] = {t3, t4};
for i = 0; i < l; i = i + 1 do

s = ulsb; z = vlsb;
t1, t2 = (s ⊕ z)v + ((sz << 1) − 1)u, [sv + (2 − (s <<
1) − z)u] >> 1;
(sz << 1 is the same as 2sz.)
t3, t4 = [(s ⊕ z)q + ((sz << 1) − 1)r] << 1, sq + (2 − (s <<
1) − z)r;
s = cmp(t2, t1); z =!s;
v = sort1[s]; u = sort1[z];
q = sort2[s]; r = sort2[z];

end
q = q × pre com mod p;
return q

of q and r from Algorithm 8. Thus, we have omitted its de-
scription. Function cmp(a, b) returns one if a ≥ b and returns
zero if a < b. There are two secrets-independent table look-
ups of sort1[2] = {t1, t2} and sort2[2] = {t3, t4}, which are
shown in Algorithm 8, according to the comparison results
of t1, t2 and t3, t4. Without a loss of generality, we assume
that the result of the comparison is t2 < t1, which can occur
in any branch. The operational flow mentioned in Sect. 2.2
cannot be determined based on this information.

Table 4 shows the comparison between FLT-CTMI,
BOS [8], BY [9], hdBY [10] and our algorithms, where S ,
M, xor, add, sub, and shift represent a square, a multiplica-
tion, an xor, an addition, a subtraction, and a shift on Fp,
respectively. Table 5 shows the number of iterations for
224-, 256-, 384-, 511-, 1020-, 1790-, and 2048-bit compu-
tations of FLT-CTMI, BOS, BY, hdBY and our algorithms.
FLT-CTMI can only be used to compute modular inversion
over prime numbers and is inefficient for general inputs.
By contrast, BOS, BY, hdBY and SICT-GCD can com-
pute GCD(a, b), where a and/or b are/is odd. BOS, BY,
hdBY and SICT-MI can compute the Montgomery inver-
sions and modular inversion over any number if it exists.
BOS has the same number of iterations as our algorithms.
However, its computations, not only the computations on
Fp but also the computations of control signals in one iter-
ation, are more complicated than ours (Algorithm 2 in [8]).
The computations of BY and hdBY in one iteration are simi-
lar to ours. However, their number of iterations, even that of
hdBY, is larger than ours. Actually, SICT-GCD and SICT-
MI save 13.35%, 13.22%, 13.22%, 13.24%, 13.19%, 13.19
and 13.18% of the number of iterations for 224-, 256-, 384-,
511-, 1020-, 1790- and 2048-bit computations of hdBY, re-
spectively.

We analyze the maximum parallel data flow in one it-
eration of BOS, BY, hdBY, SICT-MI, as shown in Tables 6-
8, where the computations in each row can be computed in
parallel. Along with the assumption that an addition, a sub-
traction, and a shift on Fp are more costly and omitting the



1404
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

Table 4 Comparison of CTMI.

#iterations Computations in one iteration
FLT-CTMI bitlen(p − 2) − 1 S (or S + M)
BOS [8] 2 · bitlen(p) add + 2sub + 6shift
BY [9] �(49bitlen(p) + 57)/17� 4xor + 2add + 2shift

max(2�(2455 log2(M) + 1402)/1736�, 4xor + 2add + 2shift
hdBY [10] 2�(2455 log2(M) + 1676)/1736� − 1),

M ≥ 157, 0 ≤ g ≤ f ≤ M
SICT-MI 2 · bitlen(p) 4add + 2shift

Table 5 The number of iterations of CTMI for 224-, 256-, 384-, 511-, 1020-, 1790-, and 2048-bit
computations.

224-bit 256-bit 384-bit 511-bit 1020-bit 1790-bit 2048-bit
FLT-CTMI 223 255 383 510 1019 1789 2047
BOS [8] 448 512 768 1022 2040 3580 4096
BY [9] 634 724 1086 1446 2886 5064 5794

hdBY [10] 517 590 885 1178 2350 4124 4718
SICT-MI 448 512 768 1022 2040 3580 4096

Table 6 The maximum parallel data flow in one iteration of BOS (Algo-
rithm 2 in [8]).

uv< = u < v; uv= = u == v; u′ = u − v;
v′ = v − u; s̃ = s << 1; r̃ = r << 1;
rs = r + s; ũ = u >> 1; ṽ = v >> 1;
u0 = ulsb; v0 = vlsb;
d = 0 − uv=; u0 = 0 − u0; v0 = 0 − v0;
uv< = 0 − uv<; u′ = u′ >> 1; v′ = v′ >> 1;
m1 = d ∨ u0;
m2 =∼ m1;
select(u, ũ,m2, u,m1); select(s, s̃,m2, s,m1); S = d ∨ m2;
m3 = S ∨ v0;
m4 =∼ m3;
select(v, ṽ,m4, v,m3); select(r, r̃,m4, r,m3); S = S ∨ m4;
m5 = S ∨ uv<;
m6 =∼ m5;
select(u, u′,m6, u,m5); select(r, rs,m6, r,m5);
select(s, s̃,m6, s,m5); S = S ∨ m6;
m7 =∼ S ;
select(v, v′,m7, v, S ); select(s, rs,m7, s, S );
select(r, r̃,m7, r, S );

Table 7 The maximum parallel data flow in one iteration of BY and
hdBY [9] (Algorithm 5).

z = ulsb; s = signbit(δ); t2 = v ⊕ u;
t3 = q ⊕ r;
s =!s; t1 = zv; t4 = zq;
f1 = sz;
f2 = f1 << 1; t2 = f1t2; t3 = f1t3;
f2 = 1 − f2; v = v ⊕ t2; q = q ⊕ t3;
t1 = f2t1; t4 = f2t4; δ = f2δ;
δ = 1 + δ; u = u + t1; r = t4 + r;
u = u >> 1; q = q << 1;

other computations, all BOS, BY, hdBY, SICT-MI use an
addition and a shift on Fp in an iteration considering the
maximum parallel data flow. However, BOS is not com-
pact, where two subtractions, one addition, and four shifts
on Fp are computed in parallel; BY and hdBY uses more it-
erations. By contrast, our algorithms are compact and with
short-iteration.

Table 8 The maximum parallel data flow in one iteration of SICT-MI
(Algorithm 8).

s = ulsb; z = vlsb;
f1 = s ⊕ z; f2 = sz; f3 = s << 1;
t2 = sv; t4 = sq;
f2 = f2 << 1; f3 = 2 − f3; t1 = f1v;
t3 = f1q;
f2 = f2 − 1; f3 = f3 − z;
t5 = f2u; t7 = f2r; t6 = f3u;
t8 = f3r;
t1 = t1 + t5; t2 = t2 + t6; t3 = t3 + t7;
t4 = t4 + t8;
t2 = t2 >> 1; t3 = t3 << 1;
s = cmp(t2, t1);
z =!s;
v = sort1[s]; u = sort1[z]; q = sort2[s];
r = sort2[z];

4. Experiments Analysis

Our experimental platform uses the C programming lan-
guage with GNU MP 6.1.2, which is a multiple preci-
sion arithmetic library, and Intel (R) Core (TM) i7-8650U
CPU @ 1.90 GHz 2.11 GHz personal 64-bit computer with
16.0 GB RAM; the operating system is Ubuntu 20.04.3 LTS.
We turn off the Intel turbo boost to ensure that our computer
works at 1.80 GHz. Our codes can be found in https://github.
com/Icecreamsaber/-SICT-GCD-MI.git.

We implement BOS, BY, hdBY, and SICT-GCD to
compare the efficiency of GCD computations. In our exper-
iments, to compute the GCD, we generate seven sets, each
with 105 random odd numbers. The numbers in each set
are 224-, 256-, 384-, 511-, 1020-, 1790-, and 2048-bit. We
compute the GCD of the numbers in each of the sets and
P224−1, P256−1, P384−1, P512−1, P1024−1, P1792−1,
P2048 − 1. Here, P224, P256, P384 are national institute
of standards and technology (NIST) primes, P512, P1024,
and P1792 are primes recommended for use in CSIDH [12],
and P2048 is a random prime number of 2048 bits. Subse-
quently, the average clock cycles are measured by rdtsc.



JIN and MIYAJI: COMPACT AND EFFICIENT CONSTANT-TIME GCD AND MODULAR INVERSION WITH SHORT-ITERATION
1405

Table 9 Comparison of average clock cycles for GCD computation.

224 bits 256 bits 384 bits 511 bits 1020 bits 1790 bits 2048 bits
BOS [8] 163085 190734 294382 402489 885569 1717641 2016499
BY [9] 107117 134523 211943 290765 667642 1328249 1591591

hdBY [10] 91997 116523 184972 256455 602059 1217655 1454694
SICT-GCD 85156 100464 154142 209138 452901 888231 1042982

Table 10 Comparison of average clock cycles for modular inversion.

224 bits 256 bits 384 bits 511 bits 1020 bits 1790 bits 2048 bits
FLT-CTMI 206676 154477 389729 615544 2705522 10754437 14650073
BOS [8] 311512 356102 559549 780402 1744711 3397150 4046376
BY [9] 262478 295822 481934 666601 1527635 3060803 3675057

hdBY [10] 223057 248520 400410 565481 1294404 2570412 3067074
SICT-MI 184230 208553 325659 471916 1075802 2119803 2522420

Table 11 Comparison of average clock cycles for ADD+DBL.

224 bits 256 bits 384 bits
FLT-CTMI 429307 320123 816605
BOS [8] 654161 746821 1159968
BY [9] 532697 602731 972908

hdBY [10] 455161 507967 810430
SICT-MI 379539 430898 667217

The results are presented in Table 9.
From Table 9, it is clear that our proposed SICT-GCD

is more efficient than BOS, BY, and hdBY. SICT-GCD
saves 7.44%, 13.78%, 16.67%, 18.45%, 24.77%, 27.05%
and 28.3% of the clock cycles of hdBY on 224-, 256-, 384-,
511-, 1020-, 1790-, and 2048-bit GCD computations, re-
spectively.

We implement FLT-CTMI, BOS, BY, hdBY, and SICT-
MI to compare the efficiency of modular inversion compu-
tations. Seven sets, each with 105 random numbers of 224-,
256-, 384-, 511-, 1020-, 1790-, and 2048-bit, are generated.
Their modular inversions over P224, P256, P384, P512,
P1024, P1792, and P2048, respectively, are computed. The
average clock cycles are presented in Table 10.

From Table 10, it is evident that FLT-CTMI is the most
efficient for 256-bit modular inversions because of the small
Hamming weight of P256 − 2, which is 128. SICT-MI is
the most efficient CTMI for 224-, 384-, 511-, 1020-, 1790-,
and 2048-bit modular inversions. Shorter iterations of SICT-
MI work and it saves 17.41%, 16.08%, 18.67%, 16.55%,
16.89%, 17.53%, and 17.76% on the clock cycles of hdBY
on 224-, 256-, 384-, 511-, 1020-, 1790-, and 2048-bit mod-
ular inversions, respectively. Simpler computations in one
iteration of SICT-MI work and it saves 10.86%, 16.44%,
23.33%, 60.24%, 80.29%, and 82.78% on the clock cy-
cles of FLT-CTMI on 224-, 384-, 511-, 1020-, 1790-, and
2048-bit modular inversions, respectively. It saves 40.86%,
41.43%, 41.8%, 39.53%, 38.34%, 37.60%, and 37.66% on
the clock cycles of BOS on 224-, 256-, 384-, 511-, 1020-,
1790-, and 2048-bit modular inversions, respectively.

Modular inversions are used in the elliptic curve cryp-
tography, for instance in the elliptic curve affine addition
formulae. We compute 105 sets of an affine addition for-
mula and anh affine double formula (ADD + DBL) with
FLT-CTMI, BOS, BY, hdBY, and SICT-MI and evaluate the

average clock cycles. The elliptic curves used in our ex-
periments are NIST elliptic curves, NIST-224, NIST-256,
and NIST-384, with their base points. The results are pre-
sented in Table 11. ADD + DBL with SICT-MI outper-
formed all of the other algorithms except for FLT-CTMI on
256-bit. It saves 16.61%, 15.17%, and 17.67% on the clock
cycles of that with hdBY on 224-, 256-, and 384-bit, respec-
tively. It saves 11.59% and 18.29% on the clock cycles of
that with FLT-CTMI on 224- and 384-bit, respectively. It
saves 41.98%, 42.30%, and 42.48% on the clock cycles of
that with BOS on 224-, 256-, and 384-bit, respectively.

5. Conclusion

To establish constant-time algorithms that compute the GCD
and modular inversion with short iterations and simple com-
putations during one iteration, we defined the iteration for-
mula in Definition 1. We proved that the iteration formula
converges to an = GCD(a0, b0) and bn = 0 with limited
iterations in Theorem 1 and that the required number of iter-
ations of the iteration formula is bitlen(a0) + bitlen(b0)
in Theorem 2. Based on these, we proposed SICT-GCD and
SICT-MI algorithms and compared their number of itera-
tions and computations during one iteration with those of
FLT-CTMI, BOS, BY, and hdBY. Finally, we experimen-
tally evaluated the efficiency of the SICT-GCD and SICT-MI
algorithms in comparison to the FLT-CTMI, BOS, BY, and
hdBY algorithms. The results indicate that the SICT-GCD
and SICT-MI algorithms are more efficient than hdBY. The
number of iterations of hdBY is approximately 2.3 times the
bit length of the larger input, and the number of iterations
of SICT-GCD and SICT-MI algorithms is 2 times the bit
length of the larger input. Thus, the longer the bit length
of the larger input, the more iterations and time saved by
our algorithms. We plan to perform evaluations on field-
programmable gate array (FPGA) in the future.

Acknowledgements

This work was partially supported by JSPS KAKENHI
Grant Number JP21H03443, Innovation Platform for Soci-
ety 5.0 at MEXT, SECOM Science and Technology Foun-
dation and JST Next Generation Researchers Challenging



1406
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

Research Program JPMJSP2138.

References

[1] S. Chari, J.R. Rao, and P. Rohatgi, “Template attacks,” Interna-
tional Workshop on Cryptographic Hardware and Embedded Sys-
tems, vol.2523, pp.13–28, Springer, 2003.

[2] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A high resolution,
low noise, L3 cache side-channel attack,” 23rd USENIX Security
Symposium (USENIX Security 14), pp.719–732, 2014.

[3] A.C. Aldaya, A.J.C. Sarmiento, and S. Sánchez-Solano, “SPA vul-
nerabilities of the binary extended Euclidean algorithm,” Journal of
Cryptographic Engineering, vol.7, no.4, pp.273–285, 2017.

[4] A.C. Aldaya, R.C. Márquez, A.J.C. Sarmiento, and S. Sánchez-
Solano, “Side-channel analysis of the modular inversion step in
the RSA key generation algorithm,” International Journal of Circuit
Theory and Applications, vol.45, no.2, pp.199–213, 2017.

[5] A.C. Aldaya, C.P. Garcı́a, L.M.A. Tapia, and B.B. Brumley,
“Cache-timing attacks on RSA key generation,” Cryptology ePrint
Archive, 2018.

[6] S. de la Fe, H.-B. Park, B.-Y. Sim, D.-G. Han, and C. Ferrer, “Pro-
filing attack against RSA key generation based on a Euclidean algo-
rithm,” Information, vol.12, no.11, p.462, 2021.

[7] S. Xu, X. Lu, A. Chen, H. Zhang, H. Gu, D. Gu, K. Zhang, Z.
Guo, and J. Liu, “To construct high level secure communication sys-
tem: CTMI is not enough,” China Communications, vol.15, no.11,
pp.122–137, 2018.

[8] J.W. Bos, “Constant time modular inversion,” Journal of Crypto-
graphic Engineering, vol.4, no.4, pp.275–281, 2014.

[9] D.J. Bernstein and B.-Y. Yang, “Fast constant-time gcd computa-
tion and modular inversion,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp.340–398, 2019.

[10] W. Pieter, M. Gregory, and roconnor blockstream, “Safegcd-
bounds,” Github, 2021.

[11] Y. Jin and A. Miyaji, “Short-iteration constant-time GCD and modu-
lar inversion,” International Conference on the 21st Smart Card Re-
search and Advanced Application Conference, vol.13820, pp.82–99,
2023.

[12] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes,
“CSIDH: an efficient post-quantum commutative group action,” In-
ternational Conference on the Theory and Application of Cryptology
and Information Security, vol.11274, pp.395–427, Springer, 2018.

[13] A. Onur, G. Shay, and J.P. Seifert, “New branch prediction vulnera-
bilities in OpenSSL and necessary software countermeasures,” IMA
International Conference on Cryptography and Coding, pp.185–203,
Springer, 2007.

[14] A. Duc, S. Faust, and F.-X. Standaert, “Making masking secu-
rity proofs concrete (or how to evaluate the security of any leak-
ing device), extended version,” Journal of Cryptology, vol.32, no.4,
pp.1263–1297, 2019.

[15] B.S. Kaliski, “The Montgomery inverse and its applications,” IEEE
Trans. Comput., vol.44, no.8, pp.1064–1065, 1995.

[16] S. Sarna and R. Czerwinski, “RSA and ECC universal, constant time
modular inversion,” AIP Conference Proceedings, p.050004, AIP
Publishing LLC, 2021.

[17] P.L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol.44, no.170, pp.519–521, 1985.

Yaoan Jin He received the bachelor’s degree
of computer science from Shanghai Jiao Tong
University in 2017 and the master’s degree of
electrical and electronic information engineer-
ing from Osaka University in 2019. He will re-
ceive the PhD degree of electrical and electronic
information engineering from Osaka University
in 2023. He received the 85th CSEC Outstand-
ing Research Award in 2019. His research work
is around Elliptic Curves. He is also interested
in secure protocols, FPGA programming, ma-

chine learning and try to find out association study between them.

Atsuko Miyaji received the B. Sc., the
M. Sc., and the Dr. Sci. degrees in mathematics
from Osaka University,in 1988, 1990, and 1997
respectively. She is an IPSJ fellow. She joined
Panasonic Co., LTD from 1990 to 1998 and en-
gaged in research and development for secure
communication. She was an associate profes-
sor at the Japan Advanced Institute of Science
and Technology (JAIST) in 1998. She joined
the computer science department of the Univer-
sity of California, Davis from 2002 to 2003. She

has been a professor at Japan Advanced Institute of Science and Technol-
ogy (JAIST) since 2007. She has been a professor at Graduate School
of Engineering, Osaka University since 2015. Her research interests in-
clude the application of number theory into cryptography and information
security. She received Young Paper Award of SCIS’93 in 1993, Notable
Invention Award of the Science and Technology Agency in 1997, the IPSJ
Sakai Special Researcher Award in 2002, the Standardization Contribution
Award in 2003, the AWARD for the contribution to CULTURE of SECU-
RITY in 2007, the Director-General of Industrial Science and Technology
Policy and EnvironmentBureau Award in 2007, DoCoMo Mobile Science
Awards in 2008, Advanced Data Mining and Applications (ADMA 2010)
Best Paper Award, Prizes for Science and Technology, the Commenda-
tion for Science and Technology by the Minister of Education, Culture,
Sports, Science and Technology, International Conference on Applications
and Technologies in Information Security (ATIS 2016) Best Paper Award,
the 16th IEEE Trustocm 2017 Best Paper Award, IEICE milestone certi-
fication in 2017, the 14th Asia Joint Conference on Information Security
(AsiaJCIS 2019) Best Paper Award, Information Security Applications -
20th International Conference (WISA 2020) Best Paper Gold Award,
IEICE Distinguished Educational Practitioners Award in 2020, and IEICE
Achievement Award in 2023. She is a member of the International Asso-
ciation for Cryptologic Research, the Institute of Electrical and Electronics
Engineers, the Institute of Electronics, Information and Communication
Engineers, the Information Processing Society of Japan, and the Mathe-
matical Society of Japan.

http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/s13389-016-0135-4
http://dx.doi.org/10.1002/cta.2283
http://dx.doi.org/10.46586/tches.v2019.i4.213-242
http://dx.doi.org/10.3390/info12110462
http://dx.doi.org/10.1109/cc.2018.8543054
http://dx.doi.org/10.1007/s13389-014-0084-8
http://dx.doi.org/10.46586/tches.v2019.i3.340-398
http://dx.doi.org/10.1007/978-3-031-25319-5_5
http://dx.doi.org/10.1007/978-3-030-03332-3_15
http://dx.doi.org/10.1007/978-3-540-77272-9_12
http://dx.doi.org/10.1007/s00145-018-9277-0
http://dx.doi.org/10.1109/12.403725
http://dx.doi.org/10.1063/5.0048339
http://dx.doi.org/10.1090/s0025-5718-1985-0777282-x

