
1480
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

PAPER Special Section on Log Data Usage Technology and Office Information Systems

Few-Shot Learning-Based Malicious IoT Traffic Detection with
Prototypical Graph Neural Networks

Thin Tharaphe THEIN†a), Nonmember, Yoshiaki SHIRAISHI†, Senior Member, and Masakatu MORII†, Fellow

SUMMARY With a rapidly escalating number of sophisticated cyber-
attacks, protecting Internet of Things (IoT) networks against unauthorized
activity is a major concern. The detection of malicious attack traffic is
thus crucial for IoT security to prevent unwanted traffic. However, existing
traditional malicious traffic detection systems which relied on supervised
machine learning approach need a considerable number of benign and mal-
ware traffic samples to train the machine learning models. Moreover, in the
cases of zero-day attacks, only a few labeled traffic samples are accessible
for analysis. To deal with this, we propose a few-shot malicious IoT traffic
detection system with a prototypical graph neural network. The proposed
approach does not require prior knowledge of network payload binaries or
network traffic signatures. The model is trained on labeled traffic data and
tested to evaluate its ability to detect new types of attacks when only a few
labeled traffic samples are available. The proposed detection system first
categorizes the network traffic as a bidirectional flow and visualizes the bi-
nary traffic flow as a color image. A neural network is then applied to the
visualized traffic to extract important features. After that, using the pro-
posed few-shot graph neural network approach, the model is trained on dif-
ferent few-shot tasks to generalize it to new unseen attacks. The proposed
model is evaluated on a network traffic dataset consisting of benign traffic
and traffic corresponding to six types of attacks. The results revealed that
our proposed model achieved an F1 score of 0.91 and 0.94 in 5-shot and
10-shot classification, respectively, and outperformed the baseline models.
key words: few-shot learning, graph neural networks, internet of things,
machine learning, network anomaly detection

1. Introduction

The Internet of Things (IoT) has become one of the fastest-
growing technologies in recent years. With an increase in
extensive use of IoT devices in fields such as healthcare,
smart homes, smart cities, manufacturing and automotive in-
dustry, the importance of Internet-connected devices in daily
life has increased. In addition, with the increasing number
of cyber-attacks, it is critical to ensure that IoT devices are
protected from potential cyber threats. However, most IoT
devices are known for their vulnerabilities and lack of on-
device security controls to defend against cyber-attacks [1]–
[3]. The reason for this is that most IoT devices have re-
source constraints and insufficient computing power, which
allows only limited functions to be executed [3]. Attackers
exploit loopholes in IoT devices to perform malicious ac-
tivities, such as using IoT devices for botnet attacks. One
example is the Mirai [4] botnet attack that occurred in 2016
and caused massive Internet security breaches by exploiting

Manuscript received November 22, 2022.
Manuscript revised March 23, 2023.
Manuscript publicized June 22, 2023.
†The authors are with Kobe University, Kobe-shi, 657–8501

Japan.
a) E-mail: thein.thin@gsuite.kobe-u.ac.jp

DOI: 10.1587/transinf.2022OFP0004

insecure IoT devices.
To protect IoT networks from cyber-attacks, intru-

sion detection systems [5]–[7] have been used extensively
to monitor unauthorized activities and identify notorious at-
tack network traffic in the IoT ecosystem. Depending on
the technique employed, intrusion detection systems can be
mainly sorted into two: signature-based and anomaly-based
systems. The former systems compare incoming traffic to
predefined attack signatures in a database through pattern
matching. This technique is effective and highly accurate
for previously seen (known) attacks, but is ineffective in
zero-day attacks detection since the new attack signatures
are not present in the database. Anomaly-based intrusion
detection systems can overcome this limitation using artifi-
cial intelligence, by defining any behavior that differs from
the observed behavior as an anomaly. With recent advance-
ments in machine learning (ML), many studies have applied
ML algorithms for the detection of malicious attacks in the
IoT network monitoring system (e.g., [5]–[7]). Providing
that there is a considerable number of labeled samples for
training the ML models, the detection systems can distin-
guish normal behavior from abnormal behavior with rela-
tively high accuracy.

However, there are several problems in ML-based IoT
intrusion detection systems that must be addressed. Namely,
the amount of benign traffic is huge compared to abnor-
mal malicious traffic, and some IoT malware attack types
have significantly fewer samples, resulting in an unbalanced
dataset [8]. Most importantly, new IoT malware threats
are constantly emerging; consequently, ML-based detection
systems have a new challenge known as zero-day attacks [9],
which are types of attacks that did not exist at the time of
model training. It may take time for security vendors and
researchers to publish a huge number of samples of the new
threats; thus, there is a need for a system that can detect
IoT network traffic by using a limited number of new mali-
cious samples. This can be achieved by a few-shot learning
method. Few-shot learning is a type of ML method that aims
to make predictions with only a few labeled data in a su-
pervised setting. Several previous studies [10]–[13] on few-
shot learning used the principle of meta-learning, where a
certain number of correlated tasks are learned during train-
ing. In the meta-testing stage, the trained learner can be
utilized to predict unseen but related tasks with only a few
labeled samples.

To defend against potential cyber-attacks in the IoT
ecosystem, IoT traffic detection and identification are

Copyright c© 2023 The Institute of Electronics, Information and Communication Engineers

THEIN et al.: FEW-SHOT LEARNING-BASED MALICIOUS IOT TRAFFIC DETECTION WITH PROTOTYPICAL GRAPH NEURAL NETWORKS
1481

crucial for IoT traffic intrusion management and IoT secu-
rity. In this work, we propose a detection scheme based
on the binary visualization of network traffic and on few-
shot learning to detect unknown malware attacks on IoT
networks. The rationale for representing network traffic
as an image is that a malware traffic image exhibits sig-
nificantly more clustered patterns than a benign traffic im-
age, which is more consistent and static [14]. Moreover,
representing the captured IoT traffic as an image can lead
to a clearer comprehension of the network traffic since the
same type of malware attack generates similar image pat-
terns [15] that can be recognized by a deep learning model,
overcoming the requirements of manual feature engineering
and prior domain knowledge. [16], [17] claimed that deep
convolutional neural network model performs better on im-
age dataset and transformed the network traffic dataset into
three-dimensional image and showed that the image-based
method is superior to conventional machine learning. There-
fore, we propose a method that can identify malicious IoT
network traffic based on a traffic visual representation and a
few-shot learning-based prototypical graph neural network.
Our main contributions to this work are as follows:
1) A few-shot learning-based IoT network traffic detec-

tion system using binary visualization and a graph neu-
ral network is proposed. It can be applied to detect and
identify new malware attack traffic using only a few la-
beled samples.

2) The network traffic is preprocessed as a red–green–blue
(RGB) image, and a malware traffic image dataset is
constructed from the generated images to evaluate the
proposed few-shot learning scheme with a prototypi-
cal graph neural network model. A pretrained convo-
lutional neural network (CNN) is employed to extract
the image features.

3) The experimental results indicate that our proposed
model can detect new IoT network attacks with a few
labeled samples and is applicable to a diverse range of
malware attacks.

The remainder of this paper is arranged as follows. Section 2
discuss the previous works on IoT network traffic detection,
while our proposed method is explained in Sect. 3. Mean-
while, Sect. 4 describes the dataset, evaluation of the pro-
posed method, and experiment results, while Sect. 5 sum-
marized our proposed method.

2. Related Work

This section reviews previous studies related to IoT net-
work traffic identification and intrusion detection systems.
In addition, background knowledge of few-shot learning
and graph neural networks is provided.

2.1 IoT Network Traffic Detection Techniques

With the growing number and accelerated use of IoT de-
vices, the vulnerabilities of these devices have become
a target for cybercriminals, contributing to a surge in

cyber-attacks and information leakage. As discussed below,
extensive efforts have been made by the research community
to tackle security and privacy concerns in IoT networks. In
previous studies [3], [5], [6], ML was the most commonly
used approach to distinguish malicious traffic intrusion in
IoT networks. The intelligent integrated intrusion detection
system proposed by [5] used a deep learning algorithm to
discover malicious attacks in real IoT network traffic. After
sorting the incoming traffic into sessions, features such as
the source and destination IP address, transmission mode,
duration, transmission and reception rate, and transmission-
to-reception ratio were extracted and forwarded to a deep
neural network. An average precision of 95% and recall
of 97% were achieved for five attack scenarios: blackhole,
sinkhole, wormhole, distributed denial-of-service (DDoS),
and opportunistic service attacks.

In [6], the authors addressed cyber threats in a smart
city infrastructure by proposing the random forest classifier-
based anomaly detection system in fog nodes. The authors
claimed that the proposed model could effectively detect
compromised IoT devices. The classification results on the
UNSW-NB15 dataset indicated that the model predicted the
normal class with an F1 score of 0.99 and attack traffic with
an F1 score of 0.86. Likewise, the authors of [7] proposed
a fog-computing-based intrusion detection system by utiliz-
ing a multilayer recurrent neural network model. The model
was experimented on the NSL-KDD dataset and detected
denial-of-service (DoS) attacks with high sensitivity; how-
ever, the detection rate was much lower for other types of
attacks. The authors of [18] reported that misclassification
in ML algorithms occurs due to inappropriate feature selec-
tion. Therefore, they proposed a novel metric-based feature
selection approach for malicious IoT traffic detection. Their
model selected only efficient and helpful features for the ML
algorithm and achieved the detection accuracy of more than
96% on the Bot-IoT dataset.

Some studies [19], [20] also converted network traffic
into an image based on the network packets, flow, and ses-
sion and applied a CNN model to the produced images to
identify malicious traffic. In [19], the authors proposed a
malicious IoT traffic classification technique that represents
network traffic as an image and utilizes ResNet50 to ana-
lyze the visualized data. The approach was evaluated on a
dataset of 1,000 PCAP files of benign and malicious traffic
and demonstrated promising results. Similar to [19], the ap-
proach proposed in [20] transformed traffic data packet and
flow information into images and classified the images us-
ing the residual neural network (ResNet) model. Multiclass
classification on the CICDDoS2019 dataset achieved an F1
score of 0.86.

Network intrusion detection systems based on the few-
shot learning paradigm have also been proposed in re-
cent studies [21], [22]. In these systems, a trained meta-
learner can detect new types of attacks using only a few
labeled data. A detailed explanation of the meta-learning-
based few-shot framework is provided in Sect. II-B. The
approach proposed in [21] consists of two main parts:

1482
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

deep-neural-network-based feature extraction and feature
comparison. The feature extraction part produces fea-
ture map pairs for network traffic sample pairs, while the
comparison part calculates the delta score, which indicates
whether a pair of traffic samples belong to the same class. A
few-shot dataset was constructed from the ISCX2012 and
CICIDS2017 datasets, and malicious traffic could be de-
tected up to 99% on average. In [22], the authors proposed
an approach that performs feature embedding of traffic sam-
ples with a trained embedding function and calculates the
cosine distance between the samples to predict which traf-
fic samples are closer in the embedding space. The experi-
mental results indicate that the choice of the embedding and
distance functions affects the accuracy of the classification
model.

2.2 Few-Shot Learning

In general, the objective of few-shot learning is to recog-
nize new unobserved tasks using a small quantity of labeled
training sample. Various few-shot learning approaches
utilize the meta-learning framework with episodic train-
ing [10]–[13]. In these approaches, diverse few-shot tasks
are sampled from the meta-train dataset for each training
episode during the model training. Each few-shot task is
made up of a known support set and unknown query set. In-
stead of determining which class each sample belongs to,
the few-shot meta-learner learns the similarity or dissimilar-
ity between the support and query sets to assign label in-
formation from a support instance to a query instance. The
authors of [10]–[12] presented few-shot learning paradigms
that compare a labeled support set and unknown query sam-
ples in a shared embedding space to predict the label infor-
mation for query instances. Matching Networks [10] utilizes
the weighted nearest neighbor search with the use of the at-
tention mechanism, while Relation Networks [11] trains the
model to learn the nonlinear relation between the support
and query sets. Prototypical Networks [12] calculates the
prototype representation of each class in the support set in
the embedding space, and the label of the query sample is
predicted by computing the Euclidean distance. The few-
shot network traffic detection method proposed in this paper
follows the principle of Prototypical Networks.

2.3 Graph Neural Networks

Graph neural networks (GNNs) are a deep learning archi-
tecture designed to analyze graph-structured data [23]. A
graph consists of a set of vertices (nodes) joined by edges.
A GNN learns the current node representation by repeat-
edly combining the features of neighboring nodes using the
message passing algorithm, thereby generating similar rep-
resentations for strongly linked nodes. Due to the advan-
tages of GNNs, some approaches [13], [24], [25] incorpo-
rated GNNs in few-shot learning domain and demonstrated
promising results. The authors of [13] used a GNN as a
label propagation module to forecast the label of unlabeled

nodes. In addition, the edge-labeling GNN (EGNN) pro-
posed in [24] predicted the edge labels between the support
and query sets by iteratively updating the node and edge fea-
tures. Furthermore, the fuzzy GNN (FGNN) [25] employed
the fuzzy membership function to iteratively update the edge
labels; then, node classification was performed on the con-
structed graph to predict the unlabeled nodes.

3. Proposed Method

3.1 Few-Shot Learning Strategy

The proposed few-shot learning approach follows the ap-
proach of Prototypical Networks described in [12] by using
the meta-learning framework with episodic training. Few-
shot learning is also known as M-way K-shot classification.
M-way denotes how many classes are in each task T , while
K-shot signifies that each class has K samples. Like tradi-
tional supervised learning with a training and test dataset,
few-shot learning has a meta-training set MTrain and meta-
test set MTest. Rather than training on the entire training
dataset at once, the meta-learner is trained to learn over di-
verse few-shot tasks T in multiple episodes. For every task
T , it is made up of support set S and query set Q, and the
samples in both sets are of the same class. The support
set is labeled, while the query set is unlabeled and needs
to be predicted. Therefore, for every episode at the meta-
training stage, we sample the M-way K-shot task T from
dataset MTrain as

ST = {(x j, y j) | y j ∈ C, j = 1, . . . ,K × NS},
QT = {(xk, yk) | yk ∈ C, k = 1, . . . ,K × NQ}, and

ST ∩ QT = ∅.
The symbol C denotes the set of train classes and NS, NQ

represent the number of samples for each class in the sup-
port set and query set, respectively. During the training
phase, the meta-training task Ttrain = (ST ,QT)i

T=1 is trained
by i number of episodes with known label information for
both the support and query sets. The trained model is then
used to predict the label of the query sample of MTest, with
a few labeled support samples. The M-way K-shot task T
for the meta-test dataset is prepared in the same way as the
meta-training task. Ideally, the classes used in the meta-
training and meta-testing phases are completely different,
which achieves the goal of predicting zero-day IoT network
traffic attacks with limited labeled data.

3.2 Data Preprocessing

Because the proposed model represents IoT network traffic
as an image, some data preprocessing must be carried out
on the captured IoT network traffic. The data preprocessing
step is illustrated in Fig. 1. First, from the collected network
traffic file, the individual bidirectional flows are separated.
A network flow is a group of several associated packets [26]
grouped by the 5-tuple: source IP address, destination IP

THEIN et al.: FEW-SHOT LEARNING-BASED MALICIOUS IOT TRAFFIC DETECTION WITH PROTOTYPICAL GRAPH NEURAL NETWORKS
1483

Fig. 1 Network traffic preprocessing.

Table 1 Color mapping by the Binvis binary data visualization tool.

address, source port, destination port, and protocol. Each
flow contains the hexadecimal sequence of the time-adjacent
packets identified by the same 5-tuple. Then, the hexadec-
imal values in each flow are transformed into the RGB
color image using a binary data visualization tool called
Binvis [27]. Binvis maps each hexadecimal value in a flow
to a predefined color conversion scheme as illustrated in Ta-
ble 1. The generated output is the one-dimensional color
sequence of each flow. The next step is to lay out each gen-
erated color sequence as an RGB color image while preserv-
ing the proximity of the elements in the one-dimensional
sequence to be as near as possible in the two-dimensional
image. This can be achieved by means of the Hilbert space-
filling curve [28]. After positioning the color sequence of
the network flow in a two-dimensional layout, the desired
RGB color image can be produced. When visualizing the
individual flow as an image, we consider the whole packet
(i.e., both header and payload). In our approach, each IoT
network traffic flow is visualized as a color image of size
256 × 256. Examples of visualized network traffic are pre-
sented in Fig. 2. One benefit of visual representation is that
it provides a clearer view and comprehensive understanding
of the overall network traffic since the same malware traffic
families tend to generate similar image patterns.

3.3 Few-Shot Prototypical Graph Neural Network

An overview of the proposed few-shot GNN model is illus-
trated in Fig. 3. The architecture consists of four main parts:
feature extraction, a prototype encoder, a graph constructor,

Fig. 2 Visual representation of network flows.

and a graph neural network classifier.

(i) Feature Extraction
The aim of the feature embedding function is to extract im-
portant features in the embedding space. A variety of CNNs
or deep neural networks can be used to extract features. The
proposed model utilizes a pretrained ResNet18 [29] as the
feature embedding function. ResNet18 is a CNN model that
consists of 18 convolution layers. After removing the final
fully connected layer intended for classification, the remain-
ing layers in ResNet18 can be regarded as the feature em-
bedding module. The feature extractor applied in our pro-
posed scheme is pretrained on the ImageNet dataset [30].
The dimension of the output features vector is 512.

(ii) Prototype Computation
After feature embedding, the prototype of each class is com-
puted with the label information from the support set. The
approach described in [12] is used to obtain the prototype
of each class by obtaining the mean of the support set’s fea-
ture embeddings associated with that class. The following
equation calculates the prototype belonging to class c:

Protoc =
1
|Sc|
∑

(x j,y j)∈Sc
fθ(x j),

where fθ(x j) is the feature embedding of the jth class from
the support set, while Sc represents the set of support sam-
ples belonging to class c. Next, the Euclidean distance
is calculated, which is the distance between the computed
class prototype and query instance. The minimum dis-
tance is chosen as the initially predicted label for the query
instance.

(iii) Graph Construction
Following the computation of the initial labels for the query
set instances, a graph consisting of support set images and
query set images is constructed. Generally, a graph is
formed by a group of nodes with the link (edge) between
nodes. In the proposed scheme, we consider images from
both the query and support sets as nodes. Since the labels of
the instances in the support set are already known, an edge
is added between support nodes if they are from the same
class. The relations between the support and query nodes

1484
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

Fig. 3 Proposed few-shot learning-based network traffic detection system.

are obtained from the previously computed Euclidean dis-
tance. If the initially predicted class of the query node and
the class of the support nodes are the same, there is a rela-
tion (edge) between the nodes. The constructed graph and
the concatenated feature embeddings of both sets are for-
warded to the GNN classifier.

(iv) Prototypical Graph Neural Networks
The proposed method employs a graph convolutional net-
work (GCN), a variant of a GNN proposed in [31], as the
graph classifier. Similar to a CNN, which is commonly em-
ployed in the domain of computer vision, a GCN performs
multilayer convolution on graph-structured data. A GCN
can be used for tasks such as link prediction, graph classi-
fication, and node classification. In the proposed approach,
node classification is applied to the graph constructed in the
previous step to predict the label information of the unla-
beled query nodes. The outcome of the graph classifier is
the predicted labels of the query set. Below we explain a
multilayer GCN for node classification used in our proposed
method.

For a given graph G with vertices V and edges E, the
input of the GCN is the node features, adjacency matrix,
and label information. The output of the GCN is the node
classification results, which predict the unlabeled nodes. A
multilayer GCN [31] defines the layer-wise propagation rule
as follows:

H(l+1) = σ
(
D̃(− 1

2)ÃD̃(− 1
2)H(l)W (l)

)
. (1)

For an undirected graph G = (V, E) with nodes vi ∈ V
and edges (vi, v j) ∈ E, let A ∈ RN×N and X ∈ RN×C be
the adjacency matrix and feature vector of G, respectively,
and let D =

∑
j Ai j ∈ RN×N be the degree matrix of A,

where i, j = (1, . . . ,N), N is the total number of vertices
V , and C is the dimension of the feature vector. In Eq. (1),
H(l) ∈ RN×D is the feature vector that is input to the lth layer
of the GCN. Therefore, we can say that H0 is identical to
the input feature vector X. Here σ denotes the activation
function, and W (l) is the layer-specific trainable weight ma-
trix of the lth hidden layer. The notation D̃(−1/2)ÃD̃(−1/2) is

the normalized adjacency matrix with a self-loop, where Ã
is the identity matrix of A, and D̃ is the degree matrix of
Ã. The GCN performs aggregation, combining steps recur-
sively in each layer. Each node calculates the mean value of
the neighboring nodes’ features and its own features. The
aggregated feature values are then multiplied by weight W,
and the status of every node in each layer is updated using
the ReLU activation function. W is updated by the minimum
cross-entropy loss function.

The prototypical graph neural network model used in
the proposed approach is similar to [31]. Our graph model is
made up of two parts: two-layer graph convolution and pro-
totype computation of support node embedding. After the
graph convolution layer computed the node embeddings for
each support and query nodes, we calculate the prototype of
the support node embeddings as described in Sect. 3.3. (ii).
Simply, the mean value of the support node embeddings be-
longing to the same classes are calculated as the node pro-
totypes (i.e. if the number of the support node class is four,
then the total node prototype is four). Then, we find the
Euclidean distance between the node prototypes and the
query node embeddings. The graph classifier finally outputs
the predicted class of the query nodes based on the nearest
distance between the node prototypes and the query nodes.

3.4 Training Objectives and Parameters

During the meta-training, the model is optimized with
two cross-entropy loss functions to make predictions for
each query sample using its respective class prototypes.
The first loss function for the prototype computation mod-
ule is computed via cross-entropy loss as: L1(α) =

−∑ log Pα(y | x, ST), which is the negative log-likelihood
of the true class of each query sample. Similarly, the
Prototypical Graph Neural Networks module is optimized
again with the cross-entropy loss function: L2(γ) =

−∑ log Pγ(y | x, ST). Pα and Pγ denote the class probabil-
ities of the query sample in each episode over parameters α
and γ. It can be calculated by taking the softmax over the
Euclidean distance between the query sample x and each

THEIN et al.: FEW-SHOT LEARNING-BASED MALICIOUS IOT TRAFFIC DETECTION WITH PROTOTYPICAL GRAPH NEURAL NETWORKS
1485

class prototype Pc as: Pα(y = c | x) = exp(−ED(fα(x),Protoc)∑
c′ exp(−ED(fα(x),Protoc′)

,
where ED is the euclidean distance and Pc′ is the proto-
type of the class c′. The calculation of Pγ is similar to
Pα. Therefore, the total loss during meta-training is: Loss =
L1(α)+L2(γ) and the model parameters are updated by min-
imizing the total loss. The complete training algorithm for
one few-shot task is provided in Algorithm 1.

The proposed prototypical graph neural network model

Algorithm 1: The training algorithm for one few-shot task

Input: Meta-train dataset Mtrain = {(x j, y j) | y j ∈ C}, C: the set of
training classes, NC : The number of classes in one few-shot task, NS:
The number of support samples per class, NQ: The number of query
samples per class

Requires: Feature extractor f
➢ RANDOMSAMPLE(Mtrain,N) represents a set of N examples cho-

sen randomly from Mtrain without replacement.
➢ GCN(g) denotes the graph convolutional neural network with in-

put graph g.
➢ GRAPH(ST ,QT , img dist) constructs each image in ST and QT as

a node. The img dist is the edge between the support node and
query node. The edges between the support nodes are obtained
from the label of the support set.

Output: Loss L for back propagation

L← 0 #initialize loss
for T in {1, 2, . . . ,NC} do

#select the support samples set
ST ← RANDOMSAMPLE(Mtrain,NC × NS)

#select the query samples set
QT ← RANDOMSAMPLE(Mtrain\ ST ,NC × NQ)

end

Compute the support feature fθ(x j) and query feature fα(x j) from ST

and QT

for c in {1, 2, . . . ,NC} do
#compute image prototype for class c
Protoc =

1
|ST |
∑

(x j ,y j)∈ST
fθ(x j)

end

#calculate Euclidean distance
img dist = min(euclidean dist(fα(x j),Protoc))
#loss for image prototype computation
L1(α) = −∑ log Pα(y | x, ST), where,

Pα(y = c | x) =
exp(img dist)∑
c′ exp(img dist)

#construct graph
g = GRAPH(ST ,QT , img dist)
#compute two-layer graph convolution on graph g
output = GCN(g)
Compute the support node embedding fgθ(x j) and query node embed-
ding fgα(x j) from output

for c in {1, 2, . . . ,NC} do
#compute node prototype for class c
nProtoc =

1
|ST |
∑

(x j ,y j)∈ST
fgθ(x j)

end

node dist = min(euclidean dist(fgα(x j), nProtoc))
#loss for graph prototype computation
L2(γ) = −∑ log Pγ(y | x, ST), where,

Pγ(y = c | x) =
exp(node dist)∑
c′ exp(node dist)

L← L + L1 + L2

consists of 2 hidden graph convolution layers with 8 hidden
units. To avoid overfitting during training, a dropout layer
of 0.002 is applied in the graph model. The proposed model
utilizes the Adam optimizer with a learning rate of 0.001
and 5e-5. The model parameters are determined by tuning
the hyperparameters.

4. Evaluation

This section evaluates and discusses the efficiency of our
proposed few-shot learning-based IoT network traffic detec-
tion method. The IoT-23 dataset [32] was used to show the
efficiency and performance of the proposed model, and the
proposed method was also compared to two baseline meth-
ods under the same setting: Prototype Networks [12] and
FGNN [25]. The proposed model is trained on NVIDIA
Quadro RTX 5000 with 16GB memory.

4.1 Dataset Description

The experiment in this study was conducted on the IoT-23
dataset, which consists of 20 malware traffic captures and
three benign traffic captures, collected from 2018 to 2019.
The benign traffic was gathered from a Philips Hue LED
lamp, Amazon Echo, and Somfy smart door lock, while the
malicious traffic was generated by simulating various botnet
attacks on those IoT devices. The dataset includes the orig-
inal captured network files (in PCAP format) and the log
files, generated by the Zeek network analyzer [33], with a
total of 21 feature attributes, including the label information.
The dataset is made up of approximately 325 million labeled
traffic flows. Since the proposed method converts network
traffic flow into an image, the original PCAP file of the IoT-
23 dataset was used to build the dataset. Although the orig-
inal dataset consisted of millions of flows, our dataset con-
tained only a small portion of the original dataset. From the
PCAP files, each bidirectional network flow was separated
by SplitCap [34], and the ground truth information for each
flow was gathered from the conn.labeled.log file provided
in the original dataset. The statistics of the IoT traffic flow
dataset utilized in the experiment are presented in Table 2.
The dataset had the following seven classes: Attack, Heart-
beat, C&C, PartOfAHorizontalPortScan, DDoS, Okiru, and
Benign.

Table 2 Statistics of dataset used in experiment.

1486
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

Table 3 Evaluation results. The evaluation metrics for multi-class classification are macro-averaged.

4.2 Evaluation Metrics

To determine the performance of the few-shot learning
method, a confusion matrix was computed from the fi-
nal classification results. The confusion matrix contained
four outcomes. True positive (TP) and true negative (TN)
indicates the number of benign/malicious samples that were
accurately classified. False positive (FP) denotes the num-
ber of benign samples that were incorrectly classified as
malicious samples, while false negative (FN) represents the
number of malicious samples that were incorrectly classified
as normal samples. Based on these four values, the evalua-
tion metrics: precision, recall, and F1 score were computed
as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

4.3 Results

The effectiveness of the model was measured on a dataset
consisting of seven types of network traffic, as illustrated
in Table 2. The dataset was separated into a meta-training
set, which included benign traffic and three types of mali-
cious traffic (Attack, Heartbeat, C&C), and a meta-test set,
which included benign traffic and the rest of the malicious
traffic. The reason for choosing DDoS, Okiru, and PortScan
classes as the meta-test dataset is to study a scenario where
a large volume of unseen and unlabeled malware traffic is
available to analyze. Only these three classes in our dataset

satisfy the condition. Moreover, it is possible to train the
model with any combination of attack classes as long as the
attack classes in the meta-train and meta-test dataset are not
overlapped since the goal of our few-shot model is to in-
vestigate how well the meta-trained model generalizes the
unseen classes, given a small number of labeled samples of
each unseen class.

Both the training and test datasets had a total of four
classes, and the few-shot learning problem became a 4-way
K-shot classification problem. Since benign traffic is used
in both datasets, 1,690 benign samples are used for training,
thus making a total of 8,834 and 74,664 samples for meta-
train and meta-test dataset, respectively. As mentioned in
Sect. 3.1, to train the few-shot model in an episodic man-
ner, we need to sample multiple tasks such that each task
consists of a support set and a query set. We did not explic-
itly split the meta-train dataset as a support set and query
set. Rather, the support and query examples for one train-
ing task are randomly sampled from the meta-train dataset.
For the meta-test dataset, the labeled 2% of the meta-test
dataset is regarded as the support test set and the rest of the
unlabeled samples are considered as the query test set. At
the meta-testing stage, a test task consists of support and
query examples are randomly drawn from the support test
set and the query test set. As the purpose is to use limited
labeled samples as much as possible, our model is trained
and tested with 5-shot and 10-shot samples, and the exper-
iment results are presented in Table 3. During the meta-
training, we train a total of 30 episodes, with each episode
consisting of 100 tasks. For instance, for 4-way 5-shot clas-
sification with one query image per class, we sample a total
of 4*(5+1) = 24 images for each task based on the formula
Nway(Nshot+Nquery). Therefore, for each episode, we sample
a total of 24 * 1000 = 2400 images from meta-train dataset.
For simplicity, the number of query sample for one task is

THEIN et al.: FEW-SHOT LEARNING-BASED MALICIOUS IOT TRAFFIC DETECTION WITH PROTOTYPICAL GRAPH NEURAL NETWORKS
1487

Fig. 4 Evaluation results of the trained 4-way 5-shot model on attack,
benign, C&C, and Heartbeat classes.

chosen as one per class, but we can choose any number of
query samples per class in one task.

The proposed model achieved an F1 score of 0.91 in
5-shot classification and 0.94 in 10-shot classification. The
average recall and precision in both 5-shot and 10-shot clas-
sification was above 90%. To exhibit the efficiency of the
proposed method, we compared it to two baseline methods:
Prototypical Networks [12] and FGNN [25]. The former had
an F1 score of 0.8945, while the latter had an F1 score of
0.9306 in 10-shot setting. The proposed approach outper-
forms both methods in terms of the average F1 score in both
5-shot and 10-shot classification. Comparing our proposed
method to FGNN in 10-shot classification, our model per-
formed only slightly better in all average evaluation metrics
than FGNN. However, in 5-shot classification, all average
evaluation metrics of our proposed method were approxi-
mately 2% higher than those of FGNN. Thus, our proposed
method can effectively use a few labeled samples to classify
IoT network traffic.

In addition, to investigate how well the trained model
performs on the attack, benign, C&C, and Heartbeat classes,
the evaluation results of the 4-way 5-shot model for those
classes are illustrated in Fig. 4. 10% of each test class is
labeled, and used as the support set. The rest of the samples
are regarded as the query set that is needed to be predicted
by the few-shot learner. The overall accuracy is 93%. The
model can correctly classify the attack class, however, the
classes C&C and Heartbeat incorrectly predict the output
label as each other since the Heartbeat class in the IoT-23
can be considered a sub-class of the C&C class.

4.4 Discussion

The proposed model visualizes the individual network flow
as an image to train the model. Therefore, the data prepro-
cessing includes two steps: the individual network flow sep-
aration and the conversion of each flow as an image. Since
the size of the PCAP file in the IoT-23 dataset is large and the
captured duration is long, generating the bidirectional net-
work flows from the IoT-23 dataset takes longer. However,
just a few milliseconds are required to visualize each flow as
an image. Making the image dataset (i.e., Table 2) from the

network flows takes approximately 40 minutes. Since our
few-shot model operates upon the graph structure, it takes
additional cost to construct the graph. As the graph is built
for each few-shot task, for instance, for 4-way 5-shot classi-
fication with one query image per class, each task consists of
20 support images and 4 query images, producing 24 nodes
for the graph. Since the number of nodes is small and the
edges are already estimated by the prototype computation
module, the graph can be generated immediately. The train-
ing time of the proposed model for 30 episodes, excluding
the data preprocessing time (i.e., network flow separation
and image visualization), takes approximately 20 minutes
for 4-way 5-shot learning with 100 tasks in one episode.

Even though the proposed model exhibited excellent
performance, it also has limitations, such as the validity of
the dataset and the deployment of the proposed model in a
real environment. The number of IoT devices deployed to
create the IoT-23 dataset is somewhat small, and the varia-
tions of the simulated attack are considerably fewer, which
could further limit the real-world capability of the IoT-23
dataset. Though the IoT-23 dataset used in the study was
published in 2020, some IoT traffics was captured in 2018.
It means the trained few-shot model is behind the current
IoT ecosystem by almost four years. Since IoT is an emerg-
ing technology, this time gap enables various changes in IoT
devices, such as protocol, firmware, and OS version. Conse-
quently, these changes can open up a potentially exploitable
environment for malicious attackers. Therefore, constant
supervision and frequent update of the IoT data is required
to maintain the model’s effectiveness.

Our insight on the possibility of deploying the pro-
posed model in the real environment is that as long as the
individual network flow is provided into the proposed model
in real time, the deployment of the trained model should be
possible for real-time detection. The testing time of the pro-
posed model might be inferior to the conventional machine
learning model since the model needs to construct the few-
shot task from the meta-test dataset and creates the graph
for traffic classification. However, considering the resource-
limited IoT devices, the size of the classifier and the data
preprocessing step could be a heavy burden while deploy-
ing on a single IoT device. Instead, the proposed model
could be deployed in a place (e.g., an edge server) with suf-
ficient resources to analyze the network traffic transmitted
by the IoT devices in real-time. One advantage of the pro-
posed few-shot learning over conventional machine learning
is that the model retraining is unnecessary if a new type of
attack has emerged. We only need to add a limited labeled
sample of the unseen attack classes in the support set of the
meta-test dataset so that the trained model can classify the
unseen classes.

5. Conclusion

In this paper, we propose a few-shot meta-learning approach
based on the prototypical graph neural network to classify
malicious network traffic in IoT devices. Although ML

1488
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.9 SEPTEMBER 2023

models perform reasonably well in recognizing malicious
samples, they require a considerable amount of traffic sam-
ples to train the model. This problem is addressed by our
proposed method by the use of the episodic few-shot learn-
ing paradigm. By directly converting bidirectional network
flows into images, useful features can be automatically ex-
tracted using a pretrained CNN model. After that, our model
learns how close the two network flows are in the embedding
space using the Euclidean distance function. With this in-
formation, the model constructs the traffic image as a graph
structure and classifies it using the proposed approach. Our
experimental results demonstrate that the proposed model
is better than the baseline models. Our approach can iden-
tify the malicious IoT traffic with an F1 score of 0.94 and
0.91 in 10-shot and 5-shot classification, respectively. Even
though the advantage of few-shot learning is that the training
classes and test classes do not need to be the same, it has its
own limitation. Since the number of classes is fixed during
the meta-training, meaning that if we train the model with
N classes, unfortunately, only N classes can be predicted at
a time in the meta-testing stage.

Acknowledgments

This work was partially supported by JSPS KAKENHI
Grant Number JP21H03444. This research results were
partly obtained from the commissioned research under a
contract of “Research and development on IoT malware re-
moval/make it non-functional technologies for effective use
of the radio spectrum” among “Research and Development
for Expansion of Radio Wave Resources (JPJ000254)”,
which was supported by the Ministry of Internal Affairs and
Communications, Japan.

References

[1] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A survey on security
and privacy issues in Internet-of-Things,” IEEE Internet Things J.,
vol.4, no.5, pp.1250–1258, April 2017. DOI: 10.1109/JIOT.2017.
2694844

[2] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey
on internet of things: Architecture, enabling technologies, security
and privacy, and applications,” IEEE Internet Things J., vol.4, no.5,
pp.1125–1142, March 2017. DOI: 10.1109/JIOT.2017.2683200

[3] M.B.M. Noor and W.H. Hassan, “Current research on Internet of
Things (IoT) security: A survey,” Computer networks, vol.148,
pp.283–294, Jan. 2019. DOI: 10.1016/j.comnet.2018.11.025

[4] M. Antonakakis, et al., “Understanding the mirai botnet,” in 26th
USENIX security symposium (USENIX Security 17), pp.1093–
1110, Aug. 2017.

[5] G. Thamilarasu and S. Chawla, “Towards deep-learning-driven in-
trusion detection for the internet of things,” Sensors, vol.19, no.9,
p.1977, Jan. 2019. DOI: 10.3390/s19091977

[6] I. Alrashdi, A. Alqazzaz, E. Aloufi, R. Alharthi, M. Zohdy, and
H. Ming, “Ad-iot: Anomaly detection of iot cyberattacks in smart
city using machine learning,” in 2019 IEEE 9th Annual Com-
puting and Communication Workshop and Conference (CCWC),
pp.0305–0310, Jan. 2019. DOI: 10.1109/CCWC.2019.8666450

[7] M. Almiani, A. AbuGhazleh, A. Al-Rahayfeh, S. Atiewi, and A.
Razaque, “Deep recurrent neural network for IoT intrusion detec-
tion system,” Simulation modelling practice and theory, vol.101,

p.102031, May 2020. DOI: 10.1016/j.simpat.2019.102031
[8] J.L. Leevy, T.M. Khoshgoftaar, and J.M. Peterson, “Mitigating class

imbalance for iot network intrusion detection: A survey,” in 2021
IEEE Seventh International Conference on Big Data Computing Ser-
vice and Applications (BigDataService), pp.143–148, Aug. 2021.
DOI: 10.1109/BigDataService52369.2021.00023

[9] L. Bilge and T. Dumitraş, “Before we knew it: An empirical study of
zero-day attacks in the real world,” in Proceedings of the 2012 ACM
conference on Computer and communications security, pp.833–844,
Oct. 2012. DOI: 10.1145/2382196.2382284

[10] O. Vinyals, C. Blundell, T. Lillicrap, and D. Wierstra, “Matching
networks for one shot learning,” Advances in neural information
processing systems, vol.29, pp.3630–3638, 2016

[11] F. Sung, Y. Yang, L. Zhang, T. Xiang, P.H.S. Torr, and T.M.
Hospedales, “Learning to compare: Relation network for few-shot
learning,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp.1199–1208, 2018. DOI:
10.1109/CVPR.2018.00131

[12] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-
shot learning,” Advances in neural information processing systems,
vol.30, pp.4077–4087, 2017.

[13] V. Garcia and J. Bruna, “Few-shot learning with graph neural net-
works,” arXiv preprint arXiv:1711. 04043, 2017.

[14] R. Shire, S. Shiaeles, K. Bendiab, B. Ghita, and N. Kolokotro-
nis, “Malware squid: A novel IoT malware traffic analysis frame-
work using convolutional neural network and binary visualisation,”
in NEW2AN, 2019. DOI: 10.1007/978-3-030-30859-9 6

[15] G. Conti, E. Dean, M. Sinda, and B. Sangster, “Visual reverse engi-
neering of binary and data files,” Visualization for computer security,
pp.1–17, Sept. 2008. DOI: 10.1007/978-3-540-85933-8 1

[16] W. Liu, X. Liu, X. Di, and H. Qi, “A novel network intrusion de-
tection algorithm based on Fast Fourier transformation,” in 2019 1st
International Conference on Industrial Artificial Intelligence (IAI),
pp.1–6, July 2019. DOI: 10.1109/ICIAI.2019.8850770

[17] F. Hussain, S.G. Abbas, M. Husnain, U.U. Fayyaz, F. Shahzad, and
G.A. Shah, “IOT dos and ddos attack detection using ResNet,” 2020
IEEE 23rd International Multitopic Conference (INMIC), pp.1–6,
Nov. 2020. DOI:10.1109/inmic50486.2020.9318216

[18] M. Shafiq, Z. Tian, A.K. Bashir, X. Du, and M. Guizani, “CorrAUC:
A malicious bot-IoT traffic detection method in IoT network using
machine-learning techniques,” IEEE Internet Things J., vol.8, no.5,
pp.3242–3254, June 2020. DOI: 10.1109/JIOT.2020.3002255

[19] G. Bendiab, S. Shiaeles, A. Alruban, and N. Kolokotronis, “IoT mal-
ware network traffic classification using visual representation and
deep learning,” in 2020 6th IEEE Conference on Network Soft-
warization (NetSoft), pp.444–449, June 2020. DOI: 10.1109/
NetSoft48620.2020.9165381

[20] F. Hussain, S.G. Abbas, M. Husnain, U.U. Fayyaz, F. Shahzad, and
G.A. Shah, “IoT DoS and DDoS attack detection using ResNet,”
in 2020 IEEE 23rd International Multitopic Conference (INMIC),
pp.1–6, 2020. DOI: 10.1109/INMIC50486.2020.9318216

[21] C. Xu, J. Shen, and X. Du, “A method of few-shot network in-
trusion detection based on meta-learning framework,” IEEE Trans.
Inf. Forensics Security, vol.15, pp.3540–3552, May 2020. DOI:
10.1109/TIFS.2020.2991876

[22] Y. Yu and N. Bian, “An intrusion detection method using few-shot
learning,” IEEE Access, vol.8, pp.49730–49740, March 2020. DOI:
10.1109/ACCESS.2020.2980136

[23] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, and G.
Monfardini, “The graph neural network model,” IEEE Trans. Neural
Netw., vol.20, no.1, pp.61–80, Dec. 2009. DOI: 10.1109/TNN.2008.
2005605

[24] J. Kim, T. Kim, S. Kim, and C.D. Yoo, “Edge-labeling graph neural
network for few-shot learning,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp.11–20,
2019. DOI: 10.1109/CVPR.2019.00010

[25] T. Wei, J. Hou, and R. Feng, “Fuzzy graph neural network

http://dx.doi.org/10.1109/jiot.2017.2694844
http://dx.doi.org/10.1109/jiot.2017.2683200
http://dx.doi.org/10.1016/j.comnet.2018.11.025
http://dx.doi.org/10.3390/s19091977
http://dx.doi.org/10.1109/ccwc.2019.8666450
http://dx.doi.org/10.1016/j.simpat.2019.102031
http://dx.doi.org/10.1016/j.simpat.2019.102031
http://dx.doi.org/10.1109/bigdataservice52369.2021.00023
http://dx.doi.org/10.1145/2382196.2382284
http://dx.doi.org/10.1109/cvpr.2018.00131
http://dx.doi.org/10.1007/978-3-030-30859-9_6
http://dx.doi.org/10.1007/978-3-540-85933-8_1
http://dx.doi.org/10.1109/iciai.2019.8850770
http://dx.doi.org/10.1109/inmic50486.2020.9318216
http://dx.doi.org/10.1109/jiot.2020.3002255
http://dx.doi.org/10.1109/netsoft48620.2020.9165381
http://dx.doi.org/10.1109/inmic50486.2020.9318216
http://dx.doi.org/10.1109/tifs.2020.2991876
http://dx.doi.org/10.1109/access.2020.2980136
http://dx.doi.org/10.1109/tnn.2008.2005605
http://dx.doi.org/10.1109/cvpr.2019.00010
http://dx.doi.org/10.1109/ijcnn48605.2020.9207213

THEIN et al.: FEW-SHOT LEARNING-BASED MALICIOUS IOT TRAFFIC DETECTION WITH PROTOTYPICAL GRAPH NEURAL NETWORKS
1489

for few-shot learning,” in 2020 International joint conference
on neural networks (IJCNN), pp.1–8, July 2020. DOI: 10.1109/
IJCNN48605.2020.9207213

[26] A. Dainotti, A. Pescape, and K.C. Claffy, “Issues and future direc-
tions in traffic classification,” IEEE Netw., vol.26, no.1, pp.35–40,
Jan. 2012. DOI: 10.1109/MNET.2012.6135854

[27] “Visual analysis of binary files,” http://binvis.io
[28] H. Sagan, Space-filling curves, Springer Science & Business Media,

2012.
[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp.770–778, 2016. DOI:
10.1109/cvpr.2016.90

[30] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im-
agenet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition, pp.248–255,
June 2019. DOI: 10.1109/CVPR.
2009.5206848

[31] T.N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” arXiv preprint arXiv:1609. 02907,
2016.

[32] S. Garcia, A. Parmisano, and M.J. Erquiaga, “IoT-23: A labeled
dataset with malicious and benign IoT network traffic,” Zenodo,
2020, http://doi.org/10.5281/zenodo.4743746

[33] “An open source network monitoring tool,” https://zeek.org
[34] “SplitCap,” https://www.netresec.com/?page=SplitCap

Thin Tharaphe Thein received the B.E.
degree from Yangon Technological University,
Myanmar in 2019 and M.E. degree from Kobe
University, Japan in 2021. She is currently pur-
suing doctoral degree at Kobe University. Her
research focuses on data-driven cybersecurity,
machine learning and threat intelligence.

Yoshiaki Shiraishi received the B.E. and
M.E. degrees from Ehime University, Japan,
and the Ph.D. degree from the University of
Tokushima, Japan, in 1995, 1997, and 2000, re-
spectively. From 2002 to 2006 he was a Lec-
turer at the Department of Informatics, Kindai
University, Japan. From 2006 to 2013 he was an
Associate Professor at the Department of Com-
puter Science and Engineering, Nagoya Insti-
tute of Technology, Japan. Since 2013, he has
been an Associate Professor at the Department

of Electrical and Electronic Engineering, Kobe University, Japan. His cur-
rent research interests include information security, cryptography, com-
puter network, and machine learning based cyberattack analysis. He is a
member of IEEE, ACM, and a senior member of IEICE, IPSJ.

Masakatu Morii received the B.E. de-
gree in electrical engineering and the M.E. de-
gree in electronics engineering from Saga Uni-
versity, Saga, Japan, and the D.E. degree in com-
munication engineering from Osaka University,
Osaka, Japan, in 1983, 1985, and 1989, respec-
tively. From 1989 to 1990 he was an Instruc-
tor in the Department of Electronics and Infor-
mation Science, Kyoto Institute of Technology,
Japan. From 1990 to 1995 he was an Associate
Professor at the Department of Computer Sci-

ence, Faculty of Engineering, Ehime University, Japan. From 1995 to 2005
he was a Professor at the Department of Intelligent Systems and Informa-
tion Science, Faculty of Engineering, the University of Tokushima, Japan.
Since 2005, he has been a Professor at the Department of Electrical and
Electronic Engineering, Faculty of Engineering, Kobe University, Japan.
His research interests are in error correcting codes, cryptography, discrete
mathematics, computer networks and information security. He is a member
of IEEE and a fellow of IEICE.

http://dx.doi.org/10.1109/ijcnn48605.2020.9207213
http://dx.doi.org/10.1109/mnet.2012.6135854
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2009.5206848
http://dx.doi.org/10.5281/zenodo.4743746

