1928

IEICE TRANS. INF. & SYST., VOL.E105-D, NO.11 NOVEMBER 2022

| LETTER Special Section on Next-generation Security Applications and Practice |

Hiding Data in the Padding Area of Android Applications without

Re-Packaging®

Geochang JEON', Jeong Hyun YI', and Haehyun CHO'®, Nonmembers

SUMMARY Anonymous attackers have been targeting the Android
ecosystem for performing severe malicious activities. Despite the comple-
ment of various vulnerabilities by security researchers, new vulnerabilities
are continuously emerging. In this paper, we introduce a new type of vul-
nerability that can be exploited to hide data in an application file, bypassing
the Android’s signing policy. Specifically, we exploit padding areas that
can be created by using the alignment option when applications are pack-
aged. We present a proof-of-concept implementation for exploiting the vul-
nerability. Finally, we demonstrate the effectiveness of VeileDroid by using
a synthetic application that hides data in the padding area and updates the
data without re-signing and updating the application on an Android device.
key words: Android application, APK file, data hiding

1. Introduction

Despite the steady advancement of sophisticated security
technologies on the 5G mobile ecosystem, new vulnerabili-
ties are continuously emerging. An attacker usually exploits
security flaws in the Android system such as permissions of
a manifest file, third-party libraries, repackaging policy, and
tampering an application for performing malicious actions.

In this work, we focus on the application file format
called APK (Android Application Package) which is the
same as the ZIP file format. Specifically, we demonstrate
a vulnerability that an Android application can exploit to
hide, use, update any type of data in the apk file without re-
signing and re-packaging it. In the Android ecosystem, all
applications must be digitally signed with a certificate for
guaranteeing the authenticity and integrity of applications.
However, we found that, if a developer aligns an application
with a large value when it is packaged to an APK file, then
padding areas, where we can store any data, are created at a
certain offset of the APK file. Furthermore, the data stored
in the padding area is not used while the APK is digitally
signed.

We first show the vulnerability that can store any type
of data in the padding areas and restore it on a device when
an application executes. In addition, we can update the data

Manuscript received February 8, 2022.
Manuscript publicized June 13, 2022.

"The authors are with School of Software, Soongsil University,
Seoul 06978, Korea.

*This work was supported in part by the Mid-Career Re-
searcher program through the National Research Foundation of
Korea (NRF) funded by the MSIT (Ministry of Science and ICT),
and Future Planning (NRF2020R1A2C2014336).

a) E-mail: jkch0213 @soongsil.ac.kr

b) E-mail: jhyi@ssu.ac.kr

¢) E-mail: hachyun@ssu.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2022NGL0003

without repacking the application. To demonstrate the effec-
tiveness of VeileDroid, we conduct an experiment to bypass
Android’s signing policy by using a synthetic application
that hides data in the padding areas and updates it without
re-signing.

2. Exploiting the Padding Area

In this section, we present an exploitation technique, Veile-
Droid, that can inject any type of data in the padding areas
in an APK file, and restore it on a device by collecting split
data pieces.

2.1 Aligning an Application

Android provides an aligning option for APK files to effi-
ciently access files in an application. By aligning files in an
APK file, the Android system can access files in the APK by
using offsets, which point to each file, defined in the header
of the APK file. Android generally recommends 4 bytes to
align files in an APK file, but developers can put values big-
ger than 4, even 65,536 bytes is available. If the alignment
option is used, each file in an APK file starts with offsets that
are multiples of the alignment value. Therefore, the maxi-
mum size of each padding area can be up to the alignment
value.

2.2 Creating the Padding Areas

The padding area is an empty space generated by align-
ing files in an APK file. Figure 1 shows the location of

| Local file header 1 ‘

Padding area 1

| File body 1 ‘
[N]

| Local file header n ‘

Padding area n

| File body N ‘

Central directory 1 Central directory n

| End of central directory record ‘

Fig.1 The location of padding areas in an APK file. Padding areas are
created at the end of each file header.

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers

LETTER

padding areas in an APK file packaged with an aligning op-
tion. Padding areas are created at the end of each local file
header. However, we note that the padding areas are only
created in specific files of which filename ends with .png,
.arsc, .tflite, .version, and .gz.

2.3 Hiding Data and Restoring It

Because there is a limited size of a padding area, if data is
larger than a padding area, we need to divide it into several
pieces to store them in each padding area. However, each
padding area has a different size, and thus, we first need to
find the size of padding areas. Then, we divide data and
store a piece of data into each padding area with additional
information that contains the address of the next piece and
the size of the data piece. Also, the information has a flag
that tells whether the current piece is the last one. It is worth
noting that we can update the data hidden in an APK file
without re-packaging it, which bypasses the Android’s sign-
ing policy. The restoration process is straightforward: We
can collect each piece of the data from the padding areas,
checking the information.

3. Evaluation

To show the effectiveness of our attack, we use a synthetic
application that implements VeileDroid. we installed it on
our Android device (Google Pixel 2XL). The application
accesses the APK file of itself that existed in the installed
directory and aligns it with a large value. It then sequentially
updates a series of bytes from ‘0x00’ to ‘OXAA’ in padding
areas with the information that identifies the address, the
size, and flag of each piece described in Sect.2.3. Finally,
the application restores all pieces of data into a file. Also,
the application updates the data and stores it into the padding
areas. As a result of the experiment, we confirmed that the
application can update the bytes in padding areas without
any issue, bypassing the Android’s signing policy.

The evaluation result implies that the authenticity and
integrity of an application can be broken at any time. There-
fore, there can be a security hole in the security of the
Android ecosystem. We provide a malicious scenario that
can happen if attackers exploit this vulnerability: Attack-
ers register an application in an Android application market
without any malicious code. Then they can unofficially up-
date the application to perform malicious actions by using
the padding area. In this way, attackers can bypass the vet-
ting process of the Android application.

4. Related Work

Despite the extensive effort to improve the security of the

1929

Android ecosystem for a long time, attackers are finding
new vulnerabilities from the application layer [1]-[4] to per-
form malicious actions such as runtime information gath-
ering (RIG), code injection, and sensitive data leaking at-
tacks [5], [6]. Taylor et al. [1] analyzed third-party libraries
and found that lots of private information is leaked everyday
by Ad libraries. Jin et al. [5] found a code injection attack,
which inherits the fundamental cause of Cross-Site Script-
ing attack.

5. Conclusion and Future Directions

In this work, we introduced a new vulnerability that can by-
pass the Android’s signing policy. By exploiting the vulner-
ability, we can hide any type of data including executable
binaries in an application and use it. Also, we can update
the data without re-signing the application.

For our future work, we will focus on investigating ma-
licious applications and benign applications in the Android
market to check whether there is any malware (or benign
application) that use the padding area to hide data for any
reason. Also, we will work on developing an effective and
efficient analysis method to prevent the use of hidden data
for guaranteeing the authenticity of applications that can be
used in an market scale analysis. Lastly, another way that
we can make use of the padding area is to design of a new
obfuscation technique that dynamically instruments an ap-
plication to conceal sensitive operations.

References

[1] V.E Taylor, A.R. Beresford, and I. Martinovic, “Intra-library collu-
sion: A potential privacy nightmare on smartphones,” arXiv preprint
arXiv:1708.03520, 2017.

[2] F. Xu, W. Diao, Z. Li, J. Chen, and K. Zhang, “BadBluetooth: Break-
ing android security mechanisms via malicious bluetooth peripherals,”
NDSS, 2019.

[3] M. Rangwala, P. Zhang, X. Zou, and F. Li, “A taxonomy of privilege
escalation attacks in Android applications,” International Journal of
Security and Networks, vol.9, no.1, pp.40-55, 2014.

[4] M. Vanhoef and F. Piessens, “Key reinstallation attacks: Forcing
nonce reuse in WPA2,” Proc. 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp.1313-1328, 2017.

[5] X.lJin, X. Hu, K. Ying, W. Du, H. Yin, and G.N. Peri, “Code injection
attacks on HTMLS5-based mobile apps: Characterization, detection
and mitigation,” Proc. 2014 ACM SIGSAC Conference on Computer
and Communications Security, pp.66-77, 2014.

[6] Y. Lee, S. Woo, J. Lee, Y. Song, H. Moon, and D.H. Lee, “En-
hanced android app-repackaging attack on in-vehicle network,” Wire-
less Communications and Mobile Computing, vol.2019, Article ID
5650245, 2019.

http://dx.doi.org/10.48550/arXiv.1708.03520
http://dx.doi.org/10.14722/ndss.2019.23482
http://dx.doi.org/10.1504/ijsn.2014.059327
http://dx.doi.org/10.1145/3133956.3134027
http://dx.doi.org/10.1145/2660267.2660275
http://dx.doi.org/10.1155/2019/5650245

