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SUMMARY The recent decision by the National Institute of Standards
and Technology (NIST) to standardize lattice-based cryptography has fur-
ther increased the demand for security analysis. The Ring-Learning with
Error (Ring-LWE) problem is a mathematical problem that constitutes such
lattice cryptosystems. It has many algebraic properties because it is con-
sidered in the ring of integers, R, of a number field, K. These algebraic
properties make the Ring-LWE based schemes efficient, although some of
them are also used for attacks. When the modulus, q, is unramified in K, it
is known that the Ring-LWE problem, to determine the secret information
s ∈ R/qR, can be solved by determining s (mod q) ∈ Fq f for all prime

ideals q lying over q. The χ2-attack determines s (mod q) ∈ Fq f using chi-

square tests over R/q � Fq f . The χ2-attack is improved in the special case
where the residue degree f is two, which is called the two-residue-degree
χ2-attack. In this paper, we extend the two-residue-degree χ2-attack to the
attack that works efficiently for any residue degree. As a result, the attack
time against a vulnerable field using our proposed attack with parameter
(q, f ) = (67, 3) was 129 seconds on a standard PC. We also evaluate the
vulnerability of the two-power cyclotomic fields.
key words: Ring-LWE, prime ideal, trace map, attack

1. Introduction

Lattice-based cryptography has received a great deal of at-
tention, with the standardization of post-quantum cryptogra-
phy by the National Institute of Standards and Technology
(NIST). On July 5, 2022, four candidate algorithms were
selected for standardization [1], among which CRYSTALS-
KYBER [2], CRYSTALS-Dilithium [3], and FALCON [4]
were lattice-based cryptography. This evidence indicates
that lattice-based cryptography has attracted considerable
attention. The Learning with Errors (LWE) problem [5]
finds a solution to a linear system of equations with errors
in the finite field, which is used to construct lattice-based
cryptography. The Ring-Learning with Errors (Ring-LWE)
problem [6] and the Module-Learning with Errors (M-LWE)
problem [7], [8], which are LWE problems with ring struc-
ture, are known to be more efficient than the normal LWE
problem.

In LWE problems with ring structures, it is com-
mon to use the cyclotomic field as the number field,
e.g., the NIST candidates based on Ring-LWE prob-
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lem, NewHope [9] and LAC [10], and M-LWE problem
base application CRYSTALS-KYBER [2] and CRYSTALS-
Dilithium [3]. On the other hand, it is also known that
a more efficient homomorphic encryption scheme can be
constructed by using a subfield of a cyclotomic field [11].
Therefore, it is necessary to analyze the difficulty of LWE
problems with ring structure over general number fields. In
addition, since the reduction from M-LWE to Ring LWE
was shown in [12], [13], this research focuses on a security
analysis of the Ring-LWE problem.

Let R be the ring of integers of a number field, K. The
Ring-LWE problem is a problem defined on the quotient
ring, Rq = R/qR, of the ring of integers by the modulus q,
where determines the s ∈ Rq from a given Ring-LWE sam-
ples, (ai, bi = ais+ei) ∈ Rq×Rq. In this case, ai ∈ Rq is sam-
pled uniformly at random, and ei ∈ R is sampled from small
elements. Applications that use Ring-LWE problem allow
Ring-LWE samples to be obtained from the public keys or
ciphertexts [6], [10]. These applications have higher secu-
rity levels by increasing the extension degree [K : Q].

The main attack strategies against the Ring-LWE prob-
lem include attacks of reduction to the LWE problem [14],
[15], and attacks using error distribution bias [16]–[18].

The attacks of reduction to LWE problem [14], [15]
are performed using a reduction algorithm such as LLL [19]
and BKZ [20]. While these attacks are possible with 1 or 2
Ring-LWE samples, the success probability and attack time
strongly depend on the extension degree due to the reduction
algorithm’s property.

If the modulus q is unramified in K, Ring-LWE prob-
lem can be converted to Ring-LWE (mod q) problem that
finds s (mod q) ∈ Fq f from (ai (mod q), bi (mod q)) ∈
Fq f × Fq f . Here f is called the residue degree and is
uniquely determined by the number field K and the mod-
ulus q. In [16]–[18], which uses the distribution bias of the
error ei (mod q) ∈ Fq f , chi-square tests are used to find s
(mod q) ∈ Fq f . Since the success probability and attack
time depend strongly on the residue degree f and the er-
ror distribution, it can be an effective attack even for large
extension degrees. On the other hand, the chi-square test re-
quires a large number of samples for the attack. It is easy
to obtain sufficient Ring-LWE samples of the same secret in
applications, so proper error sampling is necessary to avoid
the attack.

The χ2-attack proposed in [16] assumes the distribu-
tion of ei (mod q) ∈ Fq f is distinguishable from the uniform
distribution on Fq f . The χ2-attack requires O(q f ) samples
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since chi-square tests are performed in Fq f . Furthermore,
the χ2-attack is a brute force attack, which is not an efficient
attack. However, the χ2-attack was improved in the case
where the residue degree f is two in [17], which is called
the two-residue-degree χ2-attack. Then, the coset Fq2/Fq

can reduce the number of statistical tests, and performing
chi-square tests on Fq using the Frobenius map can reduce
the number of samples from O(q2) to O(q).

In our preliminary work [18], we extended the two-
residue-degree χ2-attack to the prime-residue-degree and
the composite-number-residue-degree χ2-attack by using
the trace map instead of the Frobenius map. Thus, the χ2-
attack can efficiently work in not just those two but also
any residue-degree case. Both cases require certain condi-
tions, but the composite fields, Q(ζp,

f√
d), have been shown

to be vulnerable to these attacks. The number of oper-
ations in Fq of the trace map from Fq f to Fq under the
aforementioned conditions can be reduced from O((n1.67 +

log(q)n(log(n)) log log(n)) · log(n)) to O(1). This allows for
efficient attacks. In the χ2-attack, it took unrealistic time to
solve the Ring-LWE (mod q) problem even with the small
parameters used in the experiments. These problems can be
resolved using our attacks in a matter of hours on a standard
PC.

This paper is the full version of [18]. Compared with
our preliminary work [18], the following parts are added and
improved:

1. We merged the prime-residue-degree and the compo-
site-number-residue-degree χ2-attack into one gener-
alized attack. The generalized attack also efficiently
works for two-residue-degree which is the target in
[17].

2. We evaluate the security of the two-power cyclotomic
fields. The results show that our attack over the com-
posite fields works more effectively than that over the
two-power cyclotomic fields. The fact that the NIST
candidate for standardization chooses the two-power
cyclotomic fields rather than the composite fields re-
flects our results. However, careful error sampling is
necessary over any number fields.

Our paper is organized as follows. Section 2 describes
the algebraic and lattice problems required in this study, in-
cluding the Ring-LWE (mod q) attack methods and their
security analysis. Section 3 describes our proposed attack
method. Section 4 shows the existence of number fields that
are vulnerable to the attack, and presents the experimental
comparison between the χ2-attack and the proposed attack
on the vulnerable fields. Section 5.2 shows that the two-
power cyclotomic fields are secure to the proposed attack,
and Sect. 6 concludes the paper.

2. Preliminary

This section describes the mathematical facts required for
this study. We also explain the attack methods on the Ring-

LWE (mod q) problem [6], [16] and their security analy-
sis [21], which are used as a reference for our research.

2.1 Algebra and Statistical Background

In this subsection, we describe the algebraic knowledge and
Pearson’s chi-square test used in the attack.

Suppose that L is an extension of the field K. Let
Aut(L/K) be the group of all K-isomorphisms from L to L.
When an algebraic extension L/K is normal and separable,
L/K is called a Galois extension, and Gal(L/K) = Aut(L/K)
is called the Galois group of L/K. In particular, when
Gal(L/K) is a cyclic group, the corresponding Galois ex-
tension L/K is called cyclic extension.

Suppose q = pk for prime number p and Fqn/Fq is
a finite cyclic extension of degree n. Then, σ : Fqn →
Fqn ;α �→ αq is a generator of Gal(Fqn/Fq), and there ex-
ists an irreducible polynomial g(x) ∈ Fq[x] of degree n
such that Fqn � Fq[x]/(g(x)). Arbitrary α ∈ Fqn is re-
garded as a polynomial of degree less than n and can be
represented as α =

∑
0≤i<n αiξ

i(αi ∈ Fq) using the symbol
ξ � x (mod g) ∈ Fqn . Suppose d is a divisor of n such that
n = dr for some integer r, then Fqd is a subfield of Fqn , and
Fq ⊂ Fqd ⊂ Fqn is a finite separable extension. Arbitrary
β ∈ Fqd can be represented as β =

∑
0≤i<n, r|i βiξ

i(βi ∈ Fq).
In this study, the computational complexity is evaluated

in terms of the number of operations in Fq (sum, subtraction,
multiplication, and division). For α, β ∈ Fqn � Fq[x]/(g(x)),
the sum or subtraction α ± β (mod g(x)) takes O(n) oper-
ations in Fq, and the multiplication α · β (mod g(x)) takes
O(M(n)) operations in Fq. The division α/β (mod g(x))
takes O(M(n) log n) operations in Fq, and αq (mod g(x))
takes O(M(n) log q) operation. Here, the symbol M(n) de-
notes the upper bound of the operations in Fq on the multi-
plication of two polynomials of degree n over Fq, M(n) =
O(n(log n) log log n). The symbol C(n) denotes the upper
bound of the modular polynomial composition of opera-
tions, C(n) = O(n1.67) [22].

Our attack used the trace map to perform chi-square
tests over Fq.

Definition 1 (Trace map). Suppose L/K is a separable
extension of degree n, and K̄ is the algebraic closure of
K containing L. Let {σ1, σ2, · · · , σn} be the entire K-
isomorphisms from L to K̄. Then, the trace map from L to K
is defined as

TrL/K(α) � σ1(α) + σ2(α) + · · · + σn(α).

The trace map is an additive homomorphism, TrL/K(α+
β) = TrL/K(α) + TrL/K(β) for ∀α, β ∈ L. For γ ∈ K, we have
TrL/K(γ · α) = γ · TrL/K(α). If L/M and M/K are a finite
separable extension, TrL/K(α) = TrM/K(TrL/M(α)). The trace
map from Fqn to Fqd is TrFqn /Fqd (α) = α + αqd

+ αq2d
+ · · · +

αq(r−1)d
and TrFqd /Fq (TrFqn /Fqd (α)) = TrFqn /Fq (α).

Kaltofen et al. proposed the trace-like map algorithm
to determine TrFqd /Fp (α) = α+αp +αp2

+ · · ·+αpkd−1
in [22],
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where α is a random element in Fq[x]/(g(x)). It requires
O((nC(k) + C(n)M(k) + log(p)M(n)M(k)) log(kd)) opera-
tions in Fp. In the special case where k = 1, d = n and
g(x) is a monic irreducible polynomial, the trace-like map
is equivalent to the trace map from Fpn to Fp, which can
be computed by O((C(n) + log(p)M(n)) log(n)) operations
in Fp.

Pearson’s Chi-square Test

Pearson’s chi-square test is a statistical hypothesis test in
which a hypothesis is proven from the given samples [23],
[24]. Suppose that a finite set, S , is divided into subsets
S 1, S 2, · · · , S r. Let pi be the probability that samples from
the assumed distribution are included in S i. When there are
n samples in S , the expected number of samples included
in each S i is ci � npi. If the actual number of samples in
subset, S i, is fi, then we define the chi-square test statistic,
χ2 =

∑r
i=1

( fi−ci)2

ci
. For risk ratio α, we set δ = F−1

r−1(α).
Here, Fr−1(x) is the cumulative distribution function of the
χ2 distribution with r − 1 degree of freedom. If χ2 < δ,
the distribution of samples is consistent with the hypothesis,
otherwise, we reject the hypothesis.

The chi-square test has the applicability criterion that
the expected values ci < 5 should not exceed 20% of the to-
tal. The chi-square test requires a sufficient number of sam-
ples to satisfy this criterion. Previous works and our pro-
posed attack use chi-square tests under the hypothesis that
the given samples in Fq (or Fq f ) are uniformly distributed.
Therefore, at least 5 · q (or 5 · q f ) samples are required.

2.2 Discrete Gaussian Distribution

In the security analysis of Ring-LWE problem, more flex-
ible arguments can be done by using the space H. Here,
the space H is defined by H � {(x1, · · · xn)T ∈ Rs1 ×
C2s2 : xs1+s2+ j = xs1+ j, 1 ≤ ∀ j ≤ s2} ⊆ Cn for positive inte-
gers s1, s2 such that n = s1 + 2s2. For u = (v1, · · · , vn)T ,w =
(w1, · · · , wn)T ∈ H, define the inner product by 〈u,w〉 =∑

1≤i≤n viwi, and the norm by ‖v‖ = 〈u, u〉.
Definition 2 (discrete Gaussian distribution). Let ρr : H →
(0, 1] ; x �→ e−π‖x‖2/r2

for r > 0. For a lattice Λ ⊂ H, the
discrete Gaussian distribution overΛ with width r is defined
by probability density function

∀x ∈ Λ, DΛ,r(x) =
ρr(x)∑
y∈Λ ρr(y)

.

The smoothing parameter and the following lemmas
are known to describe the properties of the discrete Gaus-
sian distribution. For details, refer to [25].

Lemma 1. Suppose Λ ⊂ H is a lattice. Let DΛ,r denote
discrete Gaussian over Λ with a width r. Suppose c is a
positive constant such that c ≥ r√

2π
. Let u ∈ Λ be a sam-

ple from DΛ,r and Cs = s
√

2πe · e−πs2
. Then the following

inequality holds:

Prob(‖u‖2 > c
√

n) ≤ Cn
c/r.

Definition 3. For an n-dimensional lattice Λ ⊂ H, and pos-
itive real ε > 0, we define its smoothing parameter ηε(Λ) to
be the smallest r such that ρ1/r(Λ∗ \ {0}) ≤ ε.
Lemma 2. For any n-dimensional lattice Λ ⊂ H and posi-
tive real ε > 0, we have

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))
π

· λn(Λ).

In particular, for any superlogarithmic function ω(log n),
there exists a negligible function ε(n) such that ηε ≤√
ω(log(n)) · λn(Λ).

Lemma 3. For any r > 0, and lattice Λ, the statistical dis-
tance between DΛ,r (mod Λ) and the uniform distribution
over Λ is at most 1

2ρ1/r(Λ∗ \ {0}). In particular, for any ε > 0
and any r ≥ ηε(Λ), the statistical distance is at most ε/2.

In particular, we use Lemma 1 to show that there are
number fields that are vulnerable to our proposed attack.
The χ2-attack and our proposed attack assume that the er-
ror distribution over the prime ideal is distinguishable from
the uniform distribution. In other words, if the error width r
is too large, these attacks will fail as Lemma 3 indicates.

2.3 Algebraic Number Theory

Let K be a number field of degree n with the ring of integers
R and σ1, σ2, · · · , σn be the distinct embeddings of K into
the complex number field. Let r1, r2 be the number of real
embeddings and conjugate pairs of complex embeddings of
K respectively, then n = r1+2r2. We assumeσ1, σ2, · · · , σr1

are real embeddings and the complex conjugate σr1+r2+ j =

σr1+ j for 1 ≤ j ≤ r2. The canonical embedding σ : K → H
is defined as follows:

σ : K → H ; x �→ (σ1(x), · · · , σn(x))T .

The norm of x ∈ K is defined by ‖x‖ � ‖σ(x)‖. The trace
map from K to Q can be defined by the sum of the embed-
dings:

Tr : K → Q ; a �→
∑

1≤i≤n

σi(a).

Notice that for any a, b ∈ K, we have

Tr(a + b) = Tr(a) + Tr(b),

Tr(a · b) =
∑

1≤i≤n

σi(a)σi(b) = 〈σ(a), σ(b)〉.

For a fractional ideal I ⊆ R, σ(I) ∈ H is called an
ideal lattice. When b1, · · · , bn is an integral basis of I,
(σ(b1), · · ·σ(bn)) is a basis of σ(I). We define the vol-
ume of I as vol(I) � vol(σ(I)) and the discriminant of
K as disc(K) � vol(R)2. The dual ideal is defined as
I∨ = {x ∈ K : Tr(xI) ⊂ Z}. The canonical embedding of
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I∨ is σ(I∨) = σ(I)∨. Also, I∨ is a fractional ideal of R, and
(I∨)∨ = I. For an integral basis B = (b j) of I, its dual basis
B∨ = (b∨j ), which is characterized by Tr(b j · b∨k ) = δ jk, is an
integral basis of I∨. Moreover, I∨ = I−1 · R∨, where R∨ is
the dual ideal of R. The following lemma is known for the
dual basis [26].

Lemma 4. Let K = Q(α) and let f (x) ∈ Q[x] be the mini-
mal polynomial of α. Write

f (x) = (x − α)(cn−1(α)xn−1 + · · · + c1(α)x + c0(α)),

where ci(α) ∈ K. The dual basis to {1, α, · · · , αn−1} is{
c0(α)
f ′(α) ,

c1(α)
f ′(α) , · · · , cn−1(α)

f ′(α)

}
.

2.4 Ring-LWE Problem

In the original Ring-LWE problem, the secret is selected
from the dual space of the ring of integers, R∨ [6]. How-
ever, for simplicity, the secret is often selected from R. In
[21], [27], it was shown that the two problems of dual Ring-
LWE and non-dual Ring-LWE are equivalent. This paper
proposes an attack on the non-dual Ring-LWE problem,
without considering the dual space.

Definition 4. Suppose K/Q is a number field with the ring
of integers, R, and quotient ring, Rq = R/qR, for a positive
integer q. Let r > 0 be a positive real number and fix s ∈ Rq.
Then, q is called the modulus, and s is called the secret.
When a is chosen to be uniformly distributed on Rq and e is
chosen according to an error distribution ψ over R, (a, b =
as + e) ∈ Rq × Rq is called a Ring-LWE sample, and e is
called an error.

When analyzing the non-dual Ring-LWE problem us-
ing the discrete Gaussian distribution ψ = Dσ(R),r, one must
consider the sparsity of the ideal lattice, σ(R), measured by
its volume [28]. For width r of the discrete error distribu-
tion, we denote the scaled error width r0 as

r0 = r/vol(σ(R))1/n = r/disc(K)1/2n.

There are two types of Ring-LWE problems: the deci-
sion Ring-LWE and search Ring-LWE problems.

Definition 5 (search non-dual Ring-LWE). Given polyno-
mially many Ring-LWE samples (a, b) ∈ Rq × Rq, the search
Ring-LWE problem determines the secret s ∈ Rq from these
samples.

Definition 6 (decision non-dual Ring-LWE). Given polyno-
mially many samples (a, b) ∈ Rq×Rq, the decision Ring-LWE
problem distinguishes whether the samples are Ring-LWE
samples or samples selected according to a uniform distri-
bution on Rq × Rq.

Suppose q is a prime ideal in K that lies above a
prime number q. Then, φ : Rq → R/q;α �→ α (mod q)
is a ring homomorphism, and R/q � Fq f , where f is the

residue degree. With the homomorphism φ, we can embed
the Ring-LWE sample (a′, b′ = a′s′ + e′) ∈ Rq × Rq into
(a, b = as + e) ∈ Fq f × Fq f . That is, we can use φ to convert
the Ring-LWE problem over Rq into a problem in the finite
field Fq f .

Definition 7 (search Ring-LWE (mod q)). Let q be a prime
ideal of K that lies above a prime number q. Given polyno-
mially many Ring-LWE samples (a, b) ∈ Rq × Rq, the search
Ring-LWE problem (mod q) determines s (mod q) ∈ Fq f

from these samples.

The following lemma is known for the Ring-LWE
(mod q) problem [16]. This lemma asserts that if we can
determine all s (mod qi), then we can solve the Ring-LWE
problem on Rq using the Chinese Remainder Theorem.

Lemma 5. Let K/Q be a finite Galois extension of degree n
with the ring of integers R and let q be a prime unramified
in K. Then, there exists a unique divisor r of n and a set of r
distinct prime ideals q1, · · · qr of R such that qR = q1 · · · qr.
For all i, R/qi � Fq f where f = n/r, and Rq � Fq f ×· · ·×Fq f .

2.5 Attacks for Ring-LWE (mod q)

The χ2-attack

Chen et al. proposed the χ2-attack to find the secret s
(mod q) ∈ Fq f by brute force [16]. The basic concept of
this attack is based on the assumption that the distribution
ψ (mod q) is distinguishable from a uniform distribution in
the finite field, Fq f .

In this attack, the following conditions were assumed:

• The modulus q is a prime of residue degree, f , in the
number field, K.

• Suppose e′ ∈ Rq are sampled from ψ. The distribution
of φ(e′) is distinguishable from the uniform distribution
on Fq f .

The attack procedure is presented in Algorithm 1. In the
χ2-attack, chi-square tests are performed on Fq f . There-
fore, O(qf ) samples are required for this attack. Remark
that since every ciphertext is available as a sample, it is not
serious to obtain the samples needed for the attack. How-
ever, the larger the number of samples, the more computa-
tion time is required, making it difficult to execute the attack.
Furthermore, the number of guesses was O(q f ) because the
test was performed for each guess, g. Thus, the total com-
plexity of the χ2-attack is O(q2 f M( f )).

The two-residue-degree χ2-attack

In the χ2-attack, both the number of samples and the num-
ber of guesses depend on the residue degree f . Therefore, it
is difficult to attack when the residue degree is high. Chen
et al. showed that when the residue degree is two, the com-
putational complexity of the attack can be reduced using
cosets and a Frobenius map [17].
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Algorithm 1 The χ2–Attack
Input: S : collection of Ring-LWE samples, q: a prime ideal, α : risk ratio
Output: s (mod q), NOT-RLWE or INSUFFICIENT-SAMPLES
1: δ← F−1

q f −1
(α), S′ ← ∅, G ← ∅

2: for (a, b) in S do
3: a, b← a (mod q), b (mod q)
4: add (a, b) to S′
5: end for
6: for g in Fq f do
7: E ← ∅
8: for (a, b) in S′ do
9: e′ ← b − ag

10: add e′ to E
11: end for
12: χ2(E)← the chi-square test statistic of E
13: if χ2(E) > δ then add g to G
14: end for
15: if G = ∅ then return NOT-RLWE, else if G = {g} then return g, else

return INSUFFICIENT-SAMPLES

Algorithm 2 The two-residue-degree χ2-attack
Input: S : collection of Ring-LWE samples, q: a prime ideal, α : risk ratio
Output: s (mod q), NOT-RLWE or INSUFFICIENT-SAMPLES
1: δ← F−1

q−1(α), S′ ← ∅, G ← ∅
2: for (a, b) in S do
3: a, b← a (mod q), b (mod q)
4: add (a, b) to S′
5: end for
6: for j = 1 to q do
7: E ← ∅
8: for (a, b) in S′ do
9: if a ∈ Fq then continue

10: m j(a, b)← F(b)−b−F(at j)
+

at jF(a) − a ∈ Fq

11: add m j(a, b) to E
12: end for
13: χ2(E)← the chi-square test statistic of E
14: if χ2(E) > δ then let s0 the most frequent value of E and add s0 + t j

to G
15: end for
16: if G = ∅ then return NOT-RLWE, else if G = {g} then return g, else

return INSUFFICIENT-SAMPLES

In this attack, the following conditions were assumed:

• The modulus q is a prime of residue degree two in the
number field K.

• Suppose e′ ∈ Rq are sampled from ψ. The probability
that φ(e′) = e0 + e1ξ lies in the prime subfield Fq of Fq2

is computationally distinguishable from 1/q.

The second condition is the distribution of e1 is not uniform
on Fq, and the probability e1 = 0 (mod q) is higher than
1/q. Suppose {t1, · · · , tq} is a fixed complete set of coset
representatives of Fq2/Fq. A unique index, i, and s0 ∈ Fq

exist such that φ(s′) = s = s0 + ti. The number of guesses
is reduced by finding s0 and ti, respectively. The Frobenius
map, denoted by F(a) � aq (∀a ∈ Fq2 ), allows chi-square
tests to be performed in a small sample space, and thus the
number of samples required for the attack is reduced.

The attack procedure is presented in Algorithm 2. In
the two-residue-degree χ2-attack, chi-square tests are per-
formed on Fq, and then O(q) samples are required for

this attack. Furthermore, because chi-square tests are per-
formed for t1, · · · , tq, the number of guesses is O(q). Thus,
the total complexity of the two-residue-degree χ2-attack is
O(q2 log qM( f )).

2.6 Analysis of Error Distribution on a Prime Ideal

If ψ (mod q) and U(R/q) are distinglshable, then the χ2-
attack succeeds. Peikert showed that if there exists a small
element w ∈ q∨, ψ (mod q) and U(R/q) are distinish-
able [21].

Since R/q and Fq f are isomorphic, there exists a
ring homomorphism h : R/q → Fq f . Since Fq f is a f -
dimensional vector space over Fq = Zq, an arbitrary h(r) ∈
Fq f can be uniquely represented by some fixed Zq-basis and
f -tuple of coefficients. Moreover, the i-th coefficient of
h(r), hi(r), can be represented by an additive homomorphism
hi : R/q→ Fq ; x �→ q · Tr(wi · x) using some wi ∈ q∨. Since
Tr(wi · x) ∈ Q, suppose Λ = σ(q) and w = σ(wi) ∈ Λ∨,
then Tr(wi · x) = Tr(wi · x) = Tr(wi · x) = Tr(wi · x) =
〈σ(wi), σ(x)〉 ∈ 〈w, σ(R) (mod Λ)〉.
Lemma 6. LetΛ be any lattice, w ∈ Λ∨ \{0} be any nonzero
element of its dual lattice. For any r > 0, suppose Dr is
the gaussian distribution. Then for x ← Dr (mod Λ), the
distribution of 〈w, x〉 (mod Z) is Dr‖w‖ (mod Z), and

Ex←Dr (mod Λ)[cos(2π〈w, x〉)] = exp(−π(r‖w‖2)).

In particular, if r‖w‖ = O(1), then the expectation is Ω(1).

In the case of x ← U(H) (mod Λ), 〈w, x〉 (mod Z)
is a random value on [0, 1) independently from w, so
E[cos(2π〈w, x〉)] = 0. On the other hand, if x ← Dr

(mod Λ) and r‖w‖ is sufficiently small, E[cos(2π〈w, x〉)] =
exp(−π(r‖w‖2)) � 1. That is, when there exists a small ele-
ment w ∈ Λ = σ(q), ψ (mod q) and U(R/q) can be distin-
guished. Lemma 6 assumes a continuous Gaussian distribu-
tion Dr, but it is also valid for a discrete Gaussian distribu-
tion Dσ(R),r. Furthermore, in Sect. 4.3 of [21], the usefulness
of the analysis using the dual basis of R∨ ⊂ q∨ is also shown.

3. Attacks on Ring-LWE (mod q) by Trace Map

In this section, we describe the details of our proposed at-
tack, which generalizes our preliminary work [18]. Our
attack reduces the number of samples by performing chi-
square tests on Fq and also reduces the number of guesses
by using cosets Fq f /Fqm , where m is the divisor of f and
f = mn. This attack assumes that the error distribu-
tion ψ (mod q) is distinguishable from the uniform dis-
tribution in the finite field. It also require certain condi-
tions of (Fq f � Fq[x]/(x f − c) � Fqm [x]/(xn − c1) and
Fqm � Fq[xn]/((xn)m − c) (c ∈ Fq, c1 =

m
√

c ∈ Fqm )).
For any divisor m of f , Fqm is a subfield of Fq f . Chi-

square tests are performed on Fq by using the trace map
from Fq f to Fqm and Fqm to Fq in two steps. In the special
case where f is a prime residue degree, we set m = 1, and
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use one trace map from Fq f to Fq.
The computational complexity of the trace map from

Fqn to Fq, which is the point of our proposal, is O((C(n) +
log(q)M(n)) · log(n)) [22]. However, by using Theorem 1
shown below, if an irreducible polynomial exists such that
Fqn � Fq[x]/(xn − c), it can be derived by O(1) operations in
Fq, independent of the extension degree n.

Theorem 1. Suppose α =
∑

0≤l<n αlξ
l (αk ∈ Fq) is an ele-

ment of Fqn . If Fqn � Fq[x]/(xn − c) (c ∈ Fq), the trace map
of the finite field Tr : Fqn → Fq is Tr(α) = n · α0.

Proof. The roots of xn − c are c
1
n · ζ j

n ( j = 0, 1, · · · , n − 1);
thus, we choose ξ = c

1
n · ζn, and any α ∈ Fan can be de-

noted as α =
∑

0≤i<n aiξ
i =

∑
0≤i<n ai(c

1
n · ζn)i (ai ∈ Fq).

The distinct roots c
1
n ζ

j
n and c

1
n ζ

j′
n are conjugate; thus there

exists σ ∈ Gal(Fq f /Fq) such that σ(c
1
n ζ

j
n) = c

1
n ζ

j′
n . More-

over σ(c
1
n ζn) � σ′(c

1
n ζn) for distinct σ, σ′ ∈ Gal(Fq f /Fq);

therefore
∑
σ∈Gal(Fqn /Fq) σ(c

1
n · ζn) =

∑
0≤ j<n c

1
n · ζ j

n. Then we
have

Tr(α) =
∑

σ∈Gal(Fqn /Fq)

σ(α)

=
∑

σ∈Gal(Fqn /Fq)

σ

⎛⎜⎜⎜⎜⎜⎜⎝
∑

0≤i<n

ai · ξi

⎞⎟⎟⎟⎟⎟⎟⎠
=

∑
σ∈Gal(Fqn /Fq)

∑
0≤i<n

ai · σ(ξ)i

=
∑

0≤i<n

ai

∑
σ∈Gal(Fqn /Fq)

σ(c
1
n · ζn)i

=
∑

0≤i<n

ai

∑
0≤ j<n

(c
1
n ζ

j
n)i =

∑
0≤i<n

aic
i
n

∑
0≤ j<n

ζ
i j
n .

∑
0≤ j<n ζ

i j
n is n and 0 for i = 0 and i � 0, respectively; thus,

Tr(α) = n · a0. �

We propose a basic approach and an improved ap-
proach. The basic and improved approaches derive the trace
value by Tr(α) =

∑
0≤l<n α

ql
and Tr(α) = n · α0, respectively.

3.1 The Improved χ2-Attack

Basic approach

In our proposed attack, we assume the following conditions.
The condition of the error distribution, the second one, has
a significant effect on the success of both attacks.

• The modulus q is a prime of residue degree f = mn in
the number field K. Moreover, there exists irreducible
polynomials g(x) = x f − c ∈ Fq[x], g1(x) = xn − c1 ∈
Fqm [x], g2(xn) = (xn)m − c ∈ Fq[xn] (c ∈ Fq, c1 =

m
√

c ∈
Fqm ) such that Fq f � Fq[x]/(g(x)) � Fqm [x]/(g1(x)) and
Fqm � Fq[xn]/(g2(xn)).

• Suppose e′ ∈ Rq are sampled from ψ and e = φ(e′) =∑
0≤l< f elξ

l. The distribution of ek is distinguishable

from the uniform distribution on Fq for some index
k (0 ≤ k < f ). Furthermore, the probability that ek = 0
(mod q) is the highest.

The complete set of coset representatives for Fq f /Fqm

is {t1, · · · , tq f−m } = {∑0≤l< f , n�l αlξ
l | αl ∈ Fq} because Fqm =

{∑0≤l< f , n|l αlξ
l | αl ∈ Fq}. There is a unique index i and

s0 =
∑

0≤l< f ,n|l(s0)lξ
l ∈ Fqm such that φ(s′) = s = s0 + ti. We

set θ = ξ f−k. For each j (1 ≤ j ≤ q f−m), ∀a ∈ Fq f such that
TrFq f /Fqm (aθ) ∈ Fq \ {0}, we define mj as follows:

mj(a, b) �
TrFq f /Fqm (bθ) − TrFq f /Fqm (at jθ)

TrFq f /Fqm (aθ)
∈ Fqm .

Theorem 2 holds for the distribution of TrFqm /Fq

(mj(a, b)), which is similar to the error coefficient distribu-
tion, ek if and only if j = i. We can determine ti because
the distribution of TrFqm /Fq (mj(a, b)) is not uniform but the
related distribution of ek.

Theorem 2. Let a be obtained uniformly at random from
Fq f so that TrFq f /Fqm (aθ) ∈ Fq \ {0} and e = φ(e′), where e′

is sampled from Dτ(R),r. For each 1 ≤ j ≤ q f−m, we have

1. If j � i, TrFqm /Fq (mj(a, b)) is uniformly distributed in
Fq.

2. If j = i, then TrFqm /Fq (mj(a, b)) = TrFqm /Fq (s0) +
TrF

q f /Fq (eθ)

TrF
q f /Fqm (aθ)

Proof. Since b = as + e and s = s0 + ti,

mj(a, b)

=
TrFq f /Fqm (bθ) − TrFq f /Fqm (at jθ)

TrFq f /Fqm (aθ)

=
TrFq f /Fqm ((as + e)θ) − TrFq f /Fqm (at jθ)

TrFq f /Fqm (aθ)

=
TrFq f /Fqm (as0θ + atiθ + eθ) − TrFq f /Fqm (at jθ)

TrFq f /Fqm (aθ)

=
TrFq f /Fqm (a(ti − t j)θ)

TrFq f /Fqm (aθ)
+ s0 +

TrFq f /Fqm (eθ)

TrFq f /Fqm (aθ)
.

In the case of j � i, let δ = ti − t j ∈ {∑1≤l≤ f , n�l αlξ
l | αl ∈

Fq}, then mj(a, b) =
TrF

q f /Fqm (aθδ)

TrF
q f /Fqm (aθ) + s0 +

TrF
q f /Fqm (eθ)

TrF
q f /Fqm (aθ) . From

Theorem 1, aθ is uniformly sampled from the set {α0 +∑
1≤l≤ f , n�l αlξ

l | α0 ∈ F∗q, αl ∈ Fq}, then TrFq f /Fqm (aθ) and
TrFq f /Fqm (aθδ) can be assumed to be independent. There-

fore, Pr(TrFq f /Fqm (aθ) = c, TrFq f /Fqm (aθδ) = d) = 1
qm(q−1) for

∀c ∈ Fq \ {0} and ∀d ∈ Fqm . For ∀z′ ∈ Fqm , let z = z′ − s0.
From the following equality, we can derive that mj is uni-
formly distributed when j � i,

Pr(mj(a, b) = z′)
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= Pr

⎛⎜⎜⎜⎜⎜⎝
TrFq f /Fqm (aθδ)

TrFq f /Fqm (aθ)
+

TrFq f /Fqm (eθ)

TrFq f /Fqm (aθ)
= z

⎞⎟⎟⎟⎟⎟⎠
=

∑
x+y=z

Pr

⎛⎜⎜⎜⎜⎜⎝
TrFq f /Fqm (aθδ)

TrFq f /Fqm (aθ)
= x,

TrFq f /Fqm (eθ)

TrFq f /Fqm (aθ)
= y

⎞⎟⎟⎟⎟⎟⎠
=

∑
x+y=z

∑
c∈Fq\{0}

Pr(TrFq f /Fqm (aθδ) = cx,

∑
x+y=z

TrFq f /Fqm (eθ) = cy, TrFq f /Fqm (aθ) = c)

=
∑

x+y=z

∑
c∈Fq\{0}

Pr(TrFq f /Fqm (eθ) = cy)

∑
x+y=z

·Pr(TrFq f /Fqm (aθδ) = cx,Tr(aθ) = c)

=
1

qm(q − 1)

∑
y∈Fqm

∑
c∈Fq\{0}

Pr(TrFq f /Fqm (eθ) = cy)

=
q − 1

qm(q − 1)

∑
y∈Fqm

Pr(TrFq f /Fqm (eθ) = y) =
1

qm
.

TrFqm /Fq (mj(a, b)) is uniformly distributed on Fq when i �
j because mj(a, b) is uniformly distributed on Fqm , and
TrFqm /Fq is an additive homomorphism and surjective.

On the other hand when j = i, mi(a, b) =

s0 +
TrF

q f /Fqm (eθ)

TrF
q f /Fqm (aθ) . We assume TrFq f /Fqm (aθ) ∈ Fq, then

TrFq f /Fqm (aθ)−1 ∈ Fq, and so

TrFqm /Fq (mj(a, b))

= TrFqm /Fq (s0) + TrFqm /Fq

⎛⎜⎜⎜⎜⎜⎝
TrFq f /Fqm (eθ)

TrFq f /Fqm (aθ)

⎞⎟⎟⎟⎟⎟⎠
= TrFqm /Fq (s0) +

TrFqm /Fq (TrFq f /Fqm (eθ))

TrFq f /Fqm (aθ)

= TrFqm /Fq (s0) +
TrFq f /Fq (eθ)

TrFq f /Fqm (aθ)
.

�

If a ∈ Fq f is chosen uniformly at random,
TrF

q f /Fqm (eθ)

TrF
q f /Fqm (aθ)

will be uniformly random on Fqm . In this case, it
is impossible to distinguish between the distribution of
TrFqm /Fq (mj(a, b)) and the uniform distribution on Fq. There-
fore, we restrict the samples a used in the attack to
TrFq f /Fqm (aθ) ∈ Fq \ {0}.

The distribution of TrFqm /Fq (mj) is not uniform if and
only if the index j = i; therefore, we can determine the value
of ti. We can also obtain TrFqm /Fq (s0) = m · (s0)0 from the
most frequent value of TrFqm /Fq (mj). If the residue degree
is prime and the attack uses the subfield Fq, i.e. m = 1,
TrFqm /Fq (s0) = s0, and thus we can determine s = s0 + ti.
In the case of m � 1, we derive s0 =

∑
0≤l< f , n|l(s0)lξ

l by
applying the χ2-attack. We guess the value of s0 from (s0)0

by brute-force, and let g be the guess value. For e′ � b −
a(g + ti), we determine s0 by calculating the distribution of

Algorithm 3 The improved χ2-attack
Input: S : collection of Ring-LWE samples, q: a prime ideal, α : risk ratio
Output: s (mod q), NOT-RLWE or INSUFFICIENT-SAMPLES
1: δ← F−1

q−1(α), S′ ← ∅, G ← ∅
2: for a, b in S do
3: a, b← a (mod q), b (mod q)
4: add (a, b) to S′
5: end for
6: for j = 1 to q f−m do
7: E j ← ∅
8: for (a, b) in S′ do
9: if TrF

q f /Fqm (aθ) � Fq \ {0} then continue

10: m j(a, b)←
TrF

q f /Fqm (bθ)−TrF
q f /Fqm (at jθ)

TrF
q f /Fqm (aθ)

11: add TrFqm /Fq (m j(a, b)) to E j

12: end for
13: χ2(E j)← the chi-square test statistic of E j

14: if χ2(E j) > δ then
15: TrFqm /Fq (s0)← the most frequent value of E j

16: if m = 1 then
17: add TrFqm /Fq (s0) + t j to G
18: else
19: for g in {c ∈ Fqm | TrFqm /Fq (c) = TrFqm /Fq (s0)} do
20: Eg ← ∅
21: for a, b in S do
22: e′ ← b − a(g + t j)
23: add TrF

q f /Fq (e′θ) to Eg
24: end for
25: χ2(Eg)← the chi-square test statistic of Eg
26: if χ2(Eg) > δ then add g + t j to G
27: end for
28: end if
29: end if
30: end for
31: if G = ∅ then return NOT-RLWE, else if G = {g} then return g, else

return INSUFFICIENT-SAMPLES

TrFq f /Fq (e′θ) = TrFq f /Fq ((b − a(g + ti))θ).

In the case of g � s0, because e′ is uniformly random
on Fq f and because TrFq f /Fq is a surjective additive homo-
morphism, TrFq f /Fq (e′θ) is uniformly random in Fq. In the
case of g = s0, from b = as + e and s = s0 + ti,

TrFq f /Fq (e′θ) = TrFq f /Fq (bθ − a(g + ti)θ)

= TrFq f /Fq (a(s − (g + ti))θ + eθ)

= TrFq f /Fq (eθ) = f · (ekc).

We can obtain s0 because the distribution of ek can be dis-
tinguished from the uniform distribution on Fq. The calcu-
lation of the distribution of TrFq f /Fq (e′θ) requires the use of
a uniform random sample a, unlike the calculation of the
distribution of TrFq f /Fqm (mj). The algorithm is shown in Al-
gorithm 3.

We considered the computational complexity in the
case of prime residue degree, i.e. m = 1. Because chi-
square tests are performed on Fq, we require O(q) sam-
ples. Furthermore, the number of guesses is q f−1 because
the test needs to be performed on all representatives. The
computational complexities of TrFq f /Fq (bθ) and Trq f /Fq

(aθ)
are O((C( f ) + log(q)M( f )) · log( f )), and TrFq f /Fq (at jθ) re-



1430
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

quires O(M( f )+ (C( f )+ log(q)M( f )) · log( f )) = O((C( f )+
log(q)M( f )) · log( f )) operations in Fq. The total compu-
tational complexity of mj(a, b) is O((C( f ) + log(q)M( f )) ·
log( f )) operations in Fq. Therefore, the basic approach re-
quires O((C( f ) + log(q)M( f )) · q f log( f )) operations in Fq.

Improved approach

For any element β =
∑

0≤l< f , n|l γ′lξ
l (γ′l ∈ Fq) in Fqm and

α =
∑

0≤l<n βlξ
l =

∑
0≤l< f γlξ

l (γl ∈ Fq, βl ∈ Fqm ) in Fq f , we
have following equality from Theorem 1,

TrFq f /Fqm (α) = n · β0 = n
∑

0≤l< f , n|l
γlξ

l, (1)

TrFqm /Fq (β) = m · γ′0. (2)

As we restrict the samples used in the calculation
mj to TrFq f /Fqm (aθ) ∈ Fq \ {0}, we have TrFq f /Fqm (aθ) =

TrFq f /Fqm (
∑

alξ
l+ f−k) = n · ∑0≤l< f ,n|l alξ

l+ f−k = n · akξ
f . We

denote at j =
∑

(at j)lξ
l. Then

mj(a, b) =
TrFq f /Fqm (bθ) − TrFq f /Fqm (at jθ)

TrFq f /Fqm (aθ)

=
n ·∑0≤l< f , n|l(bl − (at j)l)ξl+ f−k

n · akξ f

=

∑
0≤l< f , n|l(bl − (at j)l)ξl+ f−k

akξ f
.

We can write TrFqm /Fq (mj(a, b)) as

TrFqm /Fq (mj(a, b)) = m · (bk − (at j)k)ξ f

akξ f

= m · bk − (at j)k

ak
.

From Theorem 2, when j = i, TrFqm /Fq (mj(a, b)) =

TrFqm /Fq (s0) +
TrF

q f /Fq (eθ)

TrF
q f /Fqm (aθ) . So, we have

m · bk − (at j)k

ak
= m · (s0)0 +

f · ekξ
f

n · akξ f
,

bk − (at j)k

ak
= (s0)0 +

ek

ak
.

Based on these assumptions, the most frequent value of
bk−(at j)k

ak
is (s0)0 when j = i. From (s0)0, guess the value

of s0 using brute-force and find the secret on the ideals. We
denote g′ = a(ti + g) =

∑
0≤l<n g

′
lξ

l, and have

TrFq f /Fq (e′θ) = TrFq f /Fq ((b − g′)θ) = f · (bk − g′k) · ξ f .

In the improved approach, we calculate the distribution of
(bk − g′k) instead of TrFq f /Fq (e′θ).

From (1) and (2), it is possible to replace TrFqm /Fq (mj)

with bk−(at j)k

ak
and TrFq f /Fq (e′θ) with bk − g′k. Then O(M( f ))

operations in Fq are required for both bk−(at j)k

ak
and bk −

g′k. Both TrFqm /Fq (mj) and TrFq f /Fq (e′θ) are elements in Fq,

witch are calculated O(q f−m+1) and O(qm) times, respec-
tively. Thus, the total complexity in the case of prime-
residue-degree and composite-number-residue-degree are
O(M( f )q f ) and O((q f−m+1 + qm)M( f )), respectively.

3.2 Selection of the Subfield

There is only one subfield Fq when prime-residue-degree,
so the number of guesses is q f−1. However, in the case of
composite-number-residue-degree, there are multiple sub-
fields, and the number of guesses varies greatly depend-
ing on which subfield Fqm is used. From Theorem 1, the
computational complexities of TrFqm /Fq (mj) and TrFq f /Fq (e′θ)
are O(M( f )). In other words, when the number of guesses
q f−m + qm−1 is the lowest, the computational complexity of
the attack is also the lowest. Let G(m) = qf−m + qm−1(1 ≤
m ≤ f /2). Then,

dG(m)
dm

= −q f−m log q + qm−1 log q

= (−q f−m + qm−1) log q.

G(m) has the minimum value when q f−m = qm−1, that is, m =
f+1
2 . When the residue degree, f , is a composite number, the

attack is the most efficient when using cosets Fq f /Fqm with
the largest divisor m of f .

4. Vulnerable Field

The proposed attack will succeed when the distribution of
the error coefficients, ek ∈ Fq, is distinguishable from the
uniform distribution on Fq. Since the distribution of errors
is different in rings, it is necessary to perform the security
analysis against the proposed attacks for each ring.

In [16], [21], it is shown that if the modulus q has
residue degree 2 in the composite fields Q(ζp,

√
d), the er-

ror distribution is biased and distinguishable from the uni-
form distribution. In Sect. 4.1, we generalize the argument
to show that error bias also occurs when the composite fields
Q(ζp,

f√
d) have any residue degree f , not just f = 2. In

Sect. 4.2, we report comparisons between the χ2-attack and
the proposed attack, as well as the vulnerability of the com-
posite fields, through experiments.

4.1 Weak Instances to Our Proposed Attacks

For an odd prime p and residue degree f , let d be an integer
coprime with p and no f -th root of d in Z. We choose an odd
prime q such that q ≡ 1 (mod p) and no f -th roots of d in
Fq. We assume that the integral basis of the ring of integers

of Q(
f√
d) is {1, f√

d,
f√
d

2
, · · · , f√

d
f−1} and f (x) = x f − d ∈

Fq[x] is an irreducible polynomial over Fq.
For M = Q(ζp), L = Q(

f√
d), let K be the composite

field M·L = Q(ζp,
f√
d), R be its ring of integers, and the quo-

tient ring Rq = R/qR. We assume that K/Q is an algebraic
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extension with extension degree of f (p − 1). This number
field, K, is not a Galois extension. However, the modulus q
has a residue degree f in K, and R/q � Fq f � Fq[x]/(x f −d)
for all prime ideals q lying above q because the prime num-
ber q splits completely in M and is inert in L.

Theorem 3. For p, f , d, q,K,R defined above, let c = d
f−1

f .

We set β = min

⎧⎪⎪⎨⎪⎪⎩
(

c
√

2πe
r0
· e−

πc2

r2
0

) f (p−1)

, 1

⎫⎪⎪⎬⎪⎪⎭ for r0 <
√

2π · c.

If e = φ(e′) =
∑

0≤l< f elξ
l for e′ sampled from the discrete

error distribution Dσ(R),r0 , then the probability that e f−1 = 0
is at least 1 − β.

Proof. We assume that the integral basis of R is

{1, ζp, · · · , ζ p−2
p ,

f√
d,

f√
dζp, · · · , f√

dζ p−2
p ,

· · · , f√
d

f−1
,

f√
d

f−1
ζp, · · · , f√

d
f−1
ζ

p−2
p }.

Here, the operation by φ : Rq → R/q � Fq f is expressed
as ζp �→ α using α, a root of the p-th cyclotomic polynomial
(mod q). From the map φ, p − 1 basis from (p − 1)i + 1 to
(p − 1)(i + 1) corresponds to the xi part of Fq f . Let σi, j(0 ≤
i ≤ f − 1, 1 ≤ j ≤ p − 1) be the distinct embeddings from
K to C, and σ be the canonical embedding. We can say
σi, j(

f√
d

u
ζvp) =

f√
d

u
ζui

f ζ
v j
p , so for 0 ≤ u, u′ ≤ f − 1 and 0 ≤

v, v′ ≤ p − 2,

〈σ(
f√
d

u
ζvp), σ(

f√
d

u′
ζv
′

p )〉

=

f−1∑
i=0

p−2∑
j=0

σi, j(
f√
d

u
ζvp)σi, j(

f√
d

u′
ζv
′

p )

=

f−1∑
i=0

p−2∑
j=0

f√
d

u+u′
ζ(u−u′)i

f ζ
(v−v′) j
p

=
f√
d

u+u′
p−2∑
j=0

ζ
(v−v′) j
p

f−1∑
i=0

ζ(u−u′)i
f .

The norm of the integral basis was ‖σ(
f√
d

u
ζvp)‖ =

f√
d

u √
f (p − 1). When u � u′, 〈σ(

f√
d

u
ζvp), σ(

f√
d

u′
ζv
′

p )〉 =
0 because

∑ f−1
i=0 ζ

(u−u′)i
f = 0. The set of p − 1 bases,

(p − 1)i + 1 to (p − 1)(i + 1), are orthogonal for different
i(1 ≤ i ≤ f − 1). Therefore, e ∈ R can be expressed

as e =
∑ f−1

i=0 ei
f√
d

i
and ‖e‖2 � ‖σ(e)‖2 = ∑ f−1

i=0 ‖ei‖2 f√
d

2i
.

We note that ei ∈ Z[ζp]. In particular, if e f−1 � 0, ‖e‖ ≥
‖e f−1‖ · f√

d
f−1
= d

f−1
f · √ f (p − 1). If c = d

f−1
f for Lemma 1,

then Prob(‖e‖ > c
√

f (p − 1)) ≤
(

c
√

2πe
r · e− πc2

r2

) f (p−1)

. �

4.2 Experimental Comparison with the χ2-Attack

In this subsection, we attack the Ring-LWE (mod q) on
several parameters of the composite field, as shown in
Sect. 4.1. Each parameter is set as listed in Table 1.

Table 1 The parameters of Ring-LWE samples on the composite field K
used in the experiments.

p d q f degree of K r0

R1 11 504 67 3 30 4.1
R2 13 4872 157 3 36 9.1
R3 13 503 53 4 48 5.0
R4 11 507 67 6 60 7.0

Table 2 The experimental results of the χ2-attack

#Sample Success Time(sec.)

R1 673 × 10 - 5.4 × 107(est.)
R2 1573 × 10 - 9.1 × 1012(est.)
R3 534 × 10 - 3.2 × 1014(est.)

Table 3 The experimental results of Algorithm 3

Basic approach Improved approach
#Sample subfield Success Time(sec.) Success Time(sec.)

R1 670 Fq 10/10 1471 10/10 129
R2 1570 Fq 12/12 22808 12/12 1667
R3 530 Fq2 12/12 795 12/12 63
R3 530 Fq - - 12/12 3553
R4 670 Fq3 10/10 174267 10/10 9330

Note that the parameter f corresponds to the residue de-
gree, and the parameter r0 corresponds to the error width.
The number of samples is 10 × q f for the χ2-attack and
10 × q for our attacks, and the risk ratio for the chi-
square test is α = 1

10×q f for both. The experimental en-
vironment is a CPU: Intel(R) Core(TM) i5-7200U CPU
@ 2.500GHz, RAM: 8.0GB, OS: Windows10, and Sage-
Math version 9.2 [29]. All relevant codes are available at
https://github.com/TakahashiTomoka/RingLWE.git.

The computational complexity of both the χ2-attack
and the proposed attack are determined by the residue de-
gree, f , and modulus parameter q. In the case of the χ2-
attack shown in Table 2, even with the smallest parameter
R1 used in this experiment, the χ2 attack took unrealistic
amount of time to solve Ring-LWE (mod q). On the other
hand, our proposed attack shown in Table 3, we succeeded
in solving R1 in less than 30 min, even with the basic ap-
proach. Comparing the basic approach with the improved
approach, the attack time was reduced by more than 90%
for all parameters used in this experiment. In the improved
approach, only one multiplication in Fq is required for the
trace map, whereas the computational cost depends on the
residue degree f and modulus parameter q in the basic ap-
proach. In other words, a significant reduction in compu-
tation time can be expected when the residue degree and
modulus parameters become large.

The parameter R3 was attacked using the subfield
Fq2 and Fq with the improved approach. The attack time
is shorter when using the optimal subfield Fq2 shown in
Sect. 3.2. This result indicates the importance of using ap-
propriate subfields in the proposed attack.

The attack failed when using larger error widths r0 than
indicated in Table 1. It is also confirmed that e f−1 � 0 has a
higher probability than that shown in Theorem 3.

Although the degree of K is small in this experiment,
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the attack succeeds with non-negligible probability for large
degrees if the error distribution can be distinguishable from
the uniform distribution.

5. Security of Two-Power Cyclotomic Field

In this section, we evaluate the vulnerability of the two-
power cyclotomic fields against our attack.

Chen et al. theoretically showed that it is difficult to
distinguish the error distribution from the uniform distribu-
tion for residue degree f = 1 in Sect. 5.1 of [17], although
it has not been proven for other residue degrees. A theoreti-
cal analysis method using the dual space shown in Lemma 6
has been proposed in [21], but no specific analysis for the
two-power cyclotomic fields have been performed. In this
section, we show that the two-power cyclotomic fields are
secure even when the residue degree is not 1, using the dual
basis, and verify the result by experiments.

5.1 Vulnerability Analysis by Dual Basis

Let p be a prime number, m be powers of 2, and ζm be a
primitive m-th root of 1, then K = Q(ζm) is the m-th cyclo-
tomic field. The extension degree of K/Q is n = m/2, and
the ring of integers of K is R = Z[ζm]. The minimal polyno-
mial of ζm is f (x) = xn + 1 = (x − ζm)(xn−1 + ζmxn−2 + · · · +
ζn−2

m x+ζn−1
m ) and d f (x)

dx = n·xn−1 [6], [30]. From the lemma 4,
the dual basis for the integral basis {1, ζm, ζ

2
m, · · · ζn−1

m } of

R is { 1n ,− ζ
n−1
m

n ,− ζn−2
m

n , · · · ,− ζ2
m

n ,− ζm

n } and the norm of these
dual bases are all 1/

√
n. On the other hand, the composite

field K = Q(ζp,
f√
d), which was shown the vulnerablirity in

Sect. 4.1, assumes to have a large norm in the integral basis

{ f√
d

f−1
,

f√
d

f−1
ζp, · · · , f√

d
f−1
ζ

p−2
p }. If we consider a similar

discussion to Sect. 4.3 of [21], the norm of these dual basis
are very small. Since the two-power cyclotomic fields can-
not have a dual basis as small as the composite fields, it can
be said that the two-power cyclotomic fields is secure than
the composite fields in the analysis using the dual basis.

5.2 Experimental Analysis of Two-Power Cyclotomic
Field

The proposed attack will succeed when the distribution of
some error coefficient el of e =

∑
0≤l< f elξl(e← ψ (mod q))

is distinguishable from the uniform distribution, U(Fq). The
experimental results confirm that el has a similar distribution
for any l, so we report the experimental results for e0.

Figure 1 shows the number of times that the distribu-
tion of e0 was different from the uniform distribution out of
100 times of chi-square tests when the error width r0 was
changed. The parameters, (m, q, f ), were chosen to be the
modulus q with residue degree f = 2, 4, 8 in cyclotomic
fields of m = 64, 128, and the risk ratio is α = 0.05. The
experimental results confirmed that the larger error width r0

and m, the smaller modulus q and residue degree f , the more
difficult it is to distinguish from a uniform distribution. Ex-
periments confirmed that the two-power cyclotomic fields

Fig. 1 Experimental result for the two-power cyclotomic fields

are secure against the proposed attack compared to the com-
posite fields Q(ζp,

f√
d), similar to the analysis in dual space.

However, our attack can be a threat even for the two-power
cyclotomic fields if the error is sufficiently small. Therefore,
careful parameter setting is required for applications.

6. Conclusion

In this paper, we improved the χ2-attack to work efficiently
for any residue degree. Our attack showed that the algebraic
property of the Ring-LWE problem can be used for attacks
as well as for efficiency. The error distributions that deter-
mine the success of our attack varies with number fields,
confirming that it is useful to analyze from field’s duality.
In Sect. 5.2, one of the most commonly used number fields,
the two-power cyclotomic field, was confirmed to be secure
against our proposed attack although the necessity of care-
ful error sampling. However, there are some fields that are
vulnerable to our attack, as shown in Sect. 4.1. Attacks us-
ing prime ideals as in this study and previous works suggest
the importance of proper error sampling in applications. We
believe that these attacks are also effective for other LWE
problems with ring structures such as M-LWE. While con-
sidering the freely configurable attack parameter θ, further
research of the error distributions for general number fields
is needed for security analysis of lattice-based cryptograpy.
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