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SUMMARY Memory corruption can modify the kernel data of an op-
erating system kernel through exploiting kernel vulnerabilities that allow
privilege escalation and defeats security mechanisms. To prevent memory
corruption, the several security mechanisms are proposed. Kernel address
space layout randomization randomizes the virtual address layout of the
kernel. The kernel control flow integrity verifies the order of invoking ker-
nel codes. The additional kernel observer focuses on the unintended privi-
lege modifications. However, illegal writing of kernel data is not prevented
by these existing security mechanisms. Therefore, an adversary can achieve
the privilege escalation and the defeat of security mechanisms. This study
proposes a kernel data protection mechanism (KDPM), which is a novel
security design that restricts the writing of specific kernel data. The KDPM
adopts a memory protection key (MPK) to control the write restriction of
kernel data. The KDPM with the MPK ensures that the writing of privi-
leged information for user processes and the writing of kernel data related
to the mandatory access control. These are dynamically restricted during
the invocation of specific system calls and the execution of specific kernel
codes. Further, the KDPM is implemented on the latest Linux with an MPK
emulator. The evaluation results indicate the possibility of preventing the
illegal writing of kernel data. The KDPM showed an acceptable perfor-
mance cost, measured by the overhead, which was from 2.96% to 9.01%
of system call invocations, whereas the performance load on the MPK op-
erations was 22.1 ns to 1347.9 ns. Additionally, the KDPM requires 137 to
176 instructions for its implementations.
key words: memory corruption, memory protection, system security, oper-
ating system

1. Introduction

The operating system (OS) kernel encounters threats, in
which privileges may be escalated and security mechanisms
may be defeated. The user process of the adversary exploits
the kernel code containing vulnerabilities (i.e., vulnerable
kernel code), thereby corrupting the memory. Kernel vul-
nerability is reported by the Common Vulnerabilities and
Exposures (CVE) [1]. The CVE has the Common Platform
Enumeration (CPE) that indicates the naming of systems,
software, and packages [2]. Until August 2022, 724 CVE
with CPE of Linux (e.g., linux_kernel) and CVE descrip-
tion containing specific words (e.g., “memory”) were issued
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Fig. 1 Statistics of CVE for Linux kernel memory until August 2022 [3]

in the CVE of National Vulnerability Database (NVD) [3],
as shown in Fig. 1.

Therefore, privileged information can be modified and
the kernel data of the security mechanism can be altered to
gain full administrator privileges. Actual kernel memory
corruption cases indicate that modifying the kernel data re-
lated to mandatory access control (MAC), the user acquires
administrator privileges and circumvents the MAC restric-
tions [5], [6].

The following are the countermeasures that can pre-
vent kernel attacks via vulnerable kernel code. Kernel con-
trol flow integrity (KCoFI) inspects the order of code ex-
ecution [7] to restrict the kernel code from being illegally
invoked [8]. Kernel address space layout randomization
(KASLR) randomizes the virtual addresses of the kernel
code and kernel data in the kernel memory space to foil
attacks [9], whereas the additional kernel observer (AKO)
detects unintentional rewriting in response to the changes in
the privileged information of user processes against a privi-
lege escalation attack [10].

Research Question. These mitigate the illegal modifi-
cation of kernel data via kernel vulnerabilities. However, if
the kernel memory is successfully corrupted, kernel data can
be overwritten. Thus, this paper considers the following: A
running kernel does not restrict the writing of kernel data
in the kernel mode. Existing approaches do not control the
write restrictions of kernel data related to privileged infor-
mation and security mechanisms. Therefore, an adversary
can gain full administrator privileges.

Research Contribution. This paper describes a kernel
data protection mechanism (KDPM), which is a novel se-
curity capability that dynamically controls the write restric-
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Fig. 2 Overview of the kernel data protection mechanism

tions of specific kernel data as protected kernel data. Fig-
ure 2 provides an overview of the KDPM, which determines
whether system calls and kernel codes have write permis-
sion of the kernel data in the kernel layer. To ensure kernel
data protection and manage write restrictions, the KDPM
adopts the Intel memory protection key (MPK), which is a
protection keys for supervisor (PKS). A PKS provides a
protection key that handles write restrictions for each page
of kernel data.

Research Objectives. The KDPM assumes that the
user process of an adversary invokes a vulnerable kernel
code that attempts to modify the kernel data related to priv-
ileged information or security mechanism. The KDPM fo-
cuses on the mitigation of the illegal overwrite of these ker-
nel data. The privileged information is changed by specific
system calls and the policy of MAC is modified by specific
kernel codes. Moreover, the function pointers of the MAC
are never modified at the running kernel. The KDPM pro-
vides a straightforward application of the PKS to maintain
simple design of the kernel data protection. Additionally,
the KDPM combines the characteristics of system calls, ker-
nel code behavior, and hardware features. The limitation of
the KDPM is its inability to support frequently modified ker-
nel data.

Implementations. The KDPM has two implementa-
tions that focus on the different types of kernel attacks. Im-
plementation 1 is a general purpose implementation for the
protection of privileged information to prevent privilege es-
calation. This allows user processes to write to protected
kernel data only when write-permitted system calls are in-
voked. Implementation 2 protects the kernel data of the se-
curity mechanism (e.g., MAC) from the defeating of secu-
rity mechanism. This reduces overheads to limit the write
restriction timing of protected kernel data. Further, Imple-
mentation 2 allows the protected kernel data to be written
only when executing a write-permitted kernel code.

• Implementation 1: To prevent a privilege escalation

attack, Implementation 1 controls the write restriction
of privileged information in each write-permitted sys-
tem call to protect the privileged information of user
processes.
• Implementation 2: Implementation 2 controls the

write restriction of the kernel data related to the secu-
rity mechanism in each write-permitted kernel code to
prevent the defeating by security mechanism attack.

Summary of Contributions. This study is an early
application of the forthcoming PKS to protect kernel data.
Intel CPUs containing a PKS are not available as of October
2022 and will be implemented on the next generation CPUs;
however, a PKS is available in the QEMU environment [12].
The following are the contributions of this study:

1. The proposed KDPM is a novel approach that protects
the kernel data in the running kernel to prevent priv-
ilege escalation and defeat by security mechanism at-
tacks through vulnerable kernel code. The implemen-
tations of the latest Linux kernel use a PKS to handle
the write restriction of the kernel code during a specific
system call or specific kernel code execution.

2. The security capability evaluation indicates that the
kernel with Implementation 1 can prevent the modifi-
cation of privileged information by the adversary’s user
process. Additionally, the kernel with Implementation
2 can prevent the defeat of security mechanisms. The
overhead of Implementation 1 requires latency of sys-
tem call ranging from 2.96% to 9.01%, and the process-
ing time for the kernel with Implementation 2 for writ-
ing the PKS is 22.1 ns. Furthermore, reading the regis-
ter operation requires 30.5 ns, and writing the register
operation requires 1347.9 ns. Additionally, Implemen-
tation 1 requires 176 instructions and Implementation
2 requires 137 instructions.

2. Background

2.1 Memory Protection Key

Intel CPU provides an MPK, which is a security feature
provided to control read and write restrictions on a page
basis, that is, page table entry (PTE) [13]. The MPK in-
cludes protection keys for userspace (PKU) and the protec-
tion key right for user mode register (hereinafter, PKRU)
for the user mode. In addition, the MPK includes PKS and
IA32_PKRS_MSR register (hereinafter, PKRS) for the kernel
mode.

As shown in Fig. 3, the PTE has 16 4-bit protection
keys (Pkeys), and the 32-bit flag (two bits per Pkey: write
disable (WD) and access disable (AD)) controls the read and
write restriction for each Pkey. The read and write restric-
tion for Pkey i (0 ≤ i ≤ 15) is performed via the register. If
the value of bit AD i × 2 is 0, read is allowed. In contrast, if
the value of bit AD i × 2 is 1, read is not allowed. Addition-
ally, if the value of bit WD i × 2 + 1 is 0, write is allowed;
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Table 1 Top CWE of kernel memory vulnerability [3]

Type Content CVE PoC
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 125 6
NVD-CWE-Other Other 87 5
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer 82 3
CWE-401 Missing Release of Memory after Effective Lifetime 78 0
CWE-399 Resource Management Errors 52 1
CWE-20 Improper Input Validation 44 1
CWE-787 Out-of-bounds Write 31 1
CWE-416 Use After Free 20 0
CWE-125 Out-of-bounds Read 19 1
CWE-362 Concurrent Execution using Shared Resource (’Race Condition’) 18 3
CWE-189 Numeric Errors 17 0
CWE-264 Permissions, Privileges, and Access Controls 17 2
CWE-190 Integer Overflow or Wraparound 16 0
CWE-909 Missing Initialization of Resource 14 0
CWE-400 Uncontrolled Resource Consumption 12 0
CWE-772 Missing Release of Resource after Effective Lifetime 11 0
NVD-CWE-noinfo Insufficient Information 11 1
Other CWE Under 10 CVE 70 3
Total 724 27

Fig. 3 Intel memory protection key [13]

and if the value of bit WD i×2+1 is 1, write is not allowed.
In MPK, read and write limits can be controlled sepa-

rately in the specific register (e.g., PKRU and PKRS). For
multiple PTEs, the read and write restriction can be con-
trolled by specifying the Pkey.

2.2 Comparison of Memory Access Rights

Intel CPU also provides page-level write protection. Ta-
ble 3 summarizes the comparison of memory access rights
between the page-level write protection and MPK. The
page-level write protection manages the read-only access
and read/write (R/W) access rights for each page using the
R/W flag and the write protect (WP) flag of control register
(CR) 0. MPK manages read/write access rights for multiple
pages using Pkey and PKRU/PKRS. The advantage of MPK
that supports read restriction and fine-grain access control
with Pkeys is that it can make multiple groups of memory
access rights for management of data types. In addition,
PTE updating requires the Translation Lookaside Buffer
(TLB) flush and potentially occurs TLB miss-hit (hereafter,
TLB costs). For memory access rights control, the page-
level write protection requires TLB costs, however, MPK

Table 2 Executable PoC code for Linux kernel memory vulnerability list
(� is protection available;)

CVE ID CWE Description KDPM
CVE-2016-4997 [15] CWE-264 Boundary check error in setsockopt function �
CVE-2016-9793 [16] CWE-119 Boundary check error in net/core/sock.c �
CVE-2017-16995 [17] CWE-119 Boundary check error in kernel/bpf/verifier.c �
CVE-2017-1000112 [18] CWE-362 Race condition in net/ipv4/ip output.c �

Table 3 Comparison of between page-level write protection and MPK
(� is supported;)

Page-level write protection MPK

Types of restriction
Read �
Write � �

Granularity of restriction
Page Table �
Pkey �

Control register CR0 WP PKRU/PKRS

takes only the PKRS updating without TLB costs except for
Pkeys changing.

2.3 Kernel Vulnerability

Kernel vulnerabilities are improper implementations that
lead to kernel attacks [14]. Table 1 shows the Common
Weakness Enumeration (CWE) ranking for CWE of kernel
memory vulnerability. CWE represents the categorized soft-
ware and hardware weakness type. Table 1 indicates a run-
ning kernel can be damaged in a variety of ways through
a kernel vulnerability attack. Additionally, Proof of Con-
cept (PoC) codes that achieve the Linux kernel compro-
mising for specific CVE. Table 1 indicates 27 PoC codes
of kernel memory vulnerability are available in the Exploit
Database [11].

To investigate which CVE are reproducible, PoC codes
are introduced from CWE ranking (Table 1). Table 2 shows
the result of four PoC codes are reproducible and can com-
promise the environment for Linux kernel. Three PoC codes
forcibly invokes kernel codes that modify privileged infor-
mation to achieve the privilege escalation [15], [16], [18].
One PoC code overwrites the variable cred of the kernel



KUZUNO and YAMAUCHI: PROTECTION MECHANISM OF KERNEL DATA USING MEMORY PROTECTION KEY
1329

data that stores privileged information from the normal user
to the administrator [17]. The defeat of the MAC forcefully
modifies the list of function pointers that manage the ac-
cess control decisions in the kernel. Meanwhile, the variable
selinux_hooks, which stores function pointers, is modi-
fied to the inserted kernel codes that bypass the access con-
trol [5], [6].

Therefore, the combination of privilege escalation and
the MAC being disabled provides full administrator capabil-
ity to the adversary with no restrictions on the kernel.

3. Threat Model

3.1 Environment

This section highlights the assumed a threat model for the
KDPM. The adversary acquires administrator privileges and
disables the MAC in the target environment as follows:

• Adversary: An adversary gains normal user privileges,
attempts privilege escalation, and defeats the MAC via
the PoC code that exploits kernel vulnerabilities.
• Kernel: A kernel contains kernel vulnerabilities that

can be exploited for privilege escalation and defeating
the MAC. Existing security mechanisms (e.g., KCoFI,
KASLR, and AKO) are not applied.
• Kernel vulnerability: A kernel vulnerability is the pres-

ence of a vulnerable kernel code that exploits kernel
memory corruption.
• Attack targets: Attack targets are kernel data related

to privileged information of user process (e.g., user id)
and kernel data of the MAC (e.g., function pointers and
access policies).

Fig. 4 Design overview of the KDPM

3.2 Scenario

The adversary induces the attack that executes the PoC code
as the user process exploits the vulnerable kernel code. The
following are the details of an attack:

1. Privilege escalation attack
The user process of the adversary forcefully rewrites
user privileges to gain administrator privileges for at-
taining full control of the computer.

2. Defeating security mechanisms
The user process of the adversary forcefully disables
the MAC by replacing the function pointer of the kernel
code with one that does not make access decisions.

4. Design

4.1 Requirement

To manage write restrictions on specified kernel data, the
KDPM should satisfy the following requirement:

• Requirement: Prevent privilege escalation and defeat
of security mechanisms by illegally modifying kernel
data via kernel vulnerabilities. The kernel must control
the write restrictions of kernel data for specific system
calls and kernel codes on the running kernel. The ker-
nel data can be written only when system calls are in-
voked and the authorized kernel codes are executed.

4.2 Design Overview

KDPM fulfills the requirement for kernel data protection
from the invocation of vulnerable kernel codes. Figure 4
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outlines the design overview of KDPM that introduces the
protected kernel data, identifier list, the write-permitted sys-
tem call list and write-permitted kernel code list.

KDPM manages the linking of the identifier that in-
dicates the relationship between the protected kernel data,
write-permitted system call, and write-permitted kernel
code. KDPM statically registers protected kernel data, iden-
tifiers of protected kernel data, write-permitted system call,
and write-permitted kernel code lists at the source code. Af-
ter that, KDPM dynamically controls the write restriction of
kernel data using identifier at the invocation of system call
or kernel code for the running kernel.

4.3 Approach

The KDPM supports specific kernel data as protected ker-
nel data (e.g., variable or function pointer) and the identi-
fier to handle the write restrictions that manages the write-
permitted system calls and write-permitted kernel code.

4.3.1 Protected Kernel Data

The following are the definitions of protected kernel data
and identifiers:

• Protected kernel data: The kernel data of the user pro-
cess (e.g., privileged information) and security mecha-
nisms (e.g., the function pointer and access policy).
• Identifier: The identifier is used to set the write restric-

tions of the protected kernel data. For controlling the
write restriction, the identifier is associated with the
protected kernel data, write-permitted system call, and
write-permitted kernel code.

The kernel with the KDPM provides a list of protected
kernel data and corresponding identifiers in advance at the
time of booting. Additionally, the kernel data for each user
process generation is assumed to be protected.

4.3.2 Handling of Write Restrictions:

The KDPM handles the write restrictions of the protected
kernel data using specific system calls and kernel codes. The
KDPM defines and manages the following:

• Write-permitted system call: A system call has write
permission for the protected kernel data.
• Write-permitted kernel code: The kernel code is autho-

rized to write to the protected kernel data.

The KDPM disables write restrictions when a write-
permitted system call is issued or write-permitted kernel
code is executed. At the end of the write-permitted system
call or write-permitted kernel code execution, the KDPM
enables the write restriction to the protected kernel data.

5. Implementation

In this study, the KDPM is implemented on Linux with the

Table 4 Comparison of the implementations of the KDPM

Item Implementation 1 Implementation 2
Protected kernel data Privilege information Function pointer & Access policy

Handling System call Kernel code
Mitigation Privilege escalation MAC defeating

Performance High Low

x86 64 CPU architecture. Table 4 presents the protected
kernel data and write control timing according to the imple-
mentations. The following are the implementation details:

• Implementation 1: This manages the protected ker-
nel data containing privileged information and write-
permitted system calls that change the privileges of the
user process. Even if a user process attempts a privilege
escalation, the privilege information cannot be written
during the execution of another system call.
• Implementation 2: This manages protected kernel data

related to the MAC (e.g., the Linux Security Module
(LSM)) and write-permitted kernel code that changes
the security policy or access control decision. Even if
the user process attempts to defeat the MAC, the func-
tion pointer of the kernel code related to the LSM and
security policy in the kernel data cannot be written dur-
ing another kernel code execution. It is internal to the
kernel and has little impact on the performance of user
processes.

5.1 Protected Kernel Data Management

Implementations 1 and 2 equally manage the protected ker-
nel data and the processes that handle page faults.

5.1.1 Protected Kernel Data

A Linux kernel with implementations that support an iden-
tifier is set to the protected kernel data, which is arranged on
one page (4 KB), and the PKS handles the write restriction.

• Identifier: Implementations control the write restric-
tion of the protected kernel data and identification num-
ber i. The identification number i is the same as the
value of the Pkey i (4 bit) of PTE.
• Write restriction control: Implementations use the

identification number i of the protected kernel data to
control Pkey i of the PKRS. If the value of WDi in the
PKRS is set to 1, write access is restricted; however, if
WDi is set to 0, write access is permitted.

The handling of write restrictions by the implementa-
tions with the PKRS is a different process (for details, see
Sect. 5.2 and 5.3).

5.1.2 Page Fault Handling

The kernel with implementations supports the page fault
handler functions do_page_fault and do_double_fault
to identify illegal page references of protected kernel data by
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Fig. 5 Implementation 1 of the KDPM

Table 5 Protected kernel data and write-permitted system call of Imple-
mentation 1

Item Description

Protected kernel data
User ID (e.g., uid, euid, fsuid, suid)
Group ID (e.g., gid, egid, fsid, sgid)

Write-permitted system call
execve, setuid, setgid, setreuid, setregid
setresuid, setresgid, setfsuid, setfsgid

the PKS. In the Linux kernel, a page fault (i.e., error num-
ber 35) is a violation of the write protection on a page of
Pkey. The implementations do not allow writing to the pro-
tected kernel data, and these send a SIGKILL to the target
user process using the function force_sig_info.

5.2 Implementation 1

Figure 5 presents an overview of Implementation 1. Imple-
mentation 1 protects the privilege information for each user
process. It manages the list of protected kernel data and that
of write-permitted system calls.

5.2.1 Protected Kernel Data

Implementation 1 generates a dedicated page (4 KB) as pro-
tected kernel data when a user process is created. The dedi-
cated page stores the privileged information of the user pro-
cess provided in Table 5. The list of write-permitted system
calls is also protected and write restriction control is per-
formed by the PKS at the kernel startup.

5.2.2 Handling of Write Restrictions

Implementation 1 admits the system calls that change the

privileged information (Figure 5). The process of control-
ling the write restrictions of the protected kernel data using
Pkey is as follows:

1. The kernel identifies a system call invoked by a user
process.

2. The kernel determines if the system call number is in-
cluded in the list of write-permitted system calls.

a. For write-permitted system calls: the kernel sets
the protected kernel data with the write-enable
permission by the PKRS.

3. The execution of the system call is continued.
4. After the system call: the kernel restores the protected

kernel data and is set to the write-disable permission by
the PKRS.

5.2.3 Dedicated Page of Protected Kernel Data

Implementation 1 prepares the dedicated page that stores
privileged information. The definition of a dedicated page
is the type of struct that contains privileged informa-
tion of uid and gid. It is the same size as the Linux
user process at struct of task_struct in source code
include/linux/sched.h. For the running kernel, Imple-
mentation 1 allocates the kernel page (4K) as the dedicated
page with the zero clear at the user process creation, and
stores uid and gid into the dedicated page. At this time,
the user process (e.g., kernel task) of current refers to the
dedicated kernel page that is one page size (4K). Therefore,
Implementation 1 can manage the PKS of the dedicated ker-
nel page for the write protection enabling and disabling at
the system call invocation timing (the detail is in Sect. 5.2.4)
from the user process.

5.2.4 Kernel Hook Placements

The configuration placements of the PKS are necessary be-
fore and after the invocation of the system call. Implemen-
tation 1 requires the hook mechanism in the Linux kernel
source code arch/x86/entry/common.c.

Implementation 1 has two hook points, one is the en-
tering of system call invocation that disables the PKS pro-
tection to write the privilege information, other one is the
termination of system call invocation that restores the PKS
protection to protect the privilege information. Both points
are paired and manually implemented into the Linux kernel.
Linux kernel forcefully invokes the hook points of Imple-
mentation 1 for each system call invocation to disable and
restore protected kernel data.

5.3 Implementation 2

Figure 6 presents an overview of Implementation 2. Imple-
mentation 2 adopts the write-permitted kernel code of the
LSM and supports the list of kernel data related to the LSM
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Fig. 6 Implementation 2 of the KDPM

Table 6 Protected kernel data and write-permitted kernel code of Imple-
mentation 2

Item Description

Protected kernel data
Function pointer (e.g., selinux hooks)

Security policy (e.g., selinux state)

Write-permitted kernel code
Kernel functions in the selinux hooks

avc init, avc insert, avc node delete, avc node replace

and that of the write-permitted kernel codes. Implementa-
tion 2 handles the write restrictions for the protected ker-
nel data when executing write-permitted kernel codes that
change the access control policy and access control deci-
sion.

5.3.1 Protected Kernel Data

Table 6 presents the kernel data to be protected in Imple-
mentation 2. Additionally, selinux_hooks is a variable
that stores function pointers that are part of the kernel data
related to the LSM, and selinux_state is a variable that
stores the access control policy. Furthermore, the list of
write-permitted kernel codes is protected by write restric-
tion control using the PKS.

5.3.2 Handling of Write Restrictions

Implementation 2 stores the function pointer of the kernel
data related to the LSM, and the list of write-permitted ker-
nel codes is set during the booting of the kernel. Table 6
also presents the kernel codes to be included in the list of
write-permitted kernel codes.

The following procedure is used to control the restric-
tions on the write-permitted kernel code using the PKS:

1. The kernel invokes the kernel code of Implementation
2 during the execution of the write-permitted kernel
code.

2. The kernel code of Implementation 2 determines
whether the caller belongs to a write-permitted kernel
code.

a. In the case of a write-permitted kernel code, the
kernel performs write restriction control using the
PKS to set the protected kernel data as write en-
abled.

3. The kernel continues processing the write-permitted
kernel code.

4. Before the end of the write-permitted kernel code, the
kernel code of Implementation 2 is called. The kernel
performs write restriction using the PKS to set the pro-
tected kernel data as write disabled.

5. The kernel finishes the processing of the write-
permitted kernel code.

Implementation 2 checks the number of kernel code in-
vocations to determine whether the write restriction enabled
and disabled are the same.

5.3.3 Dedicated Page of Protected Kernel Data

Implementation 2 creates a dedicated page that stores func-
tion pointers of security mechanisms. The definition of a
dedicated page is the type of struct that contains function
pointers from security_hook_list selinux_hooks. It
is the same size as Linux MAC (e.g., SELinux) in
source code security/selinux/hooks.c. For the
running kernel, Implementation 2 allocates the kernel
page (4K) as the dedicated page with zero clear at
the booting time. To store function pointers from
security_hook_list selinux_hooks into the dedi-
cated page, implementation moves the original function
pointers to the dedicated kernel page ones. From this mod-
ification, the Linux kernel invokes the MAC functions on
the dedicated kernel page. It is statically set at the kernel
boot. Therefore, Implementation 2 has to manually insert
the PKS write protection enabling and disabling timing into
each Linux MAC function entering and exiting placements.
It requires the static modification of source code for Linux
MAC (e.g., SELinux).

6. Evaluation

6.1 Security Capability

The security capability evaluation validates whether the ker-
nel with the KDPM adequately protects privileged informa-
tion.

1. Prevention of privilege escalation attack
A kernel vulnerability that can be exploited for a privi-
lege escalation attack is introduced into the Linux ker-
nel. The evaluation of the kernel with Implementation
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1 enables the write restriction of the privileged infor-
mation of user processes. This prevents an adversary
from performing a privilege escalation attack.

2. Preventing the defeat of security mechanism
The evaluation of the kernel with Implementation 2 en-
ables the write restriction of kernel data of the LSM to
prevent MAC defeat.

6.2 Performance Evaluation

In performance evaluation, investigation results indicate
whether the kernel and user processes are affected by Im-
plementation 1 and the effect of the PKS operations used in
Implementation 2.

1. Measurement of the kernel performance overhead
To measure the performance of the Linux kernel with
Implementation 1, the benchmark software calculates
the overhead of the system call invocation latency.

2. Measurement of PKS performance overhead
To measure the performance of the PKS in the KDPM,
the measurement result indicates the processing time
of the PKS operations in the Linux kernel with Imple-
mentation 2.

3. Measurement of page-level write protection overhead
To compare the performance between page-level write
protection and PKS, the measurement result indicates
the processing time of the page-level write protection
operations in the Linux kernel.

4. Measurement of the kernel instruction increase
To measure the instruction insertion of the Linux kernel
with implementations, the disassembling tool indicates
the additional instructions.

6.3 Evaluation Environment

6.3.1 Equipment

The evaluation environment for PoC code and kernel was
a physical machine equipped with an Intel (R) Core (TM)
i7-7700HQ (2.80 GHz, x86 64) processor with 16 GB mem-
ory. The security capability evaluation was implemented on
a virtual machine because QEMU 6.0.91 supports the PKS.
However, the PKS is not available as of November 2022 on
the Intel CPU. The guest OS on QEMU was Debian 10.2,
and implementations required 15 source files and 431 lines
for Linux kernel 5.3.18. The PKS performance for Imple-
mentation 2 was evaluated using a measurement program
that required 165 lines for Linux kernel 5.3.18.

6.3.2 Implementation

To evaluate the security capability, a kernel vulnerability
was introduced into the Linux kernel using a PoC code [17]
that leads to privilege escalation via memory corruption
through the system call number 350. Additionally, the Linux

kernel module (LKM) attempted to overwrite the LSM func-
tion pointer to defeat the MAC on the running kernel:

• Privilege escalation: Vulnerable kernel code 1 refers
to CVE-2017-16995 [17], which was implemented as
a system call sys_kvuln01. The PoC code exploits
the vulnerable kernel code to overwrite the privileged
information of a user process for privilege escalation.
• Defeating security mechanism: A customized LKM

attempts to overwrite the function pointer of the kernel
code that manages the LSM file access permission to
circumvent the MAC decision.

6.4 Security Capability Evaluation Result

6.4.1 Prevention of Privilege Escalation Attack

The security evaluation result for the adversary’s user pro-
cess is shown in Fig. 7. In line 3, the kernel captures the
original system call (i.e., system call number 350) with pro-
cess ID 1661. The kernel indicates 0x8, which indicates that
the write disable (WD) of Pkey 1 is enabled. In line 10, the
kernel catches a page fault (i.e., error number 35) when writ-
ing to the page that stores the privileged information with
Pkey 1. The page fault indicates a write protection violation
of a page protected by the Pkey. In line 14, the kernel sends
SIGKILL to the user process of the adversary.

6.4.2 Preventing the Defeat of Security Mechanism

The security evaluation result of the LKM is shown in Fig. 8.

Fig. 7 Prevention of a privilege escalation attack

Fig. 8 Prevention of a MAC defeat
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Table 7 System call invocation overhead of Implementation 1 (µs)

System call Vanilla kernel Implementation 1 Overhead
fork+/bin/sh 227111.28 236738.69 9627.41 (4.24%)
fork+execve 12780.0566 13931.6703 1151.6136 (9.01%)
fork+exit 10837.0729 11285.5603 448.4874 (4.14%)
open/close 1302.5639 1334.5312 41.9672 (2.95%)
read 168.8898 180.4594 11.5696 (6.85%)
write 164.2567 176.4273 12.1705 (7.41%)
fstat 195.0063 203.7508 8.7445 (4.48%)
stat 613.7426 631.9393 18.1966 (2.96%)

Table 8 Overhead of PKS operations (ns)

Instruction Implementation 2
Pkey write 30.5
PKRS read 22.1
PKRS write 1347.9

In line 2, the LKM attempts to find one of the function point-
ers of selinux_hooks. In line 5, LKM attempts to over-
write the function pointer of selinux_hooks. In line 7,
the kernel catches a page fault (i.e., error number 35) when
writing to the page storing the function pointer with Pkey
1. The page fault indicates a write protection violation of a
page protected by Pkey.

Implementation 2 focuses on the prevention of kernel
memory corruption to security mechanisms. The LKM tries
to overwrite function pointers of LSM, then Implementation
2 can handle the page fault of Pkey. From the security evalu-
ation results, the Linux kernel with the KDPM catches priv-
ilege escalation attacks is confirmed. The KDPM correctly
manages the Pkey and detect memory corruption of the vul-
nerable kernel code. To stop illegal writing, Implementation
2 requires the double fault that leads the kernel panic. At
the evaluation, Implementation 2 disables the PKS protec-
tion when the page fault of Pkey has occurred.

6.5 Performance Evaluation Result

6.5.1 Measurement of the Kernel Processing Overhead

The system call overhead was measured using LMbench
benchmark software. A vanilla kernel was compared with
the kernel with Implementation 1. LMbench was executed
10 times to calculate the average system call latency.

LMbench performs 54 invocations of the system call
for fork+/bin/sh, 4 invocations for fork+execve, 2 invoca-
tions for fork+exit and open/close, and 1 invocation each
of the other system calls. Table 7 shows the overhead
of the system call. The highest and lowest overheads are
fork+execve with 9.01% and stat with 2.96%, respectively.

6.5.2 Measurement of PKS Operations

The Linux kernel with Implementation 2 invokes the Pkey
write of the PTE and read and write of the PKRS. The mea-
surement program was repeated 10,000 times, and the aver-
age value was calculated. Table 8 shows the cost of the PKS

Table 9 Overhead of page-level write protection operations (ns)

Instruction Page-level write protection
R/W flag write 38.3
R/W flag read 31.6

Table 10 Increase in instructions on the Linux kernel

Implementation 1 Implementation 2
Instructions 176 137

operations. The write of Pkey required 30.5 ns; PKRS read
required 22.1 ns, and PKRS write required 1347.9 ns.

6.5.3 Measurement of Page-Level Write Protection Oper-
ations

The page-level write protection requires the R/W flag read
or write of the PTE. The measurement program is LKM
which measures 10,000 times and calculates the average
value of operation cost on the vanilla Linux kernel. Table 9
shows the cost of the page-level write protection operations.
The R/W flag write required 38.3 ns, and the R/W flag read
required 31.6 ns.

6.5.4 Measurement of the Kernel Instruction Increase

The Linux kernel with implementations requires protected
kernel data management and handling of write restrictions
that contain the instructions of PKS operations. For the cal-
culation of the instruction increase, both implementations
extract the additional kernel code to the source code file,
then the vanilla kernel only contains the invocation place-
ment (e.g., function call) of both implementations. The dis-
assemble tool calculates instructions for the object files of
each implementation.

Table 10 shows the increase in instructions. Implemen-
tation 1 requires 176 instructions and Implementation 2 re-
quires 137 instructions.

7. Discussion

7.1 Security Capability Consideration

From security capability evaluation results, the kernel with
the KDPM can prevent a privilege escalation attack from a
PoC code through a kernel vulnerability and an LKM with
a defeat of security mechanisms. The careful consideration
of kernel with KDPM can cover other PoC codes of kernel
vulnerabilities when the vulnerable kernel code is invoked
(Table 2). In addition, the kernel and user process oper-
ations were not affected by the operation that restricts the
writing of kernel data. The evaluation result confirms that
the KDPM can dynamically control read restrictions by ap-
propriately setting the PKS. The KDPM only allows system
calls for permissions to change privileges and kernel codes
for modifying access control information. Therefore, the
KDPM prevents the illegal modification of privileged infor-
mation and kernel code related to access control.
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Additionally, the KDPM mitigates the threat from the
latest kernel vulnerabilities (e.g., zero-day attack) before the
kernel patch is released. Because the KDPM manages a
small number of write-permitted system calls and kernel
codes. It ensures that the system call or kernel code of a
zero-day attack can be manually removed from the write-
permitted lists for the protected kernel data to reduce the
potential of a kernel attack.

Moreover, analyzing the security capability of the im-
plementations requires the inspection of memory access se-
quences from the attack of the actual memory corruption
kernel vulnerability that performs the illegal modification of
kernel data for additional evaluation.

7.2 Performance Consideration

The performance evaluations reveal that the kernel with the
implementations requires overhead in kernel processing and
read control by the PKS. The duration required for the PKS
operations of Implementations 1 and 2 are the same.

Owing to the difference of performance costs for each
implementation, Implementation 1 determines whether a
system call number is allowed to be written. The user pro-
cess affects the execution time of the system call and gen-
erates privileged information of the user process. Mean-
while, Implementation 2 determines the write-permitted
kernel code for processing each access control mechanism.
The kernel with Implementation 2 has an impact on kernel
processing when access control decisions are necessary.

From the comparison of performance cost between
page-level write protection and PKS, the measurement re-
sults indicate that PKS has lower processing overhead than
page-level write protection in the Linux kernel. The op-
eration cost depends on the number of page management.
PKS requires Pkey assignment and PKRS writing for write
restriction changing of multiple pages, however, the page-
level write protection needs to manage all protection target
pages and sequentially increase the write operation cost for
each page. KDPM requires the privilege information write
restriction for all user processes and security mechanisms.
The page-level write protection does not satisfy a lot of
pages and multiple types of kernel data protection sepa-
rately. Therefore, PKS is efficient overhead and reason-
able implementation of write restrictions for memory access
rights.

To inspect the performance costs from the viewpoint of
instruction, Implementation 1 requires 176 instructions and
Implementation 2 requires 137 instructions. The instruc-
tions for Implementation 1 are more than that for Implemen-
tation 2 owing to the number of system call checking for the
write-permitted list in the handling of write restriction. If
Implementation 2 checks the additional write-permitted ker-
nel code, the instructions are sequentially increased for the
running kernel image.

7.3 Limitation

7.3.1 Design Limitation

The performance evaluation results show the PKS is
lightweight for protecting kernel data. However, if multi-
ple kernel data share a Pkey, the effects of the write avail-
able timing during asynchronous processing should be de-
termined due to interruptions and exceptions in the kernel.

If a kernel vulnerability is discovered and an attack is
successful, the vulnerable kernel code may have contained a
write-permitted system call or write-permitted kernel code.
This is a case of circumventing of the KDPM, which allows
the modification of protected kernel data.

The design of the KDPM retains the static informa-
tion in the list of write-permitted system calls and that of
write-permitted kernel codes for the kernel. Customizing
both lists is difficult and requires additional permissions for
the running kernel or kernel modules. Both lists are modi-
fied through a kernel component (e.g., kernel module or ex-
tended Berkley Packet Filter).

7.3.2 Implementation Limitation

Although Implementation 1 requires an additional kernel
process for the invocation point of system call, Implemen-
tation 2 requires an additional kernel process for the restric-
tion of kernel data related functions, which adds to the per-
formance load and requires kernel modifications.

Moreover, the implementation of multi-CPU cores re-
quires the save and restore control for kernel context switch-
ing because PKRS is provided for each CPU core. KDPM
implementations require the management of the PKRS state
for each kernel context. The lock mechanism of PKRS
is necessary for irregular write or exception handling to
forcibly prohibit the sharing of PKRS state across the mul-
tiple kernel task.

7.3.3 Mitigation of Deadlock of Kernel Thread

The consideration of Implementation 1 for mitigating the
deadlock of the kernel. Implementation 1 sends a KILL to
the malicious user process when a page fault is occurred by
illegal writing of protected kernel data. At this time, if the
corresponding kernel thread acquired global locks for ker-
nel data, the running kernel takes a dead lock that leads a
panic or unstable behavior. It depends on the user process
and corresponding kernel thread situation because global
locks have a wide variety of types in the Linux kernel (e.g.,
DEFINE_MUTEX). The malicious user process takes the com-
binations of multiple systems call invocations to acquire
global locks before the illegal writing to protected kernel
data of Implementation 1.

Implementation 1 requires an additional mechanism to
mitigate deadlock to achieve stable kernel behavior. To en-
sure kernel stability, Implementation 1 should check the ac-
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quired status of global locks before the sending KILL signal
to the kernel thread. This additional mechanism needs the
system call invocation history and manual investigation of
the relationship between system calls and global locks. If
the malicious user process invokes these system calls, Im-
plementation 1 waits for the sending of the KILL signal
to the corresponding kernel thread before global locks are
forcibly released. We have considered this mechanism for
Implementation 1 to keep kernel stability in the future.

7.3.4 Limitation of Preventing the Defeating of Security
Mechanism.

The consideration of Implementation 2 for preventing the
defeating of security mechanisms. If the double fault oc-
curs, the kernel is stopped. Implementation 2 requires an ad-
ditional mechanism to protect the security mechanism with
stable kernel behavior. To ensure kernel stability, Imple-
mentation 2 disables the Pkey protection when the page fault
of Pkey occurs. This mechanism temporary allows the ad-
versary can overwrite the kernel data, however, Implemen-
tation 2 should support an additional mechanism that stores
the original kernel data at the kernel booting, then writes
back it to the modified kernel data after the page fault of
Pkey is occurred. It ensures the mitigation of illegal writing
of security mechanisms. We have considered this mecha-
nism for Implementation 2 to support preventing security
capability with kernel stability in the future.

7.3.5 Hardware Limitation

The limitation of the PKS is that the number of Pkeys is
16. The 0th Pkey is used as the initial value of the PTE.
The kernel data to be protected must be managed using 15
Pkeys. As the number of types of kernel data to be protected
is limited, an appropriate classification of kernel data should
be considered when applying the KDPM.

7.3.6 Affection of Hardware Limitation

The consideration of the KDPM protection policy is a tar-
get of kernel memory corruption to the Linux kernel. The
adversary focuses its purpose of attack method to write the
specific kernel data. The KDPM protection policy covers
the two types of kernel data. One is privileged information
to mitigate privilege escalation attacks. Another one is ac-
cess control policy and kernel function pointers to mitigate
defeating security mechanisms. The adversary also targets
other security features (i.e., cgroups, namespaces, and so
on). Therefore, the types of KDPM protection target is af-
fected by the limitation of the number of Pkeys.

7.3.7 Mitigation of Hardware Limitation

We must consider the mitigation of the number of Pkey. One
is software mechanism that combines the few protection tar-
gets into one protection target. It means that one of Pkeys

covers multiple protection targets to mitigate the hardware
limitation. The developer have to know kernel implemen-
tation and security features have no contradiction for Pkey
available and disabling timing at the same time. Another
one is hardware mechanism that requires the combination
of other hardware mechanisms to increase the number of
Pkeys. The previous work [25] has already proposed that the
enhancing of the number of Pkey limitation with Extended
Page Table (EPT) on the Intel CPU architecture. The com-
bination of the EPT and PKS to support to guest OS (e.g.,
microkernel) with Pkey transparency. It avoids the limita-
tion of the number of Pkey, however, the implementation
of Linux kernel requires VMM feature and complex imple-
mentation to separate kernel feature to microkernel architec-
ture.

7.4 Portability

The portability of the KDPM to other OSs must be consid-
ered. The KDPM relies on the PKS, which requires the im-
plementation of virtual memory space with a PTE in the OS
that supports an Intel CPU.

8. Related Work

User Process Data Protection using the MPK: For data
protection using the MPK in applications, libmpk provides
a flexible library that supports user processes. This can ma-
nipulate the protected data using the PSU [19]. ERIM is pro-
posed as a separation method for the protected user process
data into different user processes using PSU [20]. Cerberus
is proposed as a sandbox framework for user application us-
ing the PSU [21].

Kernel Data Protection using the MPK: To protect
the kernel code and kernel data using the MPK in the ker-
nel, xMP proposes a security mechanism that provides mul-
tiple domains. These contain pages of kernel memory space
that are allocated using the PKU. The virtual machine mon-
itor (VMM) manages domains via Pkeys [22]. Additionally,
libhermitMPK proposes a security mechanism to protect
against unauthorized reading and writing by dividing and
managing the kernel code and data into multiple Pkeys [23].
UnderBridge applies MPK for a microkernel between user
space and kernel space at runtime isolation of IPC mecha-
nism [24]. EPK adopts virtualization features to increase the
number of Pkeys in MPK for a guest OS of microkernel [25].

Prevention of Malicious Code Execution: To prevent
illegal kernel code execution in the kernel or hypervisor,
the control flow integrity (CFI) [7], [26], [27], which veri-
fies the order of program function calls, is applied [28]. To
apply the CFI to the kernel, KCoFI is proposed as a secu-
rity mechanism for preserving the integrity of the order of
invoking kernel codes as the original architecture [8]. Addi-
tionally, pointer authentication based CFI achieves the pro-
tection of kernel execution context with low overhead using
ARM hardware feature [29].
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Table 11 Comparison of kernel protection approaches and types of target vulnerability (C.: code
execution, M.: memory corruption) [30] (� is supported; � is partially supported)

Feature Sub Feature libhermitMPK [23] xMP [22] KCoFI [8] KDPM

Protection target
Entire kernel � �
Kernel behavior �
Kernel data �

Granularity of MPK separation
Region �
Domain �
Kernel data �

Granularity of target
System call �
Kernel code � � �
VM �

Implementation site
In-kernel � � �
VMM monitoring �

Arbitrary code executions �
Limitation of capability Kernel code security VMM overhead Original Architecture Pkey number
Target Vulnerability M. M. C. M.

8.1 Comparison

Table 11 presents a comparison of the KDPM with existing
security mechanisms [8], [22], [23].

Furthermore, libhermitMPK separates the kernel into
two regions (i.e., Safe/Unsafe) using Pkeys [23]. The run-
ning kernel code can only read and write to kernel data be-
longing to the same region. In addition, xMP manages the
kernel memory space of the guest OS kernel into multiple
domains using Pkeys. The kernel codes and kernel data are
assigned forcefully for each domain through the VMM [22].
Although libhermitMPK and xMP show that kernel data can
be overridden if the same Pkey is assigned to a vulnerable
kernel code and overhead using the VMM, the KDPM as-
signs Pkeys only to the protected kernel data to separately
control system calls and kernel codes from the write restric-
tions of the kernel data.

KCoFI adopts the CFI for kernel processing that cor-
responds with the asynchronous behavior to handle the in-
terruption and context switch of tasks [8]. Although KCoFI
prevents the invocation of illegal kernel code, kernel mem-
ory corruption is not covered. If an attacker executes an ar-
bitrary code in the kernel mode, the KDPM protection may
be defeated. The recommendation is the applying of the CFI
to the kernel with the KDPM to prevent hardware security
defeat. Therefore, the CFI verifies the order of invocation
of kernel codes to prevent the illegal execution of the kernel
code, which attempts to controls hardware registers. The
kernel with the KDPM preserves the kernel data protection.

9. Conclusion

An adversary can achieve privilege escalation and the defeat
of security mechanisms by corrupting the kernel memory.
KCoFI, KASLR, and AKO are kernel attack countermea-
sures that mitigate and prevent the threat of kernel attacks.
However, vulnerable kernel codes can still modify the kernel
data at the kernel layer.

In this paper, a novel security design of a KDPM that
manages write restrictions on specific kernel data is pro-

posed. The KDPM enables the kernel to control write priv-
ileges on PTEs using the MPK PKS in the running kernel
by the CPU. From the two implementations of the KDPM,
Implementation 1 protects the privileged information of the
user process to prevent privilege escalation, whereas Imple-
mentation 2 protects the kernel data of the MAC to prevent
the defeat of security mechanisms.

The security capability evaluation indicated a kernel
vulnerability that can be exploited for privilege escalation
attacks and demonstrated the restriction capability for the
writing of privileged information of the user processes. The
performance evaluation showed that the overhead for invok-
ing system calls on Linux with Implementation 1 ranged
from 2.96% to 9.01%, and the PKS operations overhead
on Linux with Implementation 2 ranged from 22.1 ns to
1347.9 ns. Additionally, the increase in number of instruc-
tions indicates that implementations require 137 to 176 in-
structions.

In future studies, to prevent vulnerable kernel code exe-
cution and illegal modification of kernel data due to the prin-
ciple of security risk and performance overhead, researchers
can provide the design of lightweight security mechanism
that combines the verification of kernel code execution se-
quence and the write protection of kernel data at the ade-
quate timing to mitigate kernel attacks.
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