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SUMMARY This paper introduces significant improvements over the
existing cryptanalysis approaches on Salsa20 and ChaCha stream ciphers.
For the first time, we reduced the attack complexity on Salsa20/8 to the
lowest possible margin. We introduced an attack on ChaCha7.25. It is the
first attack of its type on ChaCha7.25/20. In our approach, we studied dif-
ferential cryptanalysis of the Salsa20 and ChaCha stream ciphers based on
a comprehensive analysis of probabilistic neutral bits (PNBs). The existing
differential cryptanalysis approaches on Salsa20 and ChaCha stream ci-
phers first study the differential bias at specific input and output differential
positions and then search for probabilistic neutral bits. However, the differ-
ential bias and the set of PNBs obtained in this method are not always the
ideal combination to conduct the attack against the ciphers. The researchers
have not focused on the comprehensive analysis of the probabilistic neutral-
ity measure of all key bits concerning all possible output difference posi-
tions at all possible internal rounds of Salsa20 and ChaCha stream ciphers.
Moreover, the relationship between the neutrality measure and the number
of inverse quarter rounds has not been scrutinized yet. To address these
study gaps, we study the differential cryptanalysis based on the compre-
hensive analysis of probabilistic neutral bits on the reduced-round Salsa20
and ChaCha. At first, we comprehensively analyze the neutrality measure
of 256 key bits positions. Afterward, we select the output difference bit
position with the best average neutrality measure and look for the corre-
sponding input differential with the best differential bias. Considering all
aspects, we present an attack on Salsa20/8 with a time complexity of 2241.62

and data complexity of 231.5, which is the best-known single bit differen-
tial attack on Salsa20/8 and then, we introduced an attack on ChaCha7.25
rounds with a time complexity of 2254.011 and data complexity of 251.81.
key words: stream cipher, Salsa20, ChaCha, differential cryptanalysis,
PNBs

1. Introduction

This paper is the extended version of the author’s submis-
sion to the 17th International Conference on Information
Security Practice and Experience (ISPEC 2022). We sum-
marize the extension below.

• We extended the proposed attack to ChaCha stream ci-
pher and introduced the first and best-known attack on
ChaCha7.25.
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• In this study, we introduced the differential attack on
Salsa20/8 with a time complexity of 2241.62 and data
complexity of 231.5. We improved the time complexity
of the attack on Salsa20/8 by a factor of 22.08.
• In our previous study, we used only the 5th inter-

nal round to attack Salsa20/8. As the higher internal
rounds increase the number of neutral bits and conse-
quently reduce the attack complexity. In this study, we
examined all feasible internal rounds and introduced an
optimal internal round to attack Salsa20/8. We studied
4r, 4.25r, 4.5r, 4.75r, 5r, 5.25r, 5.5r, and 5.75r internal
rounds and presented the 4.75th as an optimal internal
round to attack Salsa20/8.
• We introduced the upper bound for the maximum num-

ber of forward and inverse rounds to attack Salsa20/8
and ChaCha stream ciphers.

1.1 Background

Salsa20 and ChaCha stream ciphers were designed by
Daniel J. Bernstein in April 2005 [1] and January 2008 [2]
with a 256-bit security level against key-recovery attacks
and 20 rounds. Both ciphers provide a 128 key bits ver-
sion as well. Salsa20 and ChaCha ciphers are constructed
based on the Addition, Rotation, and exclusive-OR [ARX]
structure. The ARX structure security leans on modular ad-
dition, which generates non-linearity. The rotations help
the ARX structure to provide faster diffusion and mix the
bits on the left and right sides of a word. Both ciphers de-
ployed widely in protocols, networks, operating Systems,
software ∗∗. Considering its wide adaption, it’s impor-
tant to study the security of mentioned ciphers. The de-
signer submitted the 20-round Salsa20 stream cipher to the
ECRYPT Stream Cipher Project, eSTREAM [3], as a candi-
date for stream ciphers for software applications with high
throughput requirements and hardware applications with re-
stricted resources. The eSTREAM portfolio was completed
in September 2008. Eventually, the 12-round Salsa20,
Salsa20/12, was selected as one of the finalists for the eS-
TREAM software portfolio. ChaCha also has a variant of
12 rounds. However, JP-Aumasson [4] proposed ChaCha’s
8-rounds instead of 20 with no security risk. It would
yield a 2.5× speedup. Following the release of Salsa20

∗∗https://ianix.com/pub/salsa20-deployment.html
https://ianix.com/pub/chacha-deployment.html
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and ChaCha, numerous studies have been conducted on the
security evaluations of Salsa20 and ChaCha [5]–[24]. The
most consequential of these existing studies is the differen-
tial attack based on a concept called probabilistic neutral
bits PNBs, proposed by Aumasson et al. at FSE 2008 [5].
PNB is a concept that divides secret key bits into two sub-
sets of significant key bits m and non-significant key bits n.
The neutral measure is used as a threshold to contradistin-
guish these two subsets. The number of key bits in subset m
and n significantly affect the complexity of the attack. Con-
sidering the stated fact, we have to study the PNBs in such
a way as to understand the conditions and circumstances
which affect the neutrality measure of key bits and decrease
the elements in significant key bits subset m. Thus, it is a
crucial task to analyze PNBs in detail for the differential at-
tacks on Salsa20. The author in [5] first searched for the
input/output differential pair with the best differential bias;
then, based on the obtained input/output differential pair,
they divided secret key bits into two subsets by applying
the concept of PNBs; finally, they performed a differential
attack on the 8-round version of Salsa20, and 7-round of
ChaCha. They introduced attack on Salsa8 with a time com-
plexity of 2251 and data complexity of 231. Similarly, they
present an attack on ChCha7 with a time complexity of 2248

and data complexity of 227. Thenceforth, several studies
have been reported on the improvements of their proposed
attack [8], [9], [11], [13], [14], [23], [24]. Allegedly, the best
single-bit differential attack on Salsa20/8 with a time com-
plexity of 2243.67 was proposed by Dey and Sarkar [9]. We
are the first to put forward an attack on ChaCha7.25 using
r = 3.5r internal round. As mentioned, the existing dif-
ferential attacks on Salsa20 and ChaCha have focused on
searching for the input/output differential pair with the best
differential bias. However, the differential bias and PNBs
obtained in the existing attacks are not always the best com-
bination. As the Probabilistic Neutral Bits and differential
bias affect the time complexity and data complexity of an at-
tack. Thus, we study the conditions that increase the number
of (PNBs) and improve the differential bias.

1.2 Our Contributions

In this study, for the first time, we apply the differential
cryptanalysis based on the comprehensive analysis of PNBs
on the Salsa20/8 and ChaCha7.25. This study first deeply
investigates the neutrality measure of all key bits positions
considering different internal rounds and all possible 512
output difference bitsOD. Then it looks for differential bias.
To further explore, the attack can be applied on the reduced-
round Salsa20 by (1) comprehensively analyzing the output
difference OD bit position with the highest average neutral
measures considering 256 key bits positions and (2) looking
for the input difference ID bit position with the best dif-
ferential bias in the obtained output difference OD bit posi-
tion. This research aims to find the combination of ID,OD
pair with the best differential bias and the subset of PNBs
through an extensive analysis of the neutrality measure of

all key bits positions. The contributions of this study are
summarized below:

• We study the relationship between the modular addi-
tion and probabilistic neutral bits in different internal
rounds of Salsa20/8. We show that the Salsa20 in-
verse quarter-round function impact in 4.25r − 4.75r
and 5.5r − 5.75r are the same. It is a weakness of in-
verse quarter round. It allows the adversary to attack
higher rounds of Salsa20.
• Through an extensive analysis of PNBs, for the first

time, we illustrate the distribution of neutral measures
in different internal rounds of Salsa20 and ChaCha
stream ciphers. Moreover, we experimentally and theo-
retically demonstrate that the neutrality measures vary
greatly depending on output differential OD bit posi-
tion, not on input differential ID bit position.
• We introduce the best internal round and OD posi-

tion to attack Salsa20/8 and ChaCha7.25. To be pre-
cise, we found that the 27th bit of the 8th word in
the 4.75r internal round of Salsa20/8 is the best OD
position to attack Salsa20/8. We used the mentioned
OD position and internal round in our proposed at-
tack. Furthermore, We used the 3.5r internal round and
0th, 1st, 2nd, 3rd OD positions to attack ChaCha7.25.
• We searched for the best differential bias at all pos-

sible ID positions (i.e., 128 bits) given the selected
OD position. By analysis of the differential bias
at the obtained output differential bit position in de-
tail, we found that the 6th bit of the 13th word
gives the best differential bias. For ChaCha, we
used the 12th, 13th, 14th, 15th ID positions to attack
ChaCha7.25.
• Based on the combination of the obtained differential

bias at a specific ID,OD position, and the subset of
PNBs, we present a differential attack on the Salsa20/8
with a time complexity of 2241.62 and data complexity
of 231.5, which is the best differential attack reported.
In addition, We could attack ChaCha7.25 with a time
complexity of 2254.011 and data complexity of 251.81

• One can use our proposed cryptanalysis method to at-
tack Salsa20/7 and ChaCha7 or lower rounds. How-
ever, in this paper, we focused only on Salsa20/8 and
ChaCha7.25.

Table 1 Summary of the proposed and existing attacks on Salsa20 with
256-key bits security

Target Time Data Reference

Salsa20/7

2151 226 [5]
2148 224 [14]
2137 261 [8]

Salsa20/8

2251 231 [5]
2250 227 [14]

2245.5 222.4 [13]
2244.9 296 [8]
2243.6 230.4 [9]
2241.62 231.5 This work
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Table 2 Summary of the proposed and existing attacks on ChaCha with
256-key bits security

Target Time Data Reference

ChaCha20/6

2139 230 [5]
2136 228 [14]

2127.5 237.5 [8]
277.4 258 [18]
251 251 [20]

ChaCha20/7

2248 227 [5]
2246.5 227 [14]
2238.9 223.8 [13]
2237.7 296 [8]
2231.9 250 [24]
2230.86 248.8 [18]
2221.95 290.20 [23]

ChaCha20/7.25
2255.62 248.36 [7]
2254.011 251.81 This Work

1.3 Organization of the Paper

The remainder of this paper is structured as follows. In
Sect. 2, we briefly describe the specification of the Salsa20
and ChaCha stream ciphers. In Sect. 3, we review generic
techniques of differential cryptanalysis and the concept of
probabilistic neutral bits. In Sect. 4, we introduce the differ-
ential cryptanalysis based on the comprehensive analysis of
PNBs. In Sect. 5, we present the result of our cryptanalysis
approach on Salsa20 stream cipher. In addition, we show
the theoretical and experimental results associated with the
extensive study of PNBs and then discuss the structure of
the Salsa20 stream cipher and how it impacts the PNBs. In
Sect. 6 we present the attack impact on ChaCha stream ci-
pher and the distribution of neutrality measures in different
target and internal rounds of ChaCha. In Sect. 7 we discuss
and differentiate our proposed approach and the existing at-
tack on Salsa20 and ChaCha and summarize our results. Fi-
nally, Sect. 8 concludes this research work.

2. Specification of Ciphers and Preliminaries

2.1 Specification of Salsa20

Salsa20 stream cipher consists of the following three steps
to generate a keystream block of 16 words, where each word
size is 32 bits:

Step 1. The initial state matrix X(0) of order 4 × 4 is ini-
tialized from a 256-bit secret key k = (k0, k1, . . . , k7),
a 64-bit nonce v = (v0, v1), a 64-bit block counter
t = (t0, t1), and four 32-bit constants c = (c0, c1, c2, c3),
such as c0 = 0x61707865, c1 = 0x3320646e, c2 =

0x79622d32, and c3 = 0x6b206574. It is worth-
while to mention that a 128-bit key length could be
used (not recommended) to form the initial state ma-
trix of Salsa20. That being so, the constant words
change to c0 = 0x61707865, c1 = 0x3120646e, c2 =

0x79622d36, and c3 = 0x6b206574. For more detail
about constant words considering the key size please
refer to Sect. 4 [1]. After the initialization, we obtain

Table 3 Notations

Notation Description
X The Salsa20 matrix of 4 × 4 with 16 words of 32 bit each

X(0) The initial state matrix of Salsa20
X
′(0) The associate matrix with a single bit difference at xi, j position.

X(R) The matrix after Salsa20 R rounds
X(r) The matrix after Salsa20 r rounds where R > r (internal round)
x(R)

i The ith word of state matrix X(R)

x(R)
i, j The jth bit of ith word of matrix X(R)

x + y The word-wise addition of word x and y modulo 232

x − y The word-wise subtraction of word x and y modulo 232

x
⊕
y Bit-wise XOR operation of the word x and y

x ≪ n The left rotation of word x by n bits
∆x The XOR difference of word x and x′ defined as ∆x = x

⊕
x′

εe, εa The forward and backward differential bias of Salsa20.

the following initial state matrix X(0):

X(0) =


x(0)

0 x(0)
1 x(0)

2 x(0)
3

x(0)
4 x(0)

5 x(0)
6 x(0)

7
x(0)

8 x(0)
9 x(0)

10 x(0)
11

x(0)
12 x(0)

13 x(0)
14 x(0)

15

 =

c0 k0 k1 k2

k3 c1 v0 v1
t0 t1 c2 k4

k5 k6 k7 c3

 .
Step 2. The round function of Salsa20 consists of four com-

putations of the so-called quarter-round function. Ac-
cording to the procedure of the quarter-round function,
a vector (x(r)

a , x
(r)
b , x

(r)
c , x

(r)
d ) in the internal state matrix

X(r) is updated by sequentially computing
x(r+1)

b = ((x(r)
a + x(r)

d ) ≪ 7) ⊕ x(r)
b ,

x(r+1)
c = ((x(r+1)

b + x(r)
a ) ≪ 9) ⊕ x(r)

c ,

x(r+1)
d = ((x(r+1)

c + x(r+1)
b ) ≪ 13) ⊕ x(r)

d ,

x(r+1)
a = ((x(r+1)

d + x(r+1)
c ) ≪ 18) ⊕ x(r)

a ,

(1)

where the symbols ‘+’, ‘≪’, and ‘⊕’ represent
word-wise modular addition, bit-wise left rotation,
and bit-wise XOR, respectively. In odd number
rounds, which are called column-rounds, the quarter-
round function is applied to the following four
column vectors:(x(r)

0 , x
(r)
4 , x

(r)
8 , x

(r)
12 ), (x(r)

5 , x
(r)
9 , x

(r)
13 , x

(r)
1 ),

(x(r)
10 , x

(r)
14 , x

(r)
2 , x

(r)
6 ), and (x(r)

15 , x
(r)
3 , x

(r)
7 , x

(r)
11 ). In even

number rounds, which are called row-rounds, the
quarter-round function is applied to the following four
row vectors: (x(r)

0 , x
(r)
1 , x

(r)
2 , x

(r)
3 ), (x(r)

5 , x
(r)
6 , x

(r)
7 , x

(r)
4 ),

(x(r)
10 , x

(r)
11 , x

(r)
8 , x

(r)
9 ), and (x(r)

15 , x
(r)
12 , x

(r)
13 , x

(r)
14 ).

Step 3. A 512-bit keystream block is generated as Z =
X(0) + X(R), where R is the final round. The origi-
nal version of Salsa20 stream cipher, called Salsa20,
is R = 20 rounds, however, the accepted version as one
of the finalists for the eSTREAM software portfolio [3]
is Salsa20/12, where R = 12.

The round function of Salsa20 is reversible., i.e., a vector
(x(r+1)

a , x(r+1)
b , x(r+1)

c , x(r+1)
d ) in the internal state matrix X(r+1)

is reversed by sequentially computing:
x(r)

a = ((x(r+1)
d + x(r+1)

c ) ≪ 18) ⊕ x(r+1)
a ,

x(r)
d = ((x(r+1)

c + x(r+1)
b ) ≪ 13) ⊕ x(r+1)

d ,

x(r)
c = ((x(r+1)

b + x(r)
a ) ≪ 9) ⊕ x(r+1)

c ,

x(r)
b = ((x(r)

a + x(r)
d ) ≪ 7) ⊕ x(r+1)

b .

(2)
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Proceedings all other in time, we studied the differential
cryptanalysis and distribution of neutrality measure in all
possible internal rounds of Salsa20. We worked on the neu-
trality measure in the Salsa20 full round, half round, quarter
round, and three-quarter rounds defined as the following se-
quentially.{

x(r+1)
b = ((x(r)

a + x(r)
d ) ≪ 7) ⊕ x(r)

b (3){
x(r+1)

b = ((x(r)
a + x(r)

d ) ≪ 7) ⊕ x(r)
b

x(r+1)
c = ((x(r+1)

b + x(r)
a ) ≪ 9) ⊕ x(r)

c
(4)

x(r+1)
b = ((x(r)

a + x(r)
d ) ≪ 7) ⊕ x(r)

b
x(r+1)

c = ((x(r+1)
b + x(r)

a ) ≪ 9) ⊕ x(r)
c

x(r+1)
d = ((x(r+1)

c + x(r+1)
b ) ≪ 13) ⊕ x(r)

d

(5)

In addition, the inverse quarter round, half round, and three-
quarters round are defined as the following sequentially.{

x(r)
a = ((x(r+1)

d + x(r+1)
c ) ≪ 18) ⊕ x(r+1)

a (6){
x(r)

a = ((x(r+1)
d + x(r+1)

c ) ≪ 18) ⊕ x(r+1)
a ,

x(r)
d = ((x(r+1)

c + x(r+1)
b ) ≪ 13) ⊕ x(r+1)

d ,
(7)


x(r)

a = ((x(r+1)
d + x(r+1)

c ) ≪ 18) ⊕ x(r+1)
a ,

x(r)
d = ((x(r+1)

c + x(r+1)
b ) ≪ 13) ⊕ x(r+1)

d ,

x(r)
c = ((x(r+1)

b + x(r)
a ) ≪ 9) ⊕ x(r+1)

c ,

(8)

2.2 Specification of ChaCha

ChaCha stream cipher consists of the following three steps
to generate a keystream block of 16 words, where each word
size is 32 bits:

Step 1. To generate 512 bits key stream, ChaCha initial
state matrix X(0) of order 4 × 4 is initialized from a
256-bit secret key k = (k0, k1, . . . , k7), a 96-bit nonce
v = (v0, v1, v2), a 32-bit block counter t0, and four 32-bit
constants c = (c0, c1, c2, c3), such as c0 = 0x61707865,
c1 = 0x3320646e, c2 = 0x79622d32, and c3 =

0x6b206574. After initialization, we obtain the follow-
ing initial state matrix:

X(0) =


x(0)

0 x(0)
1 x(0)

2 x(0)
3

x(0)
4 x(0)

5 x(0)
6 x(0)

7
x(0)

8 x(0)
9 x(0)

10 x(0)
11

x(0)
12 x(0)

13 x(0)
14 x(0)

15

 =

c0 c1 c2 c3

k0 k1 k2 k3

k4 k5 k6 k7

t0 v0 v1 v2

 .
Step 2. The round function of ChaCha comprises four si-

multaneous computations of the quarterround func-
tion. According to the procedure, a vector
(x(r)

a , x
(r)
b , x

(r)
c , x

(r)
d ) in the internal state matrix X(r) is up-

dated by sequentially computing the following:

x(r)
a′ = x(r)

a + x(r)
b

x(r)
d′ = x(r)

d ⊕ x(r)
a′

x(r)
d′′ = x(r)

d′ ≪ 16

x(r)
c′ = x(r)

c + x(r)
d′′

x(r)
b′ = x(r)

b ⊕ x(r)
c′

x(r)
b′′ = x(r)

b′ ≪ 12

x(r+1)
a = x(r)

a′ + x(r)
b′′

x(r)
d′′′ = x(r)

d′′ ⊕ x(r+1)
a

x(r+1)
d = x(r)

d′′′ ≪ 8

x(r+1)
c = x(r)

c′ + x(r+1)
d

x(r)
b′′′ = x(r)

b′′ ⊕ x(r+1)
c

x(r+1)
b = x(r)

b′′′ ≪ 7

(9)

The symbols “+”, “⊕”, and “≪” represent word-
wise modular addition, bitwise XOR, and bit-
wise left rotation, respectively. For odd-numbered
rounds, which are called columnrounds, the quar-
terround function is applied to the following four
column vectors: (x(r)

0 , x
(r)
4 , x

(r)
8 , x

(r)
12 ), (x(r)

1 , x
(r)
5 , x

(r)
9 , x

(r)
13 ),

(x(r)
2 , x

(r)
6 , x

(r)
10 , x

(r)
14 ), and (x(r)

3 , x
(r)
7 , x

(r)
11 , x

(r)
15 ). For even-

numbered rounds, which are called diagonalrounds,
the quarterround function is applied to the fol-
lowing four diagonal vectors: (x(r)

0 , x
(r)
5 , x

(r)
10 , x

(r)
15 ),

(x(r)
1 , x

(r)
6 , x

(r)
11 , x

(r)
12 ), (x(r)

2 , x
(r)
7 , x

(r)
8 , x

(r)
13 ), and (x(r)

3 ,

x(r)
4 , x

(r)
9 , x

(r)
14 ).

Step 3. A 512-bit keystream block is computed as Z =
X(0) + X(R), where R is the final round. The orig-
inal version of ChaCha has R = 20 rounds, and
the ChaCha20/R denotes the reduced-round version of
ChaCha.

The round function of ChaCha is reversible. In other
words, an input vector (x(r+1)

a , x(r+1)
b , x(r+1)

c , x(r+1)
d ) in the in-

ternal state matrix X(r+1) is backdated by sequentially com-
puting the following:

x(r)
b′′′ = x(r+1)

b ≪ 25, x(r)
b′′ = x(r)

b′′′ ⊕ x(r+1)
c , x(r)

c′ = x(r+1)
c − x(r+1)

d ,

x(r)
d′′′ = x(r+1)

d ≪ 24, x(r)
d′′ = x(r)

d′′′ ⊕ x(r+1)
a , x(r)

a′ = x(r+1)
a − x(r)

b′′ ,

x(r)
b′ = x(r)

b′′ ≪ 20, x(r)
b = x(r)

b′ ⊕ x(r)
c′ , x(r)

c = x(r)
c′ − x(r)

d′′ ,

x(r)
d′ = x(r)

d′′ ≪ 16, x(r)
d = x(r)

d′ ⊕ x(r)
a′ , x(r)

a = x(r)
a′ − x(r)

b

(10)

We studied the differential cryptanalysis and distribu-
tion of neutrality measures in all possible internal rounds
(i.e., 3r and 3.5r) of ChaCha stream cipher. We worked on
the distribution of neutrality measures in the ChaCha full
round, half round, quarter round, and three-quarter round.

3. Differential Cryptanalysis

Differential cryptanalysis is a common method of attack on
symmetric key cryptography. Biham, E. and A. Shamir [25]
introduced differential cryptanalysis. In the beginning, it
broke the DES cipher. Since then, it has changed to one
of the main cryptanalysis models and is utilized to attack
and evaluate the security of different encryption schemes. It
is mainly a chosen plain text attack that aims to study the
propagation of an input difference through several rounds of
an encryption scheme. The cryptanalysts can take advan-
tage of the non-randomness to fully or partially recover the
secret key. The XOR operation computes the difference. The
cryptanalysts are interested in searching for input and output
differences denoted by ∆x and ∆z or by α and β, respectively.
The XOR differential probability of addition xdp+ and the
additive differential probability of XOR adp

⊕
were stud-

ied by [30]. The differential probability (DP) of addition
modulo 2n is the probability at which the input difference
propagates to the output difference.
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DP+(δ) = DP+(α, β 7→ δ) := Px,y[(x+y)⊕((x⊕α)+(y⊕β)) = δ]
(11)

The x and y are the inputs of size n. In this research,
we study the differential cryptanalysis of the Salsa20 stream
cipher where we send two initial state matrices of Salsa20 X
and a copy of the initial state matrix with a single bit differ-
ence X′ to the target round of the Salsa20 function. The
Salsa20 function returns the interrelated states of XR and
X′R. Moreover, we also study the intermediate rounds of
Salsa20 denoted by Xr and X′r where R > r.

3.1 Differential Cryptanalysis of Salsa20 Stream Cipher

The majority of attacks introduced by cryptanalysts on
Salsa20 are differential attacks. Among proposals, Aumas-
son et al. at FSE 2008 [5] introduced the illustrious attack.
The author proposed a differential attack based on proba-
bilistic neutral bits (PNBs), which applied on the reduced
round of Salsa20, Rumba, and ChaCha. In this section,
we clarify generic techniques of differential attack based on
PNB. The attack consists of two phases: pre-computation
and online phases. In the pre-computation phase, the at-
tacker examines single-bit differential biases and searches
for the subset of PNBs. Subsequently, the adversary exe-
cutes a probabilistic backward computation (PBC). Finally,
the online phase recovers the unknown set of key bits.

3.1.1 Pre-computation Phase

At first, we initialize two-state matrices X and X′. Both X
and X′ matrices consist of the same keywords (k1, k2...k8)
and constants. However, the X′ matrix consists of a single
bit difference in nonce v or counter t. To throw light on,
let x(0)

i [ j] be the j-th bit of the i-th word of initial state ma-
trix X(0) for 0 ≤ i ≤ 15 and 0 ≤ j ≤ 31, and let x′(0)

i [ j]
be an associated word with a single bit difference at jth

bit of ith word as ∆(0)
i [ j] = x(0)

i [ j] ⊕ x′(0)
i [ j] be the differ-

ence. Given a difference ∆(0)
i [ j] = 1 at the jth bit of ith

word of state matrix X(0), which is called input difference
or ID, we obtain the corresponding initial state matrix X′

as v′ = v
⊕
∆v or t′ = t

⊕
∆t where v′ and t′ denotes the

single bit difference at nonce or counter. Next, we run the
Salsa20 or ChaCha round function with the initial state ma-
trices X(0), X′(0) as inputs, and obtain single bit output dif-
ference ∆(r)

p [q] = x(r)
p [q]

⊕
x′(r)

p [q] from the r-round internal
state matrices X(r), X′(r), which is called output difference or
OD where 1 ≤ r < R and q denotes the q-th bit of the p-
th word of internal state matrix X(r) for 0 ≤ p ≤ 15 and
0 ≤ q ≤ 31 after r rounds of Salsa20 or ChaCha. For a fixed
key and random nonces and block counters, the bias εd is
defined as

Pr
(
∆(r)

p [q] = 1 | ∆(0)
i [ j] = 1

)
=

1
2

(1 + εd), (12)

The εd denotes the bias of the OD. If the key bits are ran-
dom, we compute the ε∗d as a median value of εd [5]. To
differentiate between the OD obtained from a true random

number generator and the OD obtained from the r-round
internal state matrices in Salsa20 or ChaCha, we use the
following theorem proved by Mantin and Shamir at FSE
2001 [26].

Theorem 1 ([26]) Let X and Y be two distributions, and
suppose that the target event occurs in X with a probability
p and Y with a probability p · (1 + q). Then, for small p
and q, O( 1

p·q2 ) samples suffice to distinguish X from Y with
a constant probability of success. LetX andY be two distri-
butions. The event E in X happens with probability 1

2 , (i.e,
the result of a true random number generator) and the event
E′ in Y happens with the probability 1

2 · (1 + ϵd), (i.e, the
OD obtained from the r-round internal matrices of Salsa20
or ChaCha stream ciphers). According to Theorem 1 and
Eq. (12), the number of samples to distinguish X and Y is
O( 2
ϵ2d

) since p and q are equal to 1
2 and εd, respectively.

3.1.2 Probabilistic Neutral Bits

The probabilistic neutral bits concept allows us to divide the
key bits set into two subsets. Throughout this paper, we call
it significant key bits subset m and non-significant key bits
subset n where m = 256 − n. To distinguish between the
two aforementioned subsets, the PNB concept focuses on
the amount of effect each key bit has on the output of the
Salsa20 or ChaCha function called OD here. The effect of
key bits is called neutral measure.

Definition 1 ([5]) The neutral measure of the key bit po-
sition γi with respect to the OD is defined as γκ, where
1
2 (1+ γκ) is the probability that complementing the key bit κ
at γi position does not change the OD.

According to [5], the following singular cases of the neutral
measure exist:

• γk = 1: OD does not depend on the i-th key bit, i.e., it
is non-significant.
• γk = 0: OD is statistically independent of the i-th key

bit, i.e., it is significant.
• γk = −1: OD linearly depends on the i-th key bit.

Algorithm 1 computes the neutrality measure of key bits in
the Salsa20 or ChaCha stream ciphers.

Algorithm 1 [5]The key bits neutrality measure estimation
Require: Key bit position γi random(IV,Z,Z′)
Ensure: The estimated neutrality measure γk of each key bit position γi

1. Compute the (X(R), X′(R)) with ∆(0)
i [ j] = 1.

2. Derive Z = X(0) + X(R) and Z′ = X′(0) + X′(R).
3. Prepare (X

(0)
, X′

(0)
) with the key bit position γi flipped in (X(0), X′(0)).

4. Compute (Y (r),Y′(r)) with Z − X
(0)

and Z′ − X′
(0)

as inputs to the
inversed round function of Salsa20 or ChaCha.

5. Compute Γ(r)
p [q] = y(r)

p [q] ⊕ y′(r)
p [q].

6. Repeatedly perform Steps 1-5 by using different initial state matri-
ces with the same ∆(0)

i [ j] = 1; compute the neutral measure as

Pr(∆(r)
p [q] = Γ(r)

p [q] | ∆(0)
i [ j] = 1) = 1

2 (1 + γk).
7. Set a threshold γ, and put all key bits with γκ ≥ γ into a set of n-bit

non-significant key bits.
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3.1.3 Probabilistic Backwards Computation (PBC)

Based on our discussion in Sect. 3.1.1, we calculate the for-
ward differential bias εd by Eq. (12). Furthermore, we com-
pute the r internal round differential bias from backward
by probabilistic backward computation. Given Z,Z′, X, X′,
one can reverse the Salsa20 or ChaCha keystream Z =
X + RoundR(X) and Z′ = X′ + RoundR(X′) to obtain the r
rounds single bit differential bias from backward. To com-
pute the PBC, we need the Z − X, and Z′ − X′ matrices as
inputs for the reverse round of Salsa20 or ChaCha explained
in Eq. (10). Algorithm 2 explains the PBC steps. The bias
ε ≈ εe · εa under the independence assumption [5], [13].

Algorithm 2 [5]Probabilistic backward computation
Require: Random(X, X′,Z,Z′)
Ensure: The r internal round bias

1. Compute the R-round internal state matrix pair (X(R), X′(R)) with the
ID ∆(0)

i [ j] = 1.
2. Derive the keystream matrices Z = X(0) + X(R) and Z′ = X′(0) + X′(R).

3. Prepare (X̂(0), X̂′
(0)

) initial states with only PNB bits reset to a fixed
value from (X(0), X′(0)).

4. Compute r-round internal state matrix pair (Ŷ (r), Ŷ′(r)) with Z − X̂(0)

and Z′ − X̂′
(0)

as inputs to the inversed round function of Salsa20
or ChaCha.

5. Compute Γ̂(r)
p [q] = ŷ(r)

p [q]⊕ ŷ′(r)
p [q] for all possible choices of p and q,

where ŷ(r)
p [q] and ŷ′(r)

p [q] are the q-th bit of the p-th word of Ŷ (r)

and Ŷ′(r), respectively.
6. Repeatedly perform Steps 1-5 by using different initial state matrices

with the same ∆(0)
i [ j] = 1; compute the r-round backward bias εa

as Pr(∆(r)
p [q] = Γ̂(r)

p [q] | ∆(0)
i [ j] = 1) = 1

2 (1 + εa).

3.1.4 Online Phase

According to [5], for the online phase, we run Algorithm 3.
We need the following parameters as an input to the algo-
rithm: OD word p OD bit q, ID in nonce ∆V , the subset of
significant key bits m concerning some threshed γ and N of
keystream block to recover the secret key with some prob-
ability. For a detailed understanding, one can also refer to
Sect. 2.5 of [27].

3.1.5 Complexity Estimation

Once we found an optimal ID,OD pair, and defined
(∆(r)

p [q] = 1 | ∆(0)
i [ j] = 1

)
. The set of key bits is divided

into significant key bits m and non-significant key bits n and
computed the median bias ε∗. To calculate the time com-
plexity of the attack, step 2 is repeated for all possible 2m

subkey candidates. Step 2-1 and 2-2 execution would re-
quire N keystream. Step 2-4 is executed with the probability
P f a = 2−α, which adds a cost of 2n considering the obtained
bias. As result, the complexity of the attack from steps 2-3
to steps 2-5 is 2nP f a [27]. The total complexity calculation
is as below.

Algorithm 3 [5] [27]Effective Attack
Require: p, q, r ∆V , m threshed γ and N
Ensure: Recovered Key

1. For an unknown key, collect N pair of keystream, where each pair is
generated by random nonce and satisfy the ID.

2. For each of m-bit significant key bit, run:

2-1. Set the significant key bits m of a key k to ks and the non-
significant key bits to a random value.

2-2. Obtain the r-round single-bit differential biases from back-
ward with the subkey ks for the N keystream block pairs.

2-3. If the bias validates the subkeys candidate ks as a (possibly)
correct one:

2-4. Run an additional exhaustive search over the n-bit PNB bits
to confirm the correctness of the filtered subkey ks and to
find the n-bit non-significant key bits.

2-5. Stop if the correct key appears.

2m(N + 2nP f a)=2mN + 2256−α N ≈
( √α log 4 + 3

√
1 − ε2

ε

)2
(13)

Practically, we choose α (and hence N) in a way to
minimize the time complexity of the attack. In Sect. 5.5, we
used the median bias ε∗ to calculate N and subsequently the
complexity of our proposed attack.

3.2 Related Works

In this subsection, we present the major differential at-
tacks against the Salsa20 and ChaCha stream ciphers. In
2005, Crowley [6] presented the first differential attack on
Salsa20. The author found a 3-round differential and pre-
sented an attack on Salsa20/5 with a complexity of 2165.
Later in 2006, The Fischer et al [10] reported a 4-round dif-
ferential and presented a key-recovery attack on Salsa20/6
with 2177 trials using 216 pairs of keystream. Fischer et al
used the χ2 test to measure the statistical weaknesses of
Salsa20. In 2007, Tsunoo et al [28] reported the bias in 4-
round Salsa20 and used the obtained bias to attack the 5−6−
7 − 8 rounds of Salsa20. Tsunoo et al reported an attack on
Salsa20/7 with 2190 trials. In 2008, Jean-Philippe Aumas-
son [5] introduced the most important cryptanalysis attack
on reduced rounds of Salsa20 and ChaCha. Jean-Philippe
Aumasson presented an attack on Salsa20/8 and ChaCha7
with time and data complexity of 2255, 231, 2248, and 227

respectively. Zhenqing Shi [14] introduced the concept of
column chaining distinguisher (CCD) and probabilistic neu-
tral vector (PNV). The author attack Salsa20/8 with a time
complexity of 2250 and ChaCha7 with a time complexity of
2246.5 and data complexity of 227. In 2015, Maitra [29] re-
visited the idea of (PNBs) and explained certain parameters
to reduce the complexity of the existing attack. The pa-
per achieved the key search with the complexity of 2247.2.
In 2016, Maitra [13] introduced the chosen IV attack on
Salsa20 and Chacha stream ciphers. The author reduced the
complexity of the attack on Salsa20/8 to 2245.5 from 2247.2

and attacked ChaCha7 with time complexity of 2238.94 and
data complexity of 223.89. In 2016 Choudhuri [8], intro-
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duced the multi-bit differential cryptanalysis on Salsa20 and
ChaCha, with their proposed adversary model, they intro-
duced an attack on Salsa20/8 with time complexity of 2244.85

and an attack on ChaCha7 with time complexity of 2237.65

and data complexity 231.6. In 2017, Sabyasachi Dey [9] im-
proved the attack on Salsa20 by adding more PNBs. The
author attack Salsa20/8 with time complexity 2243.6. In
2021, Christof [18] proposed a differential linear adver-
sary framework for ARX ciphers and introduced an attack
on ChaCha7 with a time complexity 2230.86 and data com-
plexity of 248.83. In 2021, Miyashita and Ito [7] applied
the PNB-focused differential cryptanalysis on the ChaCha
stream cipher. The proposed approach introduced the attack
on ChaCha 7.25 − rounds with time complexity of 2255.62

and data complexity 248.36. In 2022 Dey [23] improved the
differential linear cryptanalysis and proposed an attack on
ChaCha7 with a time complexity of 2221 and data complex-
ity of 290. Considering the importance of the Salsa20 and
ChaCha stream ciphers, their wide adoption, and the struc-
ture. We further studied the adversary model proposed by
Miyashita and Ito [7] on Salsa20 and ChaCha. We applied
the differential cryptanalysis based on extensive analysis of
PNBs on S alsa20/8 and ChaCha stream ciphers to evaluate
the resistance of Salsa20 and ChaCha against the mentioned
cryptanalysis approach. Sect. 4 studies the mentioned crypt-
analysis approach on Salsa20/8.

4. An Extensive Study of Probabilistic Neutral Bits

The existing differential cryptanalysis of the Salsa20 stream
cipher studies the ID-OD pair with the highest forward dif-
ferential bias εd among all possible pairs (i.e., 128 ID bits
and 512 OD bits). At first, the ID is determined then the
corresponding OD with the highest forward bias is selected.
That is to say, the existing studies focused on the differential
bias at specific ID,OD pairs and then tried to find the sub-
set of PNBs to attack the target round of Salsa20. Consider-
ing our observation in Sect. 5.1 and the previous research
results [5], the neutrality measures of all 256 key bits in
Salsa20 mainly depend on OD bits, therefore, when a key-
recovery attack is effectuated in mentioned flow, it cannot
be shown whether the bias εd at specific ID,OD pair and
the subset of PNBs are truly optimal or not. In this section,
we focus on an extensive study of the neutrality measure of
all 256 key bits with the respect to all possible 512 OD bits.
Furthermore, we analyze the conditions and circumstances
that possibly instigate the high neutral measures as the size
of PNBs affects the time complexity of the attack, as shown
in Eq. (13). Presumably, no study on analyzing the PNBs
in detail has been reported. If the conditions that induce
high neutral measure γκ of key bits can be clarified, we can
claim that the existing attacks may still have room for im-
provement. We used Algorithm 4 to compute the neutrality
measure of 256 key bits with the respect to 512OD bits. For
this purpose, we generated a set of 210 random keys and 224

random initialization vectors (IVs) through a random gener-
ation process. Then, we calculated the probabilistic neutral-

Algorithm 4 Computing OD bit with best neutral measure
Require: Random(X, X′,Z,Z′)
Ensure: The OD bit with best neutral measure

1. Generate random keywords k = (k0, . . . , k7).
2. Decide the single ID ∆(0)

i [ j] position, and generate random v =

(v0, v1) and t = (t0, t1), initiate X(0) and X′(0) = X(0) ⊕ ∆(0)
i [ j].

3. From (X(0), X′(0)), compute (X(r), X′(r)) and (X(R), X′(R)).
4. From (X(r), X′(r)) compute OD ∆(r)

p [q] = X(r)
p [q] ⊕ X′(r)

p [q] for all
possible p and q.

5. From (X(R), X′(R)) obtain the keystream Z = X(0) + X(R) and Z′ =
X′(0) + X′(R).

6. Complement a key bit κ (κ ∈ {0, . . . , 255}) and compute X
(0)

and X′
(0)

from initial states (X(0), X′(0)).

7. Compute (Y (r),Y′(r)) with Z − X
(0)

and Z′ − X′
(0)

as inputs to the
inversed round function of Salsa20.

8. Derive Γ(r)
p [q] = Y (r)

p [q] ⊕ Y′(r)
p [q] for all possible choices of p and q.

9. Increment the sum for each p, q, and κ only if ∆(r)
p [q] = Γ(r)

p [q].

10. Divide the sum of ∆(r)
p [q] = Γ(r)

p [q] by key trail and ID samples to
get the probability.

ity measure of the key bits positions using these randomly
generated keys and IVs. This process was repeated for each
iteration of the randomly generated keys and IVs. As a re-
sult, we calculated the neutrality measure of 256-bit key po-
sitions, for each of the 512 OD positions. Throughout our
experiments, we used the Theorem 1 to decide the number
of random keys and IVs. To select an optimal ID position,
we tried all possible 128 ID positions. It should be pointed
out that we could not observe a significant impact of the ID
on the neutrality measure of key bits. Therefore, we decided
to select a random ID at this phase of experiment†.

5. The Impact on Salsa20

5.1 Experimental Results

In this section, we demonstrate the experimental results of
the comprehensive analysis of PNBs. To analyze the neu-
trality measure of key bits concerning all possible ODs, we
have conducted experiments with the complexity of 230 (i.e.,
26 key trials and 224 IV sample). The probability was ob-
tained over the key trial, nonce, and counter. According
to Theorem 1, let X be a distribution of ∆(r)

p [q] = Γ(r)
p [q]

obtained from the r-round internal state matrices in true
random number generator, and let Y be a distribution of
∆

(r)
p [q] = Γ(r)

p [q] obtained from the r-round internal state
matrices of Salsa20. The target event occurs in X with a
probability of 1

2 and Y with a probability of γκ; thus, the
number of samples to distinguish X and Y is O( 2

γ2
κ
). Our

experimental results are reliable when the derived neutral
measures γκ are greater than 2−14.5 as we have experimented
with total 230 numbers of IV samples and key trials.

Figures 1 and 2 show the experimental result of a com-
prehensive analysis of key bits neutrality measures with the
respect to all possible OD bit positions on Salsa20. In

†In our experiment (Algorithm 4), we used the ID (7,31) re-
ported in [5] and used in [13] and [9]
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Fig. 1 Distributions of neutral measures γκ in each of r = 4, r = 4.25, r = 4.5, and r = 4.75 internal
rounds.

Fig. 2 Distributions of neutral measures γκ in each of r = 5, r = 5.25, r = 5.5, and r = 5.75 internal
rounds.

these figures, the vertical axis represents the average neu-
tral measures of key bits at each OD position, the horizon-
tal axis represents the OD bit positions. The blue, orange,
Green, red lines show the distribution of neutral measures in
the full internal round, quarter internal round, half internal
round, and three-quarters internal rounds respectively. We
used all the possible internal rounds within the 4th and 5th
internal rounds. Figure 1 and Fig. 2 show the r = 4, r =
4.25, r = 4.5, r = 4.75 and, r = 5, r = 5.25, r = 5.5, r =
5.75, respectively. From Figs. 1 and 2, we obtain the follow-

ing properties:

• The distribution of neutrality measure of key bits varies
for each OD bit position. As Figs. 1 and 2 support the
claim.
• The (4.25r, 4.5r, and 4.75r) internal rounds generate

the same neutrality measure in some OD positions.
To be precise, (3rd, 4th, 5th, 9th, 10th, 14th, 15th) OD
words give the same neutral measure. However, the
OD positions are different for r = 5, r = 5.25, r =
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Table 4 The cumulative number of modular addition executed in 3, 2.25, 2.5, 2.75 reverse rounds
from target round R=8

R
Input word position Cumulative number of modular additions

Even round Odd round 2.25 rounds 2.5 rounds 2.75 rounds 3 rounds

Even

A→ A 24 24 24 24
B→ D 7 7 7 76
C→ C 11 11 52 52
D→ B 16 35 35 35

Table 5 The cumulative number of modular addition executed in 4, 3.25, 3.5, 3.75 reverse rounds
from target round R=8

R
Input word position Cumulative number of modular additions

Even round Odd round 3.25 rounds 3.5 rounds 3.75 rounds 4 rounds

Even

A→ A 112 112 112 112
B→ D 76 164 164 164
C→ C 52 52 241 241
D→ B 35 35 35 277

5.5, r = 5.75 internal rounds. It will be further explored
in Sect. 5.2.
• The neutrality measure of key bits is affected by the

inversed-quarter round function of Salsa20. As the
number of reverse rounds increases, the neutrality mea-
sure of key bits is decreased. It will be further dis-
cussed in Sect. 5.2.
• The OD bit position with a high neutral measure varies

in different word positions.
• The distributions of neutral measures concerning the
OD bit position are much similar regardless of the in-
ternal round r.

5.2 Relationship Between Neutrality Measures and In-
versed Rounds

To study the correlation between the neutrality measure of
key bits and inversed quarter-round function of Salsa20, we
scrutinize the relationship between the input word position
to the inversed quarter-round function and the cumulative
number of modular addition executed for each input vector
(A, B,C,D) given the specific number of reverse rounds. In
Table 4 and 5, we investigated the cumulative number of
modular addition executed for different input word positions
to the inversed quarter-round function for different internal
rounds mentioned above tables.

The R column points to the number of target rounds in
our attack (i.e., 8-rounds in this study). The combination of
input word positions to the inversed quarter-round function
is different depending on whether the target round R is even
or odd. To enumerate, the input word positions, such as a
vector (A, B,C,D), to the inversed quarter-round function
is different in odd or even rounds as the reverse round of
even rounds (row round) will be executed in a case when
the target round R is even. However, the reverse round of
the odd round (column round) is executed in case the tar-
get round R is odd. Please refer to section 2 for further
detail. To clarify, we consider the case when the number
of target rounds R is even and the input word position to
quarter-round round is B. When the number of the in-

versed rounds is 3, the word position moves B (even number
round)→ D (odd number round) by executing the inversed
quarter-round function. In other words, the same element
in the Salsa20 matrix is picked in a different order by inverse
quarter-round in odd and even reverse rounds. For instance,
element X3 is represented by D in vector (A, B,C,D) when
the target round is even while the same element X3 is repre-
sented by B when the target round is odd. Similarly, when
the number of the inversed rounds is three, the word posi-
tion transitions B (even number round) → D (odd number
round) → B (even number round). The cumulative num-
ber of modular addition column shows the cumulative num-
ber of modular additions executed by the inversed quarter-
round function for each transition of the word positions for
different inversed rounds. At this point, we focus only on
the execution of the cumulative number of modular addition
because it plays an important role in ensuring the security of
the ARX ciphers. As per Table 4 and Table 5, the execution
of modular addition differs depending on the input word po-
sition to the inversed round function and the number of re-
vere rounds. For example, we consider the case when the
number of target round R is even, the transition of the word
position is A (even number round)→ A (odd number round),
and the number of inversed rounds are 2.25r, 2.5r, 2.75r, 3r
respectively. In this case, the cumulative number of modular
addition is 24 for each round. Similarly, when the number
of inversed round functions is 3, the maximum and mini-
mum values of the cumulative modular addition are 76 and
24. Thus, as the number of the inversed-round is increased,
the difference between the maximum and minimum values
of the cumulative number modular addition is increased as
well. Equally important, the cumulative number of modu-
lar addition executed for 2.25 reverse rounds is equal to the
3 reverse rounds for input word position A. Likewise, the
cumulative number of modular addition for word positions
such as the transition of word position B→ D and the transi-
tion of word position D→ B do not change for some internal
rounds such as 2.25, 2.5 and 2.75. This analysis also applies
to Salsa20 forward quarter round function. Considering the
stated fact, we can target higher rounds of Salsa20 such as
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Table 6 Experimental result to find OD bit with best average neutral
measure in different internal rounds for target round R=8

Internal Round ODWord OD Bit Average Neutral Measure

4r 1 13 0.083327305
4.25r 3 13 0.598177289
4.5r 3 13 0.598177289
4.75r 3 13 0.598177289

5r 0 18 0.602847941
5.25r 11 13 0.938618043
5.5r 11 13 0.938618043
5.75r 11 13 0.938618043

R = 8.75 which would be equivalent to R = 8.25 for some
specific words. This shows a weakness in Salsa20 quarter-
round function design. Table 6 shows the result obtained
from Algorithm 4. As we can see the ODword with the best
neutral measure in internal rounds r 4.25r, 4.5r.4.75r with
corresponding reverse rounds 3.25, 3.5, 3.75 appeared in X3

which is the input word position D→ B in Table 5 and have
the same number of cumulative number of modular addition
(i.e., 35) and generated the same average neutral measure
γk = 0.598177289. The same analysis applies for the in-
ternal rounds 4r, 5r, 5.25r, 5.5r, 5.75r. The experimental re-
sults are in Fig. 1 and 2 plot our findings of Table 4, Table 5
and Table 6. The input word position that induces the lower
neutral measures in 4r internal round D corresponds to X3

in the Salsa20 matrix which corresponds to the input word
position D → B when R − r = 4 and has 277 cumulative
number of modular addition. The D → B word positions
move through the high cumulative number of modular addi-
tion for internal round 4r. Furthermore, X4, X9, X14 generate
the lowest average neutral measure when r = 4 which is the
transition of words from D→ B. The same analysis applies
to all possible internal rounds. In summary, we can see that
the neutral measure depends on the input word position to
the inversed round function, and it is influenced by the cu-
mulative number of modular addition. The conditions that
induce high neutral measure depend on the OD bit position
to inverse quarter-round function. This was also claimed in
Sect. 3.5 of [5].

To discuss the upper bounds of the inversed round func-
tion for our attack, we analyze neutral measures for each
inversed round function in detail. Tables 7 and 8 show the
maximum, minimum, average, and median values of neutral
measures γκ for each target round R when r = 4 and 5, re-
spectively. The results were obtained by a comprehensive
analysis of the experimental results described in Sect. 4 Al-
gorithm 4. As illustrated in the tables, the maximum neu-
tral measures in a certain inversed round function (i. e,
R − r = 3 in this case) never exceed the minimum neutral
measure value in a smaller reverse round (i. e, R − r = 2 in
this case) in the same internal round r. For instance, when
R = 7 and the inversed round function R − r = 3 (see Ta-
ble 7), the maximum neutral measure value is γκ = 2−0.8143,
whereas the minimum neutral measure value is γκ = 2−0.5451

for R = 6 and R− r = 2. It is clear that the minimum neutral
measure value for R − r = 2 is higher than the maximum
neutral measure in R− r = 3, and vice versa. It is influenced

Table 7 Maximum, minimum, average, and median values of neutral
measures γκ for each target round R when r = 4, where p and q are word
and bit positions of the OD, respectively, i.e., ∆(r)

p [q].

R
Maximum Minimum

Average Median
γκ p q γκ p q

6 2−0.00144 2 1 2−0.5451 9 7 2−0.1907 2−0.1473

7 2−0.8143 0 18 2−2.4426 14 7 2−1.2708 2−1.1496

8 2−3.5850 1 13 2−10.4926 2 9 2−4.9755 2−5.3066

Table 8 Maximum, minimum, average, and median values of neutral
measures γκ for each target round R when r = 5, where p and q are word
and bit positions of the OD, respectively, i.e., ∆(r)

p [q].

R
Maximum Minimum

Average Median
γκ p q γκ p q

7 2−0.1076 0 18 2−0.4300 12 7 2−0.2206 2−0.1808

8 2−0.7301 0 18 2−2.7284 11 7 2−1.2703 2−1.2019

9 2−3.6889 4 13 2−10.39 12 28 2−5.37 2−5.9

by the cumulative number of modular addition, as discussed
earlier. Our experimental results are reliable when the de-
rived neutral measures γκ are greater than 2−14.5 as we have
used 230 ID samples. From Table 7, all the neutral mea-
sure values are reliable when R = 6, 7, 8, and R − r = 2, 3,
respectively. In Sect. 5.5 Table 13, we calculated the com-
plexity of attack for R − r = 4. The complexity of the attack
is less than Salsa20 security. Hence, we conclude that the
maximum number of reverse rounds in our proposed attack
is 4r. Similarly, from Table 8, all the neutral measure values
when R = 7, 8 and R − r = 2, 3 and 4 are reliable.

5.3 PNB-Based Differential Cryptanalysis of Salsa20

In this section, we first explain the PNB-based differential
cryptanalysis on the reduced round of Salsa20 stream ci-
pher. At first, we study the neutrality measure of all key bits
positions with the respect to all possible OD bit positions.
For this purpose, we use Algorithm 4 in Sect. 4. The Al-
gorithm 4 helps us to find the OD bit with the best average
neutral measure. Once we selected the OD bit with the best
average neutral measure. Then we search all possible ID
positions with the best differential bias εd at the predefined
OD (i.e., OD bit with best average neutral measure) posi-
tion†. Following this, we used the ID, OD pair to search
for the PNBs subset. Afterward, we computed the reverse
bias εa for each threshold γ. Subsequently, we estimated the
complexity of the attack on the reduced round of Salsa20.
We presented a differential attack based on the comprehen-
sive analysis of PNBs on Salsa20/8 with a time complexity
of 2241.62 and data complexity of 231.5. It’s worth mention-
ing, that the obtained neutral measure in Sect. 4 is used only
to select the OD bit with the best neutral measure, we do
not use that neutral measure for the attack complexity es-
timation. The following subsections describe the proposed
cryptanalysis method in detail.

†We searched in 128 possible ID bit positions for a given OD
position with best average neutral measure
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Table 9 ID bit positions with the best median bias ε∗d at given OD
positions in different internal rounds.

Internal Rounds ID OD Bias ε∗d
4r 7,0 1,13 0.154433

4.25r 8,11 3,13 0.000031
4.5r 8,11 3,13 0.000031
4.75r 8,11 3,13 0.000031

5r 7,22 0,18 0.000024
5.25r 6,3 0,18 0.000026
5.5r 9,28 11,13 0.000033
5.75r 9,28 11,13 0.000033

5.4 Analysis of Single-bit Differential

In Sect. 4, we comprehensively analyzed the neutrality of
256-key bits positions with the respect to all possible 512
OD bit positions and selected the OD bit with the best av-
erage neutral measures††. According to the information pre-
sented in Table 6, it can be observed that the OD position
located at (11, 13) within the 5.75 internal round results best
average neutral measure. We selected the OD bit positions
in Table 6 as target OD positions to attack Salsa8. To get the
corresponding ID bit positions with best differential bias at
predefined OD positions in Table 6, we analyzed all pos-
sible 128 ID bit positions for each OD position listed in
Table 6 and selected the ID,OD position with best differ-
ential bias. In this subsection, we present the result of our
search for ID position with the best median bias ε∗d at all
given OD positions in Table 6.

As we can see in Table 9, the differential bias εd sig-
nificantly drops after the 4th round. It is directly affected by
the dramatic increase in the cumulative number of modular
addition. Furthermore, the cumulative number of modular
addition for specific words in the Salsa20 state matrix is the
same in the listed internal rounds, which caused the same
differential bias. Except 4r differential bias ε∗d = 0.154433,
all the obtained differential bias in Table 9 could not be ver-
ified with a constant probability of success. According to
Theorem 1 the obtained differential bias could be trusted
when it is greater than 2−14 as we have used 230 samples
of IVs. The obtained biases are not greater than 2−14 and
hence could not be trusted for the further attack process. To
find the ID,OD pair with the reliable median bias ε∗d, we
decided to search for differential bias given the OD posi-
tions for different internal rounds as described in the Table
10.

To get the ID position with best median bias ε∗d, for
each of 25 key trails we tested 230 IVs. The result is summa-
rized in the Table 11. For the first time, we are reporting new
pairs of ID,OD for single-bit differential cryptanalysis of
Salsa20 stream cipher.

To obtain the number of probabilistic neutral bits
(PNBs), we have used the Algorithm 1 to get the neutral-
ity measure γk of all key bits positions and a threshold

††We considered the average neutral value because we com-
puted the neutrality measure of all 256 key bits with the respect
to each OD bit position.

Table 10 New OD positions to search for reliable bias in different inter-
nal rounds

Internal round ODWord OD bit

4.5r, 5.25r, 5.75r

10 13
11 13
12 13
13 13
14 13
15 13

Table 11 New ID bit positions with the best median bias ε∗d at given
OD positions

Internal Rounds ID OD ε∗d
4.75r 8,27 11,13 0.0651375
4.75r 8,20 11,13 0.009411
4.75r 8,8 11,13 0.006427
4.75r 9,9 11,13 0.0046905
4.75r 9,18 12,13 0.0264355
4.75r 8,5 12,13 0.000984
4.75r 6,2 12,13 0.0004605
4.75r 8, 24 12,13 0.000403

Table 12 The number of PNBs obtained for internal rounds 4.75r for the
target round R=8

Threshold γ 4.75r
γ = 0.1 67
γ = 0.2 46
γ = 0.25 43
γ = 0.27 40
γ = 0.3 37

0.1 ≤ γ ≤ 0.3 to divide the set of key bits into two sub-
sets of significant bits m and non-significant bits n. As the
ID (8, 27) and OD (11,13) have the highest median bias,
we selected the mentioned pair to look for PNBs. We sum-
marize the results obtained from Algorithm 1 in Table 12.
We focus on the 4.75r internal rounds Salsa20/8, this is due
to the following reasons:

• As the cumulative number of modular addition and av-
erage neutral measure are the same for the quarter, half,
and three-quarter internal rounds, we would compute
the complexity of one internal round from quarter, half,
and three-quarter internal rounds†.
• It is difficult to efficiently perform our attack on

Salsa20/9 as we could not observe a high average neu-
tral measure for any OD bit in Sect. 4. It is because
of the high number of modular-addition executed both
in forwarding and backward rounds that dramatically
drop the forward and backward bias.
• Comparing the result of Table 6, we can see that OD

bits provide a better neutral measure using Algorithm 4
when r = 5.75 and R − r = 2.25. As we could not find
valid bias in mentioned internal round thus, we selected
the OD position (11, 13) and r = 4.75 and R− r = 3.25
from Table 11 to attack Salsa20/8.
• Furthermore, we could not find reliable median bias

for 5r, 5.25r, 5.5r, and 5.75r, we decided to select the
4.75r internal round to attack Salsa8 as the higher num-

†We decided to compute the complexity of 4.75r internal
rounds out of the quarter, half, and three-quarter internal rounds.
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Table 13 Summary of attack on Salsa20/8 for threshold γ, PNB bits n,
differential bias εd , and reverse bias εa for 4r internal round.

γ n |ε∗d | |ε∗a | α Time Data

0.1 40 0.154433 0.0004109 11 2248.9 232.8

0.2 32 0.154433 0.00744507 12 2248.6 224.54

0.3 26 0.154433 0.04336255 11 2249.46 219.4

Table 14 Summary of attack on Salsa20/8 for each threshold γ, PNB
bits n, median bias ε∗d , and reverse bias εa for 4.75r internal round.

γ n |ε∗d | |ε∗a | α Data Time

0.3 37 0.0651375 0.01462765 16 225.9 2244.36

0.2 46 0.0651375 0.00173888 19 231.5 2241.62

ber of internal rounds increase the number of PNBs due
to low number inverse cumulative number of modular
addition which results better neutral measure for key
bits positions.

Next section, we estimate the complexity of the attack on
Salsa20/8 considering 4.75r internal rounds.

5.5 Attack Complexity Estimation on Salsa20

To accurately estimate time and data complexities for our
proposed attack on Salsa20/8, the remaining steps should be
performed as follows:

Step 1. We recalculate neutral measures corresponding to
the determined ID-OD pair (∆0

i [ j],∆r
p[q]), and di-

vided secret key bits into two subsets: m-bit subset of
significant key bits and n-bit subset of non-significant
key bits. For step 1, we used Algorithm 1.

Step 2. In the second step, we executed the probabilis-
tic backward computation Algorithm 2 to obtain the
r-round differential biases εa from the backward for
each threshold 0.1 < γ ≤ 0.3 from the obtained
keystream, and approximate the overall median bias
|ε∗| ≈ |εd∗| · |εa∗|† for our attack on Salsa20/8.

Step 3. We run the online phase Algorithm 3 and estimate
the time and data complexities to recover an unknown
key, as described in Eq. (13).

To perform the above steps, for each of 28 key trials,
we run 225 ID samples to compute the neutrality mea-
sure of key bits and obtained the subset of significant
and non-significant key bits. The attack on Salsa20/8
with r = 4.75 is reported in Table 14. The PNBs are
0,13,14,15,16,17,31,43,44,45,70,71,76,96,97,101,113,
114,115,116,117,123,124,125,126,127,135,153,154,155,
156,157,158,159,175,171,172,190,229,230,231,232,233,
234, 247, 248

5.5.1 PNBs Verification

Once we select the subset of PNBs (Sect. 5.5 Step 1), we
need to verify the authenticity of PNB bits. For this purpose,

†According to [5] Under some reasonable independency as-
sumptions, the equality ε = εd ∗ εa holds.

we used Algorithm 5.5.1.

Algorithm 5 [5] PNB bits verification
Require: Random(X, X′,Z,Z′)
Ensure: The absolute value of ε̂

1. Compute (X(R), X′(R)) with ∆(0)
i [ j] = 1; and derive Z = X(0) + X(R)

and Z′ = X′(0) + X′(R).
3. Prepare (X̂(0), X̂′

(0)
) with all key bits set to a random binary value

from (X(0), X′(0)).
4. Compute (Ŷ (r), Ŷ′(r)) with Z − X̂(0) and Z′ − X̂′

(0)
as inputs to the

inversed round function of Salsa20.
5. Obtain Γ̂(r)

p [q] = ŷ(r)
p [q] ⊕ ŷ′(r)

p [q]

6. Compute the ϵ̂ as Pr(Γ̂(r)
p [q] | ∆(0)

i [ j] = 1) = 1
2 (1 + ε̂).

According to [13], if we find ε̂ with low bias (close to
a random event), it implies that the PNBs are selected prop-
erly. We can attack Salsa20/8 with a time complexity of
2241.62 and data complexity of 231.5 with threshold γ = 0.2.
Now, we focus on ε∗a = 0.00173888 (= 2−9.16) when γ = 0.2.
According to Theorem 1, 2

ε2
a
= 219.33 ID samples are suffi-

cient to distinguish the differential bias with a constant prob-
ability of success; thus, our experimental results are reli-
able when γ = 0.2 since we have used 225 IDs samples for
each of 28 key trials. For γ = 0.1, we found 67 PNBs with
ε∗a = 0.00001713635 = (2−15.832) and it could not be con-
stantly verified by our experiment and hence the result are
not reliable for γ = 0.1. To summarize our findings, we have
presented that it is feasible to perform the differential attack
on Salsa20/8 based on the comprehensive analysis of proba-
bilistic neutral bits with time complexity of 2241.62 and data
complexity of 231.5. As shown in Table 2, the existing best
key-recovery attack on Salsa20 is the differential attack on
Salsa20/8 with time complexity of 2243.7, proposed by Dey
and Sarkar [9]; and we improved the differential attack on
Salsa20/8.

6. The Impact on ChaCha

In this section, we present the result of our approach to
the ChaCha stream cipher. We analyzed the neutrality
measure of key bits of ChaCha20/7, ChaCha20/7.25, and
ChaCha20/7.5. However, for the complexity of the attack,
we focused only on ChaCha20/7.25.

6.1 ChaCha20/7

We used the Algorithm 4 to evaluate the average neutrality
measure of all key bits concerning all possible OD bit posi-
tions for r = 3, r = 3.5, and r = 4 internal rounds. Table 15
summarizes the result of our experiment.

Considering the Table 15 the OD bit 0 gives the best
neutral measure regardless of internal rounds. It is affected
by the cumulative number of modular subtraction, the in-
put word position to the inverse quarter round of ChaCha,
and the structure of ChaCha quarter round function. We
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plotted the distribution of neutrality measure of ChaCha20/7
considering the r = 3, r = 3.5, and r = 4 internal rounds
in Fig. 3. The Y-axis shows the neutrality measure of 256
key bits and X-axis represents the OD bit position. The re-
sults in Table 15 and Fig. 3 suggest that the higher number
of internal rounds affects the neutrality measure. The neutral
measure for the internal round r = 3 is lower than r = 3.5.
This is directly impacted by the cumulative number of mod-
ular subtraction executed for different internal rounds. We
decided to attack the higher number of ChaCha rounds with
the internal round r = 3.5. We could also select the r = 4
internal round to attack R = 7, 7.25 or R = 7.75, however,
the forward bias εd would significantly drop for r = 4 in-
ternal round. As the researchers have not focused on the
security of evaluation of ChaCha7.25 rounds, we decided
the use r = 3.5 to attack ChaCha7.25 and reduce the attack
complexity reported by [7].

6.2 ChaCha7.25, ChaCha7.5, ChaCha7.75

In this section, we study the neutrality measure of
ChaCha7.25, ChaCha7.5, ChaCha7.75 considering the in-
ternal round r = 3.5. We have used the Algorithm 4 to esti-
mate the neutrality measures of different target rounds. We
summarized the result in Table 16 and Fig. 4. The X-axis
and Y-axis in Fig. 4 represent the same parameters as Fig. 3.

All things considered, we decided to attack ChaCha7.25

Table 15 Experimental result to find OD bit with the best neutral mea-
sure in different internal rounds for target round R=7

Internal Round ODWord OD Bit Average Neutral Measure

3r 11 0 0.1606
3.5r 9 0 0.3820
4r 4 0 0.6485

Fig. 3 Distributions of neutral measures γκ in each of r = 3, r = 3.5, r = 3.75 internal rounds for the
target round R=7

with an internal round r = 3.5.

6.3 Analysis of Singe-bit Differential

To attack ChaCha7.25 round, we selected the OD
position∆(3.5)

7,0 from Table 16 and searched for all possible
128 bits ID positions with the best differential bias εd. To
identify the ID position with best differential bias εd at pre-
defined OD position, we experimented with the total com-
plexity of 234 (i.e., 26 key trials and 228 IV samples). Ac-
cording to Theorem 1, the obtained bias εd is reliable if it’s
greater than 2−15.5. We analyzed the result and found the
highest forward bias εd is in ∆(0)

12[18]|∆
(3.5)
7[0] = 0.000019. As

the bias, 0.000019 = 2−15.68 could not be verified by the
number of samples we used. Hence, we decided to look for
differential bias εd at ∆(3.5)

0[0] , ∆(3.5)
1[0] , ∆(3.5)

2[0] , ∆(3.5)
3[0] OD positions.

We summarize the result in Table 17.
All the obtained biases in Table 17 are authentic as they

could be verified by the number of samples used during the
experiment thus, we used the obtained pairs with best dif-
ferential bias εd in Table 17 to find the subsets of significant
key bits m and non-significant key bits n.

6.4 Complexity Estimation of Attack on ChaCha7.25

To approximate the attack complexity on ChaCha7.25
rounds, we repeat the steps mentioned in Sect. 5.5 with

Table 16 Experimental result to find OD bit with best neutral measure
in internal rounds r = 3 for target round R=7.25, 7.5, 7.75

Target Round ODWord OD Bit Average Neutral Measure

R = 7.25 7 0 0.2826
R = 7.5 4 0 0.1509
R = 7.75 11 0 0.0747
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Fig. 4 Distributions of neutral measures γκ in each of target rounds R = 7.5,R = 7.5,R = 7.75 for
internal rounds r = 3

Table 17 ID bit positions with best differential bias εd at given OD
positions in r = 3.5 internal rounds.

ID Position OD Position Bias εd
∆

(0)
15[6] ∆

(3.5)
0[0] 0.000463

∆
(0)
12[6] ∆

(3.5)
1[0] 0.000414

∆
(0)
13[6] ∆

(3.5)
2[0] 0.000474

∆
(0)
14[6] ∆

(3.5)
3[0] 0.000472

Table 18 The subset of PNBs n considering different thresholds γ for
r = 3.5 internal rounds

Threshold γ ID, OD Pair Number of PNBs

γ = 0.25 ∆
(0)
15[6] |∆

(3.5)
0[0] 54

γ = 0.25 ∆
(0)
12[6] |∆

(3.5)
1[0] 54

γ = 0.25 ∆
(0)
13[6] |∆

(3.5)
2[0] 54

γ = 0.27 ∆
(0)
14[6] |∆

(3.5)
3[0] 50

the ID,OD positions from Table 17 and considering the
ChaCha stream cipher structure explained in Sect. 2.2. To
find the subsets of m and n, we conducted an experiment
with total complexity of 236. As per the value of thresh-
old γ, we have different numbers of the element in both
subsets of m and n summarized in Table 18. The list
key bits with the respect to γ = 0.25 and ID,OD posi-
tion ∆(0)

13[6]|∆
(3.5)
2[0] identified as probabilistic neutral bits are

[66, 67, 74, 77, 78, 83, 84, 90, 91, 95, 104, 108, 109, 110, 111,
115,123,124,125,126,127,135,155,156,157,158,159,160,
168,169,191,192,193,194,199,200,207,208,211,212,219,
220,221,222,223,224,225,226,227,244,245,246,247,255].
Table 19 sum up our attack on ChaCha7.25/20 for the inter-
nal round r = 3.5, optimal ID,OD pair ∆(0)

13[6]|∆3.5
3[0], the

threshold γ = 0.27 and n = 54. The time and data complex-
ity of the attack was estimated 2254.01 and 251.81. Although,
the time complexity of the attack is not reduced compared
to the proposed attacks on ChaCha7/20. However, it is the

Table 19 The attack complexity on ChaCha7.25 for r = 3.5 internal
rounds

γ ID,OD n εd εa α Time Data

0.25 ∆
(0)
15[6] |∆

(3.5)
0[0] 54 0.000463 0.000151 5 2254.19 252.026

0.25 ∆
(0)
12[6] |∆

(3.5)
1[0] 54 0.000414 0.000156 5 2254.38 252.24

0.25 ∆
(0)
13[6] |∆

(3.5)
2[0] 54 0.000474 0.000158 5 2254.011 251.81

0.27 ∆
(0)
14[6] |∆

(3.5)
3[0] 50 0.000472 0.000413 4 2255.12 248.95

first attack on ChaCha7.25/20, and using the differential-
linear adversary model, the attack could be further improved
which remains an open problem.

7. Discussion

In this subsection, we discuss the differences between the
existing attacks discussed in Sect. 3.2 and our proposed
attack. The existing attacks work on the reduced-round
Salsa20 by (1) searching for the ID and OD differential
pair with the best differential bias and (2) analyzing PNB
based on obtained input/output differential pair. In ad-
dition, some attacks utilize the multi-bit differential bias.
For instance, the [8] has used the ID is ∆(0)

7 [0], the OD
is ∆(5)

9 [0] ⊕ ∆(5)
13 [0] ⊕ ∆(5)

1 [13], the author could reduce the
number of significant key bits to 214, and they reported
εa = 0.000752, εd = −0.233198, and subsequently ε =
−0.000178. Our proposed attack works on the reduced-
round Salsa20 by (1) comprehensively analyzing the OD
bit position with the best average neutral measures and (2)
searching for the ID bit position with the best differential
bias in the obtained OD bit position. Our proposed attack
utilizes the single-bit differential bias, such that the ID is
∆

(0)
9 [12], the OD is ∆(5)

11 [13]. For ChaCha stream cipher, we

operated the ∆(0)
13 [6], the OD is ∆(3.5)

2 [2]. Similarly, the ε ap-
proximated as |ε∗| ≈ |ε∗d | · |ε∗a|. We summarize the differences
between the existing attacks and our attack as follows:
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• To the best of our knowledge, for the first time, we used
the single bit differential bias in 4.75th internal round
bias to attack the 8th round Salsa20. Previous research
mainly used 4th internal round bias to attack 8th round
Salsa20. For instance, the [5] used 4th round bias with
ID,OD pair ∆(0)

7 [31] and ∆(4)
1 [14] with |ε∗d | = 0.131

and ε∗a = 0.0011. However, we used the Salsa20/8
4.75th and ChaCha7.25 r = 3.5 internal round bias to
attack Salsa20/8 and ChaCha7.25.
• We scrutinize the conditions and structure of the

Salsa20 quarter-round function to increase the num-
ber of PNBs. The same analysis is applied to ChaCha
quarter-round function.
• We reported 46 probabilistic neutral bits in 256-bit

Salsa20/8. For the ChaCha7.25, we reported 54 PNBs.
Miyashita and Ito [7] reported 49 PNBs. We added 5
more PNBs which helped to reduce the complexity of
the attack.
• We introduce the new pair of ID and OD to attack

Salsa20/8 and ChaCha7.25 listed in Table 9 and Table
19.
• Our introduced cryptanalysis approach is the first ap-

plication on Salsa20/8 and ChaCha7.25 to date.
• We introduced new ID,OD pairs with high bias. The

introduced bias at specific ID,OD positions could be
extended to higher internal rounds with Differential-
Linear adversary to reduce the complexity of the attack.

It is the first application of its type on the reduced rounds of
Salsa20/8 and ChaCha7.25. For ChaCha7.25 we improved
the attack complexity by a factor of 21.609 from the attack
introduced by Miyashita and Ito [7]. These are notable im-
provements in the field of cryptanalysis. In brief, the less
significant key bits, the less time complexity an adversary
needs to recover an unknown secret key; thus, we demon-
strate its superiority as an effective differential attack on
Salsa20/8 stream cipher by focusing on the comprehensive
analysis of PNBs with the respect to all possible 512 bits
output difference.

8. Conclusion

In this study, we analyzed the distribution of neutrality mea-
sures of 256 key bits positions of Salsa20/8 and ChaCha7,
ChaCha7.25, ChaCha7.5, and ChaCha7.75 rounds. Our
approach focused on the comprehensive analysis of PNB
rather than looking for ID and OD pairs. As a result,
the approach allows us to perform the best differential at-
tack on Salsa20/8 with a time complexity of 2241.62 and
data complexity of 231.5 and on ChaCha7.25 with a time
complexity of 2254.011 and data complexity of 251.81. The
proposed cryptanalysis approach may also contribute to the
improvement of the existing differential attacks on differ-
ent stream ciphers and differential-linear cryptanalysis ap-
proach, which remains an open problem.
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